Nonextremal Black Holes, Subtracted Geometry and Holography

Mirjam Cvetič

Einstein's theory of gravity predicts Black Holes

Due to it's high mass density the space-time curved so much that objects traveling toward it reach a point of no return \rightarrow Horizon (\& eventually reaches space-time singularity)
Black holes ‘behave' as thermodynamic objects w/ Bekenstein-Hawking entropy: $S=1 / 4 A_{\text {horizon }}$ $A_{\text {horizon }}=$ area of the black hole horizon $\left(w / \hbar=c=G_{N}=1\right)$

Key Issue in Black Hole Physics:

How to relate

Bekenstein-Hawking - thermodynamic entropy: $S_{\text {thermo }}=1 / 4 A_{\text {hor }}$ ($\mathrm{A}_{\text {hor }}=$ area of the black hole horizon; $\mathrm{c}=\hbar=1 ; \mathrm{G}_{\mathrm{N}}=1$)

> to

Statistical entropy:

$$
S_{\text {stat }}=\log N_{i} ?
$$

Where do black hole microscopic degrees N_{i} come from?

Black Holes in String Theory

The role of D-branes

D(irichlet)-branes Polchinski'96

 boundaries of open strings with charges at their ends
I. Implications for particle physics (charged excitations)-no time
II. Implications for Black Holes

Dual D-brane interpretation: extended massive gravitational objects

SunflowerCosmos
D-branes in four-dimensions:
part of their world-volume on compactified space \& part in internal compactified space

D-branes as gravitational objects wrap cycles in internal space: intersecting D-branes in compact dimensions \& charged black holes in four dim. space-time (w/ each D-brane sourcing charge Q_{i})

Prototype: four-charge black hole $w / S=\pi \sqrt{ } Q_{1} Q_{2} P_{3} P_{4}$ M.C. \&e Youm 9507090

Microscopic origin of entropy
for extremal (BPS), multi-charged black holes with
$M=\Sigma_{i}\left|Q_{i}\right|+\sum_{i}\left|P_{i}\right|$ (schematic)
M-mass, Q_{i} - el., P_{i} - magn. charges
Systematic study of microscopic degrees quantified via: AdS/CFT (Gravity/Field Theory) correspondence
[A string theory on a
specific Curved Space-Time (in D-dimensions) related to
specific Field Theory (in (D-1)- dimensions) on its boundary
\rightarrow Holographic Approach]
Maldacena'97
For multicharged (near)-BPS black holes: $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ correspondence

The rest of the talk:

Highlight recent progress on studies of
Internal Structure of Non-Extremal Black Holes

Outline:

I. General asymptotically flat black holes in string theory [in four (\&five) dimensions - prototype STU black holes] thermodynamics, suggestive of conformal symmetry
II. Subtracted Geometry: non-extremal black holes in asymptotically conical box manifest conformal symmetry
III. Variational Principle and Subtracted Geometry conserved charges and thermodynamics
IV. Holography via 2D Einstein-Maxwell-Dilaton gravity full holographic dictionary
V. Outlook

Background:

Initial work on subtracted geometry
M.C., Finn Larsen 1106.3341, 1112.4846, 1406.4536
M.C., Gary Gibbons 1201.0601
M.C., Monica Guica, Zain Saleem 1301.7032

Recent: variational principle, conserved charges and thermodynamics of subtracted geometry
Ok Song An, M.C., Ioannis Papadimitriou, 1602.0150
Most recent: subtracted geometry and AdS_{2} holography M.C., Ioannis Papadimtiriou,1608.07018
I. 4D general non-extremal black holes in string theory, asymptotically flat (zero cosmological constant $\wedge=0$)

M - mass, $\mathrm{Q}_{\mathrm{i}}, \mathrm{P}_{\mathrm{i}}$ - multi-charges, J - angular momentum
w/ $M>\Sigma_{i}\left|Q_{i}\right|+\Sigma_{i}\left|P_{i}\right|$

Prototype solutions of a sector of maximally supersymmetric D=4 Supergravity
[sector of toroidally compactified effective string theory] \rightarrow so-called STU model

STU Model Lagrangian

[A sector of toroidally compactified effective string theory]

$$
\begin{aligned}
2 \kappa_{4}^{2} \mathcal{L}_{4}= & R \star 1-\frac{1}{2} \star d \eta_{a} \wedge d \eta_{a}-\frac{1}{2} e^{2 \eta_{a}} \star d \chi^{a} \wedge d \chi^{a} \\
& -\frac{1}{2} e^{-\eta_{0}} \star F^{0} \wedge F^{0}-\frac{1}{2} e^{2 \eta_{a}-\eta_{0}} \star\left(F^{a}+\chi^{a} F^{0}\right) \wedge\left(F^{a}+\chi^{a} F^{0}\right) \\
& +\frac{1}{2} C_{a b c} \chi^{a} F^{b} \wedge F^{c}+\frac{1}{2} C_{a b c} \chi^{a} \chi^{b} F^{0} \wedge F^{c}+\frac{1}{6} C_{a b c} \chi^{a} \chi^{b} \chi^{c} F^{0} \wedge F^{0}
\end{aligned}
$$

$$
\text { (} \mathrm{a}=1,2,3 ; \mathrm{C}_{\text {abc }} \text {-anti-symmetric tensor) }
$$

w/ A^{0} \&e three gauge fields A^{a}, the three dilatons η^{a} and the three axions χ^{a}
Black holes: explicit solutions of equations of motion for the above Lagrangian w/ metric, four gauge potentials and three axio-dilatons

Prototype, four-charge rotating black hole, originally obtained via solution generating techniques
$\begin{aligned} & \text { Four- } \mathrm{SO}(1,1) \text { transfs. } \\ & \text { time-reduced Kerr BH }\end{aligned}=\left(\begin{array}{cc}\cosh \delta_{i} & \sinh \delta_{i} \\ \sinh \delta_{i} & \cosh \delta_{i}\end{array}\right)$
Chong, M.C., Lü, Pope 0411045

