In recent years anomalous cooling and heating effects in the far from equilibrium limit have gained attention. One anomaly is the so called Mpemba Effect, in which the time to relax towards thermal equilibrium does not grow monotonically as a function of distance to the target. Instead, it has been proposed that there exist shortcuts in the relaxation process that allow both faster, and even exponentially faster heating and cooling. In this talk I will discuss recent works [1,2] that have progressed our understanding of such shortcuts by studying the Mpemba effect using Overdamped Langevin dynamics. I will show when and where you can get the effect, and that our models are in good agreement with experimental findings. Lastly, I will touch upon current works where we study the effect using Markovian jump processes on linear reaction networks.  


  1. Anomalous thermal relaxation of Langevin particles in a piecewise-constant potential

Matthew R Walker and Marija Vucelja J. Stat. Mech. (2021) 113105

  1. Mpemba effect in terms of mean first passage times for overdamped Langevin dynamics

Matthew R Walker and Marija Vucelja arXiv preprint arXiv:2212.07496 (2022)


Condensed Matter Seminar
Thursday, April 6, 2023
4:00 PM
Ridley, Room 177
Note special time.

 Add to your calendar

To add a speaker, send an email to phys-speakers@Virginia.EDU. Please include the seminar type (e.g. Condensed Matter Seminars), date, name of the speaker, title of talk, and an abstract (if available).