## "Continuity of the Deconfinement Transition in (Super) Yang Mills Theory"Thomas Schaefer
, North Carolina State University
[Host: Diana Vaman]
ABSTRACT:
Finding controlled, analytical approaches to the deconfinement transition in QCD is an old problem. Here we present a weak coupling calculation of the deconfinement transition in a deformed version of QCD. We argue that this transition is continuously connected to the transition in pure gauge theory, which takes place in strong coupling.
More technical abstract: We study the phase diagram of SU(2) Yang-Mills theory with one adjoint Weyl fermion on R^3xS^1 as a function of the fermion mass m and the compactification scale beta. This theory reduces to thermal pure gauge theory as m->infinity and to circle-compactified (twisted) susy gluodynamics in the limit m->0. In the m-L plane, there is a line of center symmetry changing phase transitions. In the limit m->infinity, this transition takes place at beta_c=1/T_c, where T_c is the critical temperature of the deconfinement transition in pure Yang-Mills theory. We show that near m=0, the critical scale beta_c can be computed using semi-classical methods and that the transition is of second order. This suggests that the deconfining phase transition in pure Yang-Mills theory is continuously connected to a phase transition that can be studied in weak coupling. The center symmetry changing phase transition arises from the competition of fractionally charged instanton-monopoles and instanton molecules. The calculation can be extended to higher rank gauge groups and non-zero theta angle. |
High Energy Physics SeminarThursday, November 15, 2012 2:30 PM Physics Building, Room 313 Note special date. Note special time. Note special room. |

To add a speaker, send an email to phys-speakers@Virginia.EDU. Please include the seminar type (e.g. High Energy Physics Seminars), date, name of the speaker, title of talk, and an abstract (if available).