Full four-electric and four-magnetic charge solution only recently obtained Chow, Compère 1310.1295;1404.2602

Compact form of the metric for rotating four-charge black holes

M.C. \& Youm 9603147 Chong, M.C., Lü \& Pope 0411045

$$
d s_{4}^{2}=-\Delta_{0}^{-1 / 2} G(d t+\mathcal{A})^{2}+\Delta_{0}^{1 / 2}\left(\frac{d r^{2}}{X}+d \theta^{2}+\frac{X}{G} \sin ^{2} \theta d \phi^{2}\right)
$$

$$
\begin{array}{ll}
X=r^{2}-2 m r+a^{2}=0 \text { outer \& inner horizon } & \\
G=r^{2}-2 m r+a^{2} \cos ^{2} \theta, & \Pi_{c} \equiv \prod_{I=0}^{3} \cosh \delta_{I}, \quad \Pi_{s} \equiv \prod_{I=0}^{3} \sinh \delta_{I}
\end{array}
$$

$$
\mathcal{A}=\frac{2 m a \sin ^{2} \theta}{G}\left[\left(\Pi_{c}-\Pi_{s}\right) r+2 m \Pi_{s}\right] d \phi
$$

$$
\Delta_{0}=\prod_{I=0}^{3}\left(r+2 m \sinh ^{2} \delta_{I}\right)+2 a^{2} \cos ^{2} \theta\left[r^{2}+m r \sum_{I=0}^{3} \sinh ^{2} \delta_{I}+4 m^{2}\left(\Pi_{c}-\Pi_{s}\right) \Pi_{s}\right.
$$

$$
\left.-2 m^{2} \sum_{2 I} \sinh ^{2} \delta_{I} \sinh ^{2} \delta_{J} \sinh ^{2} \delta_{K}\right]+a^{4} \cos ^{4} \theta
$$

$G_{4} M=\frac{1}{4} m \sum_{I=0}^{3 I<J<K} \cosh 2 \delta_{I}$,
$G_{4} Q_{I}=\frac{1}{4} m \sinh 2 \delta_{I},(I=0,1,2,3)$ Four charges
$G_{4} J=m a\left(\Pi_{c}-\Pi_{s}\right)$,
Angular momentum

Special cases:
$\delta_{\mathrm{I}}=\delta$ Kerr-Newman
$\& \mathbf{a}=0$ Reisner-Nordström;
$\delta_{\mathrm{I}}=0$ Kerr
\& a = 0 Schwarzschild;
$\delta_{\mathrm{I}} \rightarrow \infty \mathrm{m} \rightarrow 0 \mathrm{w} / \mathrm{m} \exp \left(2 \delta_{\mathrm{I}}\right)$-finite
extremal (BPS) black hole

Thermodynamics of outer \& inner horizons suggestive of weakly interacting 2 -dim. CFT
M.C., Youm '96
w/ "'left-" \& "right-moving" excitations
Area of outer horizon $\mathrm{S}_{+}=\mathrm{S}_{\mathrm{L}}+\mathrm{S}_{\mathrm{R}} \quad S_{L}=\pi m^{2}\left(\Pi_{c}+\Pi_{s}\right)$
[Area of inner horizon $S_{-}=S_{L}-S_{R}$]

$$
S_{R}=\pi m \sqrt{m^{2}-a^{2}}\left(\Pi_{c}-\Pi_{s}\right)
$$

Surface gravity (inverse temperature) of
outer horizon $\quad \beta_{\mathrm{H}}=1 / 2\left(\beta_{\mathrm{L}}+\beta_{\mathrm{R}}\right)$

$$
\beta_{L}=2 \pi m\left(\Pi_{c}-\Pi_{s}\right)
$$

[inner horizon $\beta_{-}=1 / 2\left(\beta_{L}-\beta_{R}\right)$]

$$
\beta_{R}=\frac{2 \pi m^{2}}{\sqrt{m^{2}-a^{2}}}\left(\Pi_{c}+\Pi_{s}\right)
$$

Similar structure for angular velocities Ω_{+}, Ω_{-}and momenta J_{+}, J_{-}.
Depend only on four parameters: m, a, $\Pi_{c} \equiv \prod_{I=0}^{3} \cosh \delta_{I}, \quad \Pi_{s} \equiv \prod_{I=0}^{3} \sinh \delta_{I}$
Shown more recently, all independent of the warp factor Δ_{0} !

II. Subtracted Geometry - Motivation

Quantify this "conventional wisdom' ' M.C., Larsen '97-' 99 that also non-extremal black holes might have microscopic explanation in terms of dual 2D CFT

Focus on the black hole "by itself" \rightarrow enclose the black hole in a box (à la Gibbons Hawking) \rightarrow an equilibrium system w/ conformal symmetry manifest

The box leads to a "mildly" modified geometry changing only the warp factor $\Delta_{0} \rightarrow \Delta$ (same horizon thermodynamic quantities)

Subtracted Geometry
M.C., Larsen '11

Determination of new warp factor $\Delta_{0} \rightarrow \Delta$

 via massless scalar field wave eq.: wave eq. separable \& the radial part is solved by hypergeometric functions w/ $\operatorname{SL}(2, R)^{2}$ (manifest conformal symmetry)The general Laplacian (with warp factor Δ_{0} - implicit):

$$
\Delta_{0}^{-\frac{1}{2}}\left[\partial_{r} X \partial_{r}-\frac{1}{X}\left(\mathcal{A}_{\mathrm{red}} \partial_{t}-\partial_{\phi}\right)^{2}+\frac{\mathcal{A}_{\mathrm{red}}^{2}-\Delta_{0}}{G} \partial_{t}^{2}+\frac{1}{\sin \theta} \partial_{\theta} \sin \theta \partial_{\theta}+\frac{1}{\sin ^{2} \theta} \partial_{\phi}^{2}\right]
$$

$$
\begin{gathered}
\mathrm{w} / \mathcal{A}_{\text {red }}=\frac{G}{a \sin ^{2} \theta} \mathcal{A}=2 m[(\Pi, \\
G=r^{2}-2 m r+a^{2} \cos ^{2} \theta
\end{gathered}
$$

