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 Einstein’s theory of gravity predicts Black Holes  
 Due to it’s  high mass density the space-time curved so much that  
 objects traveling toward it reach a point of no return à Horizon 
 (& eventually reaches space-time singularity)  
    
 
 

 

  Black holes `behave’ as thermodynamic objects 
  w/  Bekenstein-Hawking entropy:   S=¼ Ahorizon 
  Ahorizon= area of the black hole horizon (w/ ħ=c=GN=1) 
     
  

Horizon-point of no return 

Space-time singularity 



 
                               How to relate 
Bekenstein-Hawking - thermodynamic entropy: Sthermo=¼ Ahor 
(Ahor= area of the black hole horizon; c=ħ=1;GN=1)  

Horizon 

Space-time singularity 

                                        to  
Statistical entropy:                                              Sstat = log Ni ?   

          Key Issue in Black Hole Physics:  

Where do black hole microscopic degrees Ni come from?  



Black Holes in String Theory 

The role of D-branes 



                 D(irichlet)-branes  
  boundaries of open strings with charges at their ends     

Polchinski’96

closed strings 

I. Implications for particle physics (charged excitations)-no time  



 II. Implications for Black Holes 
      Dual D-brane interpretation:  
      extended massive gravitational objects 

D-branes in  four-dimensions:  

part of their world-volume on compactified space 
& part in internal compactified space 



D-branes as gravitational objects 
wrap cycles in internal space: 
intersecting D-branes  in  
compact dimensions &   
charged black holes  
in four dim. space-time  
(w/ each D-brane sourcing  
charge Qi) 
 

         Prototype: four-charge black hole  w/ S= π√Q1Q2P3P4   
          M.C. & Youm 9507090                        

D-branes as a boundary of strings:      
microscopic degrees Ni  are string 
excitations on intersecting  
D-branes    w/    S = log Ni 
                Strominger & Vafa ’96 

the same! 

Cartoon of (toroidal) compactification; 
Thermodynamic BH Entropy & 
Statistical field theory interpretation  
 



Microscopic origin of entropy  
for extremal (BPS), multi-charged black holes with 
 
M  = Σi |Qi| + Σi |Pi |   (schematic)    
 
M-mass, Qi - el., Pi- magn. charges 
 
           
 

    Systematic study of microscopic degrees quantified via:  
    AdS/CFT (Gravity/Field Theory)  correspondence  
 
   [A string theory on  a  
    specific  Curved Space-Time (in D-dimensions)  
    related to  
    specific Field Theory (in (D-1)- dimensions)  
    on its boundary  
    à Holographic Approach]   

    Maldacena’97  
 

For multicharged (near)-BPS black holes:  
AdS3/CFT2  correspondence 



The rest of the talk:  
 
Highlight recent progress on studies of  
 
Internal Structure of Non-Extremal Black Holes 



Outline: 
I. General asymptotically flat black holes in string theory    
   [in four (&five) dimensions – prototype STU black holes] 
   thermodynamics, suggestive of conformal symmetry  
 
II. Subtracted Geometry: non-extremal black holes in   
    asymptotically conical box   
    manifest conformal symmetry 
 
III. Variational Principle and Subtracted Geometry 
     conserved charges and thermodynamics 
 
IV. Holography via 2D Einstein-Maxwell-Dilaton gravity 
     full holographic dictionary 
 
V.  Outlook  
 
            
 
Black holes with  U(1) charges in 4-dimensions  
         
    a) Asymptotically Minkowski space-time  
        (zero cosmological constant)  
        - in  maximally supersymmetric theories   
 
    b) General rotating solutions: mass,  angular momentum     
       and four-charges (special cases: 
        importance of extremal solutions) 
 
    c) Thermodynamic properties à indication of microscopic 
         structure  associated with dual 2D CFT 
 
  



Background:  
 
Initial work on subtracted geometry 
M.C., Finn Larsen 1106.3341, 1112.4846, 1406.4536 
M.C., Gary Gibbons 1201.0601 
M.C., Monica Guica, Zain Saleem 1301.7032  
…                      
Recent: variational principle, conserved charges and  
             thermodynamics of subtracted geometry 
Ok Song An, M.C., Ioannis Papadimitriou, 1602.0150  
            
Most recent: subtracted geometry and AdS2 holography 
M.C., Ioannis Papadimtiriou,1608.07018  



 
I. 4D general non-extremal black holes in string theory,    
   asymptotically flat (zero cosmological constant Λ=0) 
 
    M - mass, Qi,  Pi - multi-charges, J - angular momentum 
 
    w/   M  > Σi |Qi| + Σi| Pi |    
 
 
 
 
 

 
   Prototype solutions of a sector of maximally supersymmetric      
   D=4 Supergravity  
   [sector of toroidally compactified effective string theory] à  
   so-called STU model 
 



  STU Model Lagrangian  
 
   [A sector of toroidally compactified effective string theory]  

   Black holes: explicit solutions of equations of motion for the above 
   Lagrangian w/ metric, four gauge potentials and  three axio-dilatons   

2 The STU model and duality frames

In this section we review the bosonic sector of the 2-charge truncation of the STU model that is
relevant for describing the subtracted geometries. We will do so in the duality frame discussed in
[14], where both charges are electric, as well as in the one used in [17], where there is one electric and
one magnetic charge. We will refer to these frames as ‘electric’ and ‘magnetic’ respectively. As it
will become clear from the subsequent analysis, in order to compare the thermodynamics in the two
frames, it is necessary to keep track of boundary terms introduced by the duality transformations.

