"Nanoscale quantum sensing of programmable quantum matter"Shaowen Chen , Harvard University [Host: Seunghun Lee]
ABSTRACT:
Characterization and quantum control of complex quantum matter is one of the shared goals for condensed matter and quantum information science research. Toward this end, my research uses van der Waals materials to synthesize topological and correlated states, and quantum sensors based on spin defects to uncover their microscopic picture. Focusing on superconductivity as the theme of this talk, I will first present pathways to program the electron correlation by exploiting the lattice degree of freedom, both in the planar and vertical directions of moiré materials. The challenges to fully characterize the moiré superconductivity will be discussed. In the second part, I will show new experimental observables unlocked by the nanoscale quantum sensing platform can uncover hidden physics. As an example, quantitative visualization of the super current flow in a Josephson junction is used to reveal electrically configurable ground states in the zero-resistance regime. A surprising role of the kinetic inductance and the implications for the Josephson diode effect will be discussed. Finally, I will share my vision to explore intertwined topology and correlation by integrating the programmable quantum materials with nanoscale quantum sensors. |
Condensed Matter Seminar Thursday, February 1, 2024 3:30 PM Physics, Room 323 Note special room. A recording of this talk is available at this link (enter passcode *0m4DSym). |
To add a speaker, send an email to phys-speakers@Virginia.EDU. Please include the seminar type (e.g. Condensed Matter Seminars), date, name of the speaker, title of talk, and an abstract (if available).