$\Delta_{0} \rightarrow \Delta$ such that wave eq. is separable: $f(r)+g(\theta)\left(\right.$ true for Δ_{0} and $\left.\Delta\right)$
\& the radial part is solyed by hypergeometric functions:

$$
\mathrm{f}(\mathrm{r})+\mathrm{g}(\mathrm{\theta}) \text {-const. } \rightarrow \text { uniquely fixes } \Delta
$$

Subtracted geometry for rotating four-charge black holes

$$
\begin{aligned}
d s_{4}^{2} & =-\Delta_{0}^{-1 / 2} G(d t+\mathcal{A})^{2}+\Delta_{0}^{1 / 2}\left(\frac{d r^{2}}{X}+d \theta^{2}+\frac{X}{G} \sin ^{2} \theta d \phi^{2}\right) \\
X & =r^{2}-2 m r+a^{2}, \\
G & =r^{2}-2 m r+a^{2} \cos ^{2} \theta, \\
\mathcal{A} & =\frac{2 m a \sin ^{2} \theta}{G}\left[\left(\Pi_{c}-\Pi_{s}\right) r+2 m \Pi_{s}\right] d \phi, \\
\Delta_{0} & =\prod_{I=0}^{3}\left(r+2 m \sinh ^{2} \delta_{I}\right)+2 a^{2} \cos ^{2} \theta\left[r^{2}+m r \sum_{I=0}^{3} \sinh ^{2} \delta_{I}+4 m^{2}\left(\Pi_{c}-\Pi_{s}\right) \Pi_{s}\right. \\
& \left.\quad-2 m^{2} \sum_{I<J<K} \sinh ^{2} \delta_{I} \sinh ^{2} \delta_{J} \sinh ^{2} \delta_{K}\right]+a^{4} \cos ^{4} \theta .
\end{aligned}
$$

$$
\Delta_{0} \rightarrow \Delta=(2 m)^{3} r\left(\Pi_{c}^{2}-\Pi_{s}^{2}\right)+(2 m)^{4} \Pi_{s}^{2}-(2 m)^{2}\left(\Pi_{c}-\Pi_{s}\right)^{2} a^{2} \cos ^{2} \theta
$$

Comments: while $\Delta_{0} \sim r^{4}, \Delta \sim r$ (not asymptotically flat!) subtracted geometry depends only on four parameters: $\mathrm{m}, \quad \mathrm{a}, \quad \Pi_{c} \equiv \prod_{I=0}^{3} \cosh \delta_{I}, \quad \Pi_{s} \equiv \prod_{I=0}^{3} \sinh \delta_{I}$

Matter fields (gauge potentials and scalars)

M.C., Gibbons 1201.0601

Scalars:

$$
\eta_{1}=\eta_{2}=\eta_{3} \equiv \eta, \chi_{1}=\chi_{2}=\chi_{3} \equiv \chi
$$

Running dilaton: $e^{\eta}=\frac{(2 m)^{2}}{\sqrt{\Delta}}, \quad \chi=\frac{a\left(\Pi_{c}-\Pi_{s}\right)}{2 m} \cos \theta$

Gauge potentials: $A^{1}=A^{2}=A^{3} \equiv A$.

$$
\begin{aligned}
A^{0} & =\frac{(2 m)^{4} a\left(\Pi_{c}-\Pi_{s}\right)}{\Delta} \sin ^{2} \theta d \phi+\frac{(2 m a)^{2} \cos ^{2} \theta\left(\Pi_{c}-\Pi_{s}\right)^{2}+(2 m)^{4} \Pi_{c} \Pi_{s}}{\left(\Pi_{c}^{2}-\Pi_{s}^{2}\right) \Delta} d t, \\
A & =\frac{2 m \cos \theta}{\Delta}\left(\left[\Delta-(2 m a)^{2}\left(\Pi_{c}-\Pi_{s}\right)^{2} \sin ^{2} \theta\right] d \phi-2 m a\left(2 m \Pi_{s}+r\left(\Pi_{c}-\Pi_{s}\right)\right) d t\right),
\end{aligned}
$$ Magnetic frame

Non-extremal black hole immersed in constant magnetic field

$$
\mathrm{w} / \Delta=(2 m)^{3}\left(\Pi_{c}^{2}-\Pi_{s}^{2}\right) r+(2 m)^{4} \Pi_{s}^{2}-(2 m a)^{2}\left(\Pi_{c}-\Pi_{s}\right)^{2} \cos ^{2} \theta
$$

Remarks:

Asymptotic geometry of subtracted geometry is of Lifshitz-type w/ a deficit angle:

$$
d s^{2}=-\left(\frac{R}{R_{0}}\right)^{2 p} d t^{2}+B^{2} d R^{2}+R^{2}\left(d \theta^{2}+\sin ^{2} \theta^{2} d \phi^{2}\right) \quad \mathrm{p}=3, \mathrm{~B}=4
$$

\rightarrow black hole in an "asymptotically conical box" M.C., Gibbons 1201.0601
\rightarrow the box conformal to $\mathrm{AdS}_{2} \times \mathrm{S}^{2}$
\rightarrow confining, but "'softer" than AdS

Origin of subtracted geometry

i. Subtracted geometry - as a scaling limit of near-horizon black hole w/ three-large charges Q , (mapped on $\mathrm{m}, \mathrm{a}, \Pi_{\mathrm{c}}, \Pi_{\mathrm{s}}$)

$$
\tilde{r}=r \epsilon, \quad \tilde{t}=t \epsilon^{-1}, \quad \tilde{m}=m \epsilon, \quad \tilde{a}=a \epsilon \quad \text { M.C., Gibbons } 1201.0601
$$

