"A programmable quantum computer based on trapped ions"Norbert Linke , Joint Quantum Institute, University of Maryland, and NIST [Host: Bob Jones]
ABSTRACT:
Quantum computers can solve certain problems more efficiently than any classical computer. Trapped ions are a promising candidate for realizing such a system. We present a modular quantum computing architecture comprised of a chain of 171Yb+ ions with individual Raman beam addressing and individual readout [1]. We use the transverse modes of motion in the chain to produce entangling gates between any qubit pair. This creates a fully connected system which can be configured to run any sequence of single- and two-qubit gates, making it in effect an arbitrarily programmable quantum computer that does not suffer any swap-gate overhead [2]. |
Colloquium Wednesday, February 7, 2018 3:30 PM Physics Building, Room 204 Note special date. Note special room. Special Colloquium |
To add a speaker, send an email to phys-speakers@Virginia.EDU. Please include the seminar type (e.g. Colloquia), date, name of the speaker, title of talk, and an abstract (if available).