"Microcavity Exciton-Polariton Condensates Physics and Applications"Na Young Kim , Stanford University [Host: Seunghun Lee]
ABSTRACT:
Microcavity exciton-polaritons are hybrid light-matter quasi-particles as an admixture of cavity photons and quantum well excitons. The inherent light-matter duality provides experimental advantages to form coherent condensates at high temperatures (e.g. 4 K in GaAs and room temperature in GaN materials), and to access the
dynamics of exciton-polaritons.
I will first discuss the characteristics of exciton-polariton condensates with emphasis on their intrinsic open-dissipative nature. I will present exciton-polariton-lattice systems, where we explore the non-zero momentum condensate order. We envision that the polariton-lattice systems would serve as a solid-state platform to investigate strongly correlated materials. Finally, I will show our recent progress on electrically pumped exciton-polariton coherent matter waves towards the development of novel coherent light sources operating at low threshold powers and at high temperatures. |
Condensed Matter Seminar Thursday, October 24, 2013 3:30 PM Physics Building, Room 204 Note special room. |
To add a speaker, send an email to phys-speakers@Virginia.EDU. Please include the seminar type (e.g. Condensed Matter Seminars), date, name of the speaker, title of talk, and an abstract (if available).