$\epsilon \rightarrow 0 \quad 2 \tilde{m} \sinh ^{2} \tilde{\delta} \equiv Q=2 m \epsilon^{-1 / 3}\left(\Pi_{c}^{2}-\Pi_{s}^{2}\right)^{1 / 3}, \quad \sinh ^{2} \tilde{\delta}_{0}=\frac{\Pi_{s}^{2}}{\Pi_{c}^{2}-\Pi_{s}^{2}}$
ii. Subtracted geometry - as an infinite boost Harrison transformations on the original BH

$$
\text { SO(1,1): } H \sim\left(\begin{array}{ll}
1 & 0 \\
\beta & 1
\end{array}\right) \quad \beta \rightarrow 1
$$

M.C., Gibbons 1201.0601 Virmani 1203.5088
Sahay, Virmani 1305.2800
M.C., Guica, Saleem 1302.7032..
iii. Subtracted geometry - as turning off certain integration constants in harmonic functions of asymptotically flat black holes

Baggio, de Boer, Jottar, Mayerson 1210.7695
An, M.C., Papardimitriou 1602.0150
\rightarrow non-extremal black hole microscopic properties associated with its horizon are captured by a dual field theory of subtracted geometry

Lift of subtracted geometry

on a circle S^{1} to five-dimension turns out to locally factorize $A d S_{3} \times S^{2}$ ([SL(2,R) $\left.{ }^{2} \times \mathrm{SO}(3)\right] / Z_{2}$ symmetry)
[globally S² fibered over Bañados-Teitelboim-Zanelli (BTZ) black hole $\mathrm{w} /$ mass M_{3}, angular momentum $\mathrm{J}_{3} \& 3 \mathrm{~d}$ cosmol. const. $\left.\Lambda=\iota^{-3}\right]$

$$
\left.\left.\begin{array}{rl}
d s_{5}^{2} & =\quad\left(d s_{S^{2}}^{2}+d s_{B T Z}^{2}\right) \\
d s_{S^{2}}^{2}=\frac{1}{4} \ell^{2}\left(d \theta^{2}+\sin ^{2} \theta d \bar{\phi}^{2}\right) \\
d s_{B T Z}^{2}=- & \left(r_{3}^{2}-r_{3+}^{2}\right)\left(r_{3}^{2}-r_{3-}^{2}\right) \\
\ell^{2} r_{3}^{2} & d t_{3}^{2}+\frac{\ell^{2} r_{3}^{2}}{\left(r_{3}^{2}-r_{3+}^{2}\right)\left(r_{3}^{2}-r_{3-}^{2}\right)} d r_{3}^{2}+r_{3}^{2}\left(d \phi_{3}+\frac{16 m a\left(\Pi_{c}-\Pi_{s}\right)}{\ell_{3+}^{3} r_{3-}}(z+t)\right. \\
\ell_{3}^{2}
\end{array} t_{3}\right)^{2}\right)
$$

Conformal symmetry of AdS_{3} can be promoted to Virasoro algebra of dual two-dimensional CFT à la Brown-Hennaux à la Cardy

Subtracted geometry $\left[\Delta_{0} \rightarrow \Delta=A r+B \cos ^{2} \theta+C ; A, B, C\right.$-horrendous] also works for most general black holes of the STU Model (specified by mass, four electric and four magnetics charges and angular momentum)

Chow, Compère 1310.1295;1404.2602
M.C., Larsen 1106.3341

All also works in parallel for subtracted geometry of most general five-dimensional black holes
(specified by mass, three charges and two angular momenta)
M.C., Youm 9603100

Further developments

Quantum aspects of subtracted geometries:
i) Quasi-normal modes - exact results for scalar fields two damped branches \rightarrow no black hole bomb
M.C., Gibbons 1312.2250, M.C., Gibbons, Saleem 1401.0544
ii) Entanglement entropy -minimally coupled scalar M.C., Satz, Saleem 1407.0310
iii) Vacuum polarization $\left\langle\varphi^{2}\right\rangle$ analytic expressions at the horizon: static M.C., Gibbons, Saleem, Satz 1411.4658 rotating M.C., Satz, Saleem 1506.07189 outside \& inside horizon: rotating M.C., Satz 1609....
iv) Thermodynamics of subtracted geometry via Komar integral: M.C., Gibbons, Saleem 1412.5996 (PRL)
\rightarrow Systematic approach via variational principle

III. Thermodynamics via variational principle
 An, M.C., Papadimitriou 1602.0150

 Following lessons from AdS geometries Heningson,Skenderis'98; Balasubramanian,Kraus'99; deBoer,Verlinde²'99,... achieved through an algorithmic procedure for subtracted geometry:- integration constants, parameterizing solutions of the eqs. of motion, separated into ‘normalizable' - free to vary \& 'non-normalizable' modes - fixed
- non-normalizable modes - fixed only up to transformations induced by local symmetries of the bulk theory (radial diffeomorphisms \& gauge transf.)
- covariant boundary term, S_{ct}, to the bulk action - determined by solving asymptotically the radial Hamilton-Jacobi eqn. \rightarrow

Skenderis,Papadimitriou'04,Papadimitriou'05
total action $\mathrm{S}+\mathrm{S}_{\mathrm{ct}}$ independent of the radial coordinate

- first class constraints of Hamiltonian formal. lead to conserved charges associated with Killing vectors
- conserved charge satisfy the first law of thermodynamics

