×
 Physics at Virginia
ABSTRACT:

Pairing PbS quantum dots (QDs) with photochromic molecules (PCMs) allows for the synthesis of efficient and reversible near infrared photoluminescence (PL) photo-switches. In our work, we explore the utility space of this hybrid system by systematically comparing and contrasting different types of PCMs and different sizes of QDs. We demonstrate that the amount of photo-switching observed can be affected by (1) varying the size of the QDs, (2) varying the length of the PCMs, (3) fluorinating the PCMs, (4) varying the end group of the PCMs. We further investigate this system to parse out the mechanisms which may be responsible for this behavior. We present strong evidence to suggest that the mechanism driving this switching effect is an inter-QD tunneling process. We demonstrate a possible link between the energy levels of the PCMs and the magnitude of the switching effect and outline a rough empirical model which can guide the future design of QD/PCM photo switches to produce customized switching properties.

Condensed Matter Seminar
Thursday, March 28, 2024
3:30 PM
Gibson Hall, Room 211
Note special room.

 Add to your calendar

To add a speaker, send an email to phys-speakers@Virginia.EDU. Please include the seminar type (e.g. Condensed Matter Seminars), date, name of the speaker, title of talk, and an abstract (if available).