×
 Physics at Virginia
ABSTRACT:

Massive black holes can grow in the presence of dark-matter environments and form dark-matter spikes with large densities. When a massive black hole within a dark-matter environment is part of an inspiral with a second compact object, the environmental effects will be imprinted on the system's dynamics. Past work studying these systems has demonstrated that gravitational effects like dynamical friction and accretion effects from the dark-matter distribution can have measurable impacts on the binary inspiral rate. The emitted gravitational waves will be affected in turn; given that they will be in the observable band for upcoming space-based detectors like LISA, the dynamics of dark matter on these scales can be understood precisely. In this talk, I discuss progress in evolving these systems on three fronts. First, I will overview a generalization of dynamical friction suitable for spherical systems, and its applications to inspirals. Second, I will present refinements on the effects of dark-matter accretion in a self-consistent framework. Finally, I will discuss the impacts of the formation history of the system on both the resulting dark-matter distribution and the gravitational waveform we would detect from such a binary.

Gravity Seminar
Monday, March 18, 2024
1:30 PM
Physics, Room 031
Note special room.

 Add to your calendar

To add a speaker, send an email to phys-speakers@Virginia.EDU. Please include the seminar type (e.g. Gravity Seminars), date, name of the speaker, title of talk, and an abstract (if available).