- Identify normalizable and non-rormalizable modes

Introduce new coordinates:
Rescaled radial coord. $: \ell^{4} r \leftarrow(2 m)^{3}\left(\Pi_{c}^{2}-\Pi_{s}^{2}\right) r^{r}+(2 m)^{4} \Pi_{s}^{2}-(2 m a)^{2}\left(\Pi_{c}-\Pi_{s}\right)^{2}$,
Rescaled time: $\quad \frac{k}{\ell^{3}} t \leftarrow \frac{1}{(2 m)^{3}\left(\Pi_{c}^{2}-\Pi_{s}^{2}\right)} t$,
Trade four parameters $\mathrm{m}, \mathrm{a}, \Pi_{\mathrm{c}}, \Pi_{\mathrm{s}}$ for:

$$
\begin{aligned}
\ell^{4} r_{ \pm} & =(2 m)^{3} m\left(\Pi_{c}^{2}+\Pi_{s}^{2}\right)-(2 m a)^{2}\left(\Pi_{c}-\Pi_{s}\right)^{2} \pm \sqrt{m^{2}-a^{2}}(2 m)^{3}\left(\Pi_{c}^{2}-\Pi_{s}^{2}\right) \\
\ell^{3} \omega & =2 m a\left(\Pi_{c}-\Pi_{s}\right), \quad B=2 m,
\end{aligned}
$$

r_{+}, r_{-}, ω - normalizable modes
B - non-renormalizable mode
(fixed up to bulk diffeomorphisms \& global gauge symmetries)

`Vacuum’ solution

 obtained by turning off r_{+}, r_{-}, ω - three normalizable modes:Asymptotically conical box - conformal to $\mathrm{AdS}_{2} \mathrm{xS}{ }^{2}$

$$
\begin{aligned}
& d s^{2}=\sqrt{r}\left(\ell^{2} \frac{d r^{2}}{r^{2}}-r k^{2} d t^{2}+\ell^{2} d \theta^{2}+\ell^{2} \sin ^{2} \theta d \phi^{2}\right) \\
& e^{\eta}=\frac{B^{2} / \ell^{2}}{\sqrt{r}}, \quad \chi=0, \quad A^{0}=0, \quad A=B \cos \theta d \phi
\end{aligned}
$$

Non-normalizable (fourth) mode B, along with ℓ and k, fixed up to radial diffeomorphism:

$$
r \rightarrow \lambda^{-4} r \quad k \rightarrow \lambda^{3} k, \quad \ell \rightarrow \lambda \ell, \quad B \rightarrow B
$$

and global $U(1)$ symmetry:

$$
e^{\eta} \rightarrow \mu^{2} e^{\eta}, \quad \chi \rightarrow \mu^{-2} \chi, \quad A^{0} \rightarrow \mu^{3} A^{0}, \quad A \rightarrow \mu A, \quad d s^{2} \rightarrow d s^{2}
$$

which keep $\mathrm{kB}{ }^{3} / \ell^{3}$ - fixed

- Radial Hamiltonian formalism

to determine S_{ct}, to the bulk action S
Suitable radial coordinate u, such that constant-u slices Σ_{u}

$$
\Sigma_{u} \rightarrow \partial \mathcal{M} \quad \text { as } u \rightarrow \infty .
$$

Decomposition of the metric and gauge fields:

$$
\begin{aligned}
d s^{2} & =\left(N^{2}+N_{i} N^{i}\right) d u^{2}+2 N_{i} d u d x^{i}+\gamma_{i j} d x^{i} d x^{j} \\
A^{L} & =a^{\Lambda} d u+A_{i}^{\Lambda} d x^{i},
\end{aligned}
$$

Decomposition leads to the radial Lagrangian L w/ canonical momenta:

$$
\begin{aligned}
\pi^{i j} & =\frac{\delta L}{\delta \dot{\gamma}_{i j}} \\
\pi_{I} & =\frac{\delta L}{\delta \dot{\varphi}^{I}} \\
\pi_{\Lambda}^{i} & =\frac{\delta L}{\delta \dot{A}_{i}^{\Lambda}}
\end{aligned}
$$

$\mathrm{w} /$ momenta conjugate to $\mathrm{N}, \mathrm{N}_{\mathrm{i}}$, and a_{\wedge} vanish.

Hamiltonian:

$$
H=\int \mathrm{d}^{3} \mathbf{x}\left(\pi^{i j} \dot{\gamma}_{i j}+\pi_{I} \dot{\varphi}^{I}+\pi_{\Lambda}^{i} \dot{A}_{i}^{\Lambda}\right)-L=\int \mathrm{d}^{3} \mathbf{x}\left(N \mathcal{H}+N_{i} \mathcal{H}^{i}+a^{\Lambda} \mathcal{F}_{\Lambda}\right)
$$

First class constraints $\mathcal{H}=\mathcal{H}^{i}=\mathcal{F}_{\Lambda}=0$, - Hamilton Jacobi eqs.
\& momenta as gradients of Hamilton's principal function $S\left(\mathrm{Y}, \mathrm{A}^{\wedge}, \varphi^{\prime}\right)$:

$$
\pi^{i j}=\frac{\delta L}{\delta \dot{\gamma}_{i j}}
$$

W/ original $\quad \pi_{I}=\frac{\delta L}{\delta \dot{\varphi}^{I}}$

$$
\pi_{\Lambda}^{i}=\frac{\delta L}{\delta \dot{A}_{i}^{\Lambda}}
$$

$$
\pi^{i j}=\frac{\delta \mathcal{S}}{\delta \gamma_{i j}}, \quad \pi_{\Lambda}^{i}=\frac{\delta \mathcal{S}}{\delta A_{i}^{\Lambda}}, \quad \pi_{I}=\frac{\delta \mathcal{S}}{\delta \varphi^{I}} .
$$

deBoer,Verlinde ${ }^{2}$ '99,...Skenderis, Papadimitriou '04,...
Solve asymptotically (for `vacuum' asymptotic solutions) for

$$
S\left(\mathrm{\gamma}, \mathrm{~A}^{\wedge}, \varphi^{\prime}\right) \quad=-\mathrm{S}_{\mathrm{ct}} \quad!
$$

$S\left(\gamma, \mathrm{~A}^{\wedge}, \varphi^{\prime}\right)$ coincides with the on-shell action, up to terms that remain finite as $\Sigma_{\mathrm{u}} \rightarrow \partial \mathcal{M}$. In particular, divergent part of $S\left[\gamma, \mathrm{~A}^{\wedge}, \varphi^{\prime}\right]$ coincides with that of the on-shell action.

