Physics at Virginia

"A programmable quantum computer based on trapped ions"

Norbert Linke , Joint Quantum Institute, University of Maryland, and NIST
[Host: Bob Jones]

Quantum computers can solve certain problems more efficiently than any classical computer. Trapped ions are a promising candidate for realizing such a system. We present a modular quantum computing architecture comprised of a chain of 171Yb+ ions with individual Raman beam addressing and individual readout [1]. We use the transverse modes of motion in the chain to produce entangling gates between any qubit pair. This creates a fully connected system which can be configured to run any sequence of single- and two-qubit gates, making it in effect an arbitrarily programmable quantum computer that does not suffer any swap-gate overhead [2].
Recent results from different quantum algorithms on five and seven ions will be presented [3,4], including a quantum error detection protocol that fault-tolerantly encodes a logical qubit [5]. I will also discuss current work and ideas to scale up this architecture.

[1] S. Debnath et al., Nature 563:63 (2016).
[2] NML et al., PNAS 114 13:3305 (2017).
[3] C. Figgatt et al., Nat. Communs. 8, 1918 (2017).
[4] NML et al., arXiv:1712.08581 (2017)
[5] NML et al., Sci. Adv. 3, 10 (2017).


Wednesday, February 7, 2018
3:30 PM
Physics Building, Room 204
Note special date.
Note special room.

Special Colloquium

 Add to your calendar

To add a speaker, send an email to phys-speakers@Virginia.EDU. Please include the seminar type (e.g. Colloquia), date, name of the speaker, title of talk, and an abstract (if available).