- Hamiltonian Formalism with "Renormalized" Action

$$
S_{\mathrm{reg}}=S_{4}+S_{\mathrm{ct}} \quad S_{\mathrm{ren}}=\lim _{r \rightarrow \infty} S_{\mathrm{reg}} \quad \text { Finite-independent of } \mathrm{r}
$$

Covariant $S_{c t}$ calculated for vacuum asymptotic solutions (for non-flat, conformal to $\mathrm{AdS}_{2} \times \mathrm{S}^{2}$ geometry)
$S_{\mathrm{ct}}=-\frac{1}{\kappa_{4}^{2}} \int \mathrm{~d}^{3} \mathbf{x} \sqrt{-\gamma} \frac{B}{4} e^{\eta / 2}\left(\frac{4-\alpha}{B^{2}}+(\alpha-1) e^{-\eta} R[\gamma]-\frac{\alpha}{2} e^{-2 \eta} F_{i j} F^{i j}+\frac{1}{4} e^{-4 \eta} F_{i j}^{0} F^{0 i j}\right)$
Renormalized canonical momenta:

$$
\Pi^{i j}=\pi^{i j}+\frac{\delta S_{\mathrm{ct}}}{\delta \gamma_{i j}}, \quad \Pi_{\Lambda}^{i}=\pi_{\Lambda}^{i}+\frac{\delta S_{\mathrm{ct}}}{\delta A_{i}^{\Lambda}}, \quad \Pi_{I}=\pi_{I}+\frac{\delta S_{\mathrm{ct}}}{\delta \varphi^{I}}
$$

- Conserved Charges

Conserved currents, a consequence of the first class constraints
$\mathrm{F}_{\Lambda}=0$ Conserved currents for gauge potentials: $\quad D_{i} \Pi^{i}=0, \quad D_{i} \Pi^{0 i}=0$.
Conserved charges: $\quad Q_{4}^{(m)}=-\int_{\partial \mathcal{M} \cap C} \mathrm{~d}^{2} \mathbf{x} \Pi^{t}, \quad Q_{4}^{0(e)}=-\int_{\partial \mathcal{M} \cap C} \mathrm{~d}^{2} \mathbf{x} \Pi^{0 t}$

$$
=\frac{3 B}{4 G_{4}}
$$

$$
=\frac{\ell^{4}}{4 G_{4} B^{3}}\left(\sqrt{r_{+} r_{-}}+\omega^{2} \ell^{2}\right)
$$

$\mathcal{H}_{\mathrm{i}}=0 \quad$ Conserved currents: $-2 D_{j} \Pi_{i}^{j}+\Pi_{\eta} \partial_{i} \eta+\Pi_{\chi} \partial_{i} \chi+F_{i j}^{0} \Pi^{0 j}+F_{i j} \Pi^{j} \approx 0$
Conserved "charges": $\quad \mathcal{Q}[\zeta]=\int_{\partial \mathcal{M} \cap C} \mathrm{~d}^{2} \mathbf{x}\left(2 \Pi_{j}^{t}+\Pi^{0 t} A_{j}^{0}+\Pi^{t} A_{j}\right) \zeta^{j}$
Asymptotic Killing vector ζ_{i}
Mass: $M_{4}=-\int_{\partial \mathcal{M} \cap C} \mathrm{~d}^{2} \mathbf{x}\left(2 \Pi_{t}^{t}+\Pi_{0}^{t} A_{t}^{0}+\Pi^{t} A_{t}\right)=\frac{\ell k}{8 G_{4}}\left(r_{+}+r_{-}\right)$
Angular Momentum: $J_{4}=\int_{\partial \mathcal{M} \cap C} \mathrm{~d}^{2} \mathbf{x}\left(2 \Pi_{\phi}^{t}+\Pi_{0}^{t} A_{\phi}^{0}+\Pi^{t} A_{\phi}\right)=-\frac{\omega \ell^{3}}{2 G_{4}}$

- Thermodynamic relations and the first law

Free Energy: $I_{4}=S_{\text {ren }}^{\mathrm{E}}=-S_{\text {ren }}=\beta_{4} \mathcal{G}_{4}=\frac{\beta_{4} \ell k}{8 G_{4}}\left(\left(r_{-}-r_{+}\right)+2 \omega^{2} \ell^{2} \sqrt{\frac{r_{-}}{r_{+}}}\right)$
Quantum statistical relation: $\quad \mathcal{G}_{4}=M_{4}-T_{4} S_{4}-\Omega_{4} J_{4}-\Phi^{0(e)} Q^{0(e)}$
First law: $\quad \mathrm{d} M_{4}-T_{4} \mathrm{~d} S_{4}-\Omega_{4} \mathrm{~d} J_{4}-\Phi_{4}^{0(e)} \mathrm{d} Q_{4}^{0(e)}-\Phi_{4}^{(m)} \mathrm{d} Q_{4}^{(m)}=0$.
Smarr's Formula: $\quad M_{4}=2 S_{4} T_{4}+2 \Omega_{4} J_{4}+Q_{4}^{0(e)} \Phi_{4}^{0(e)}+Q_{4}^{(m)} \Phi_{4}^{(m)}$

Varying parameters: r_{+}, r_{-}, ω, and B, k, l subject to $\mathrm{kB}^{3} / \mathrm{l}^{3}$-fixed original parameters $\mathrm{m}, \mathrm{a}, \Pi_{\mathrm{c}}, \Pi_{\mathrm{s}}$ \& a scaling parameter

IV. Holography via 2D Einstein-Maxwell-Dilaton

M.C., Papadimitriou 1608.07018

4D STU fields can be consistently Kaluza-Klein reduced on S^{2} by one-parameter family of Ansätze:

$$
\begin{aligned}
e^{-2 \eta} & =e^{-2 \psi}+\lambda^{2} B^{2} \sin ^{2} \theta, \quad \chi=\lambda B \cos \theta \\
e^{-2 \eta} A^{0} & =e^{-2 \psi} A^{(2)}+\lambda B^{2} \sin ^{2} \theta d \phi, \quad A+\chi A^{0}=B \cos \theta d \phi \\
e^{\eta} d s_{4}^{2} & =d s_{2}^{2}+B^{2}\left(d \theta^{2}+\frac{\sin ^{2} \theta}{1+\lambda^{2} B^{2} e^{2 \psi} \sin ^{2} \theta}\left(d \phi-\lambda A^{(2)}\right)^{2}\right)
\end{aligned}
$$

$\mathrm{ds}_{2}{ }^{2}, \Psi, \mathrm{~A}^{(2)}$-fields of 2D Einstein-Maxwell-Dilaton Gravity:
$S_{2 \mathrm{D}}=\frac{1}{2 \kappa_{2}^{2}}\left(\int \mathrm{~d}^{2} \mathbf{x} \sqrt{-g} e^{-\psi}\left(R[g]+\frac{2}{L^{2}}-\frac{1}{4} e^{-2 \psi} F_{a b} F^{a b}\right)+\int \mathrm{d} t \sqrt{-\gamma} e^{-\psi} 2 K\right)$
$\lambda=\omega \ell^{3} / B^{3}$ rotational parameter of subtracted geometry

Web of Theories

Subtracted geometry

Locally: $\mathrm{AdS}_{3} \times \mathrm{S}^{2}$

General solution of 2D EMD Gravity - running dilaton

Feffeman-Graham gauge: $\quad d s^{2}=d u^{2}+\gamma_{t t}(u, t) d t^{2}, \quad A_{u}=0$
Analytic general solution:

$$
\begin{aligned}
e^{-\psi} & =\beta(t) e^{u / L} \sqrt{\left(1+\frac{m-\beta^{\prime 2}(t) / \alpha^{2}(t)}{4 \beta^{2}(t)} L^{2} e^{-2 u / L}\right)^{2}-\frac{Q^{2} L^{2}}{4 \beta^{4}(t)} e^{-4 u / L}} \\
\sqrt{-\gamma} & =\frac{\alpha(t)}{\beta^{\prime}(t)} \partial_{t} e^{-\psi} \\
A_{t} & =\mu(t)+\frac{\alpha(t)}{2 \beta^{\prime}(t)} \partial_{t} \log \left(\frac{4 L^{-2} e^{2 u / L} \beta^{2}(t)+m-\beta^{\prime 2}(t) / \alpha^{2}(t)-2 Q / L}{4 L^{-2} e^{2 u / L} \beta^{2}(t)+m-\beta^{\prime 2}(t) / \alpha^{2}(t)+2 Q / L}\right)
\end{aligned}
$$

Leading asymptotic behavior:

$$
\gamma_{t t}=-\alpha^{2}(t) e^{2 u / L}+\mathcal{O}(1), \quad e^{-\psi} \sim \beta(t) e^{u / L}+\mathcal{O}\left(e^{-u / L}\right), \quad A_{t}=\mu(t)+\mathcal{O}\left(e^{-2 u / L}\right)
$$ running dilaton

- Arbitrary functions $\alpha(t), \beta(t)$ and $\mu(t)$ identified with the sources of the corresponding dual operators
- 4D uplift results in asymptotically conformally $\mathrm{AdS}_{2} \times \mathrm{S}^{2}$ subtracted geometries, generalized to include arbitrary time-dependent sources

Repeat Radial Hamiltonian Formalism in 2D

Radial ADM decomposition: $d s^{2}=\left(N^{2}+N_{t} N^{t}\right) d u^{2}+2 N_{t} d u d t+\gamma_{t t} d t^{2}$

Countertern Action:

$$
S_{\mathrm{ct}}=-\frac{1}{\kappa_{2}^{2}} \int \mathrm{~d} t \sqrt{-\gamma} L^{-1}\left(1-u_{o} L \square_{t}\right) e^{-\psi}
$$

Renormalized one-point functions: $\quad \mathcal{T}=2 \widehat{\pi}_{t}^{t}, \quad \mathcal{O}_{\psi}=-\widehat{\pi}_{\psi}, \quad \mathcal{J}^{t}=-\widehat{\pi}^{t}$

$$
\begin{aligned}
\widehat{\pi}_{t}^{t} & =\frac{1}{2 \kappa_{2}^{2}} \lim _{u \rightarrow \infty} e^{u / L}\left(\partial_{u} e^{-\psi}-e^{-\psi} L^{-1}\right) \\
\widehat{\pi}^{t} & =\lim _{u \rightarrow \infty} \frac{e^{u / L}}{\sqrt{-\gamma}} \pi^{t} \\
\widehat{\pi}_{\psi} & =-\frac{1}{\kappa_{2}^{2}} \lim _{u \rightarrow \infty} e^{u / L} e^{-\psi}\left(K-L^{-1}\right)
\end{aligned}
$$

Explicit one-point functions:

$\mathcal{T}=-\frac{L}{2 \kappa_{2}^{2}}\left(\frac{m}{\beta}-\frac{\beta^{\prime 2}}{\beta \alpha^{2}}\right), \quad \mathcal{J}^{t}=\frac{1}{\kappa_{2}^{2}} \frac{Q}{\alpha}, \quad \mathcal{O}_{\psi}=\frac{L}{2 \kappa_{2}^{2}}\left(\frac{m}{\beta}-\frac{\beta^{\prime 2}}{\beta \alpha^{2}}-2 \frac{\beta^{\prime} \alpha^{\prime}}{\alpha^{3}}+2 \frac{\beta^{\prime \prime}}{\alpha^{2}}\right)$
Ward Identities: $\quad \partial_{t} \mathcal{T}-\mathcal{O}_{\psi} \partial_{t} \log \beta=0, \quad \mathcal{D}_{t} \mathcal{J}^{t}=0$
Conformal anomaly: $\mathcal{T}+\mathcal{O}_{\psi}=\frac{L}{\kappa_{2}^{2}}\left(\frac{\beta^{\prime \prime}}{\alpha^{2}}-\frac{\beta^{\prime} \alpha^{\prime}}{\alpha^{3}}\right)=\frac{L}{\kappa_{2}^{2} \alpha} \partial_{t}\left(\frac{\beta^{\prime}}{\alpha}\right) \equiv \mathcal{A}$
Exact generating function $\left(\mathcal{T}=\frac{\delta S_{\text {ren }}}{\delta \alpha}, \quad \mathcal{O}_{\psi}=\frac{\beta}{\alpha} \frac{\delta S_{\text {ren }}}{\delta \beta}, \quad \mathcal{J}^{t}=-\frac{1}{\alpha} \frac{\delta S_{\text {ren }}}{\delta \mu}\right)$:
$S_{\text {ren }}[\alpha, \beta, \mu]=-\frac{L}{2 \kappa_{2}^{2}} \int \mathrm{~d} t\left(\frac{m \alpha}{\beta}+\frac{\beta^{\prime 2}}{\beta \alpha}+\frac{2 \mu Q}{L}\right)$
Legandre transformed generating function ($\mathrm{w} / \alpha(t)=\beta(t)$):
$\Gamma_{\text {eff }}=S_{\text {ren }}+\int \mathrm{d} t \alpha\left(\mathcal{T}+\mathcal{O}_{\psi}\right)=\frac{L}{\kappa_{2}^{2}} \int \mathrm{~d} t(\{\tau, t\}-\mu Q / L-m)_{\text {"dynamic time" }}$
$\{\tau, t\}=\frac{\tau^{\prime \prime \prime}}{\tau^{\prime}}-\frac{3}{2} \frac{\tau^{\prime \prime 2}}{\tau^{\prime 2}} \quad$ Schwarzian derivative

$$
-\alpha^{2}(t) d t^{2}=-\left(d \tau^{\imath}(t)\right)^{2}
$$

c.f., Sadchev, Ye, Kitaev '93, ... Almeheiri, Polochinski '14;

Maldacena, Stanford, Yang '16; Engelsoy, Merens, Verlinde '16,...

Asymptotic symmetries and conserved charges

Asymptotic symmetries: subset of Penrose-Brown-Henneaux (PBH) transformations (diffeomorphisms and gauge transformations preserving the Fefferman-Graham gauge) that preserve boundary conditions:
$\delta_{\mathrm{PBH}} \alpha=\partial_{t}(\varepsilon \alpha)+\alpha \sigma / L, \quad \delta_{\mathrm{PBH}} \beta=\varepsilon \beta^{\prime}+\beta \sigma / L, \quad \delta_{\mathrm{PBH}} \mu=\partial_{t}(\varepsilon \mu+\varphi)$
$\delta_{\text {PBH }}($ sources $)=0 \rightarrow$ constrain functions $\varepsilon(t), \sigma(t)$ and $\varphi(t)$ in term of two constants $\xi_{1,2}$

Conserved Charges: boundary terms obtained by varying the action with respect to the asymptotic symmetries (and Ward identities) \rightarrow
$\mathrm{U}(1) \times \mathrm{U}(1): \quad \mathcal{Q}_{1}=-\left(\beta \mathcal{T}-\frac{L}{2 \kappa_{2}^{2}} \frac{\beta^{\prime 2}}{\alpha^{2}}\right)=\frac{m L}{2 \kappa_{2}^{2}}, \quad \mathcal{Q}_{2}=\alpha \mathcal{J}^{t}=\frac{Q}{\kappa_{2}^{2}}$.
3D perspective: two copies of the Virasoro algebra with the BrownHenneaux central charge. Only $L^{ \pm}{ }_{0}$ are realized non-trivially in 2 D .

Constant dilaton solutions and AdS_{2} holography

c.f., Strominger '98, ...Castro, Grumiller, Larsen, McNees '08,... Compère, Song, Strominger '13,...Castro, Song'14,...

Holography depends on the structure of non-extremal constant dilaton solutions and choice of boundary conditions \rightarrow

Provided systematic holographic dictionary for each choice
M.C., Papadimitriou 1608.07018

No Time
Note: non-extremal running dilaton solution $\xrightarrow{\mathrm{Q}=\mathrm{mL} / 2}$
extremal running-dilaton solution with RG flow to IR fixed point VEV of irrelevant scalar op. extremal constant dilaton solution
non-extremal constant dilaton branch ('Coulomb phase’) (does not lift into subtracted geometry)

Summary/Outlook with focus on AdS_{2} Holography

- Provided consistent KK Ansätze that allow us to uplift any solution of 2D EMD gravity to 4D STU solutions, which are non-extremal 4D black holes, asymptotically (conformally) $A d S_{2} \times S^{2}-$ subtracted geometry. [Works also for 5D solutions asymptotically (conformally) $\mathrm{AdS}_{2} \mathrm{xS}^{3}$.]
- 2D EMD gravity has a well defined UV fixed point, described by a sector of 2D CFT.
- Constructed complete holographic dictionary of 2D EMD gravity theory obtained by an S^{2} reduction of 4D STU subtracted geometry \& constant dilaton solutions.
- Many aspects of the holographic description are generic and should apply to generic 2D dilaton gravity theories.