2.1 Magnetic frame

The bosonic Lagrangian of the STU model in the duality frame used in [17] is given by

2κ24L4 =R ⋆ 1− 1

2
⋆ dηa ∧ dηa −

1

2
e2ηa ⋆ dχa ∧ dχa

− 1

2
e−η0 ⋆ F 0 ∧ F 0 − 1

2
e2ηa−η0 ⋆ (F a + χaF 0) ∧ (F a + χaF 0)

+
1

2
Cabcχ

aF b ∧ F c +
1

2
Cabcχ

aχbF 0 ∧ F c +
1

6
Cabcχ

aχbχcF 0 ∧ F 0, (2.1)

where ηa (a = 1, 2, 3) are dilaton fields and η0 =
∑3

a=1 ηa. The symbol Cabc is pairwise symmetric
with C123 = 1 and zero otherwise. The Kaluza-Klein ansatz for obtaining this action from the
6-dimensional action (1.1) is given explicitly in [17]. This frame possesses an explicit triality sym-
metry, exchanging the three gauge fields Aa, the three dilatons ηa and the three axions χa. In this
frame, the subtracted geometries source all three gauge fields Aa magnetically, while A0 is electri-
cally sourced. Moreover, holographic renormalization turns out to be much more straightforward
in this frame compared with the electric frame.

In order to describe the subtracted geometries it suffices to consider a truncation of (2.1),
corresponding to setting η1 = η2 = η3 ≡ η, χ1 = χ2 = χ3 ≡ χ, and A1 = A2 = A3 ≡ A. The
resulting action can be written in the σ-model form

S4 =
1

2κ24

∫

M
d4x

√
−g

(
R[g]− 1

2
GIJ∂µϕ

I∂µϕJ − ZΛΣF
Λ
µνF

Σµν −RΛΣϵ
µνρσFΛ

µνF
Σ
ρσ

)
+SGH, (2.2)

where

SGH =
1

2κ24

∫

∂M
d3x

√
−γ 2K, (2.3)

is the standard Gibbons-Hawking [36] term and we have defined the doublets

ϕI =

(
η
χ

)
, AΛ =

(
A0

A

)
, I = 1, 2, Λ = 1, 2, (2.4)

as well as the 2× 2 matrices

GIJ =

(
3 0
0 3e2η

)
, ZΛΣ =

1

4

(
e−3η + 3e−ηχ2 3e−ηχ

3e−ηχ 3e−η

)
, RΛΣ =

1

4

(
χ3 3

2χ
2

3
2χ

2 3χ

)
. (2.5)

As usual, ϵµνρσ =
√
−g εµνρσ denotes the totally antisymmetric Levi-Civita tensor, where εµνρσ =

±1 is the Levi-Civita symbol. Throughout this paper we choose the orientation in M so that
εrtθφ = 1. We note in passing that the Lagrangian (2.2) is invariant under the global symmetry
transformation

eη → µ2eη, χ → µ−2χ, A0 → µ3A0, A → µA, ds2 → ds2, (2.6)

where µ is an arbitrary non-zero constant parameter.
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   Prototype, four-charge rotating black hole, originally obtained via        
   solution generating techniques                                   M.C., Youm  9603147 
                                                                                       Chong, M.C., Lü, Pope 0411045 
    Four- SO(1,1) transfs.  
    time-reduced  Kerr BH  
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    Full four-electric and four-magnetic charge solution only recently obtained   
                                                                                           Chow, Compère 1310.1295;1404.2602 

H =

✓
cosh �i sinh �i
sinh �i cosh �i

◆
, (34)

corresponds to:

y0 = y , e
p
1+↵2x0

= ⇤�1e
p
1+↵2x ,

 0 = ⇤�1[ +
�p

1 + ↵2
(e2

p
1+↵2x � (1 + ↵2) 2)] ; ⇤ = (� + 1)2 � �2e2

p
1+↵2x . (35)

Note, this transformation can also be determined as an analytic continuation of transformations
given in Section 2 of [19]. A Harrison transformation in the limit of an infinite boost corresponds
to � ! 1 5. In the case of ↵ = 1p

3
, we shall act with (33) on the Schwarzschild solution with

e2U = 1 � 2m
r , � = 0,  = 0. The transformation (34) with � = 1 results in ⇤ = 2m

r , and the
metric (6) with the subtracted geometry warp factor:

�s0 = r4 ! �s = (2m)3r , (36)

and the scalar field and the electric field strength :

e�
2�p
3 =

r
2m

r
,

r
2

3
Ft r =

1

2m
, (37)

i.e., this is the static subtracted geometry of Subsection 2.1, with ⇧c = 1, ⇧s = 0.
The subtracted geometry for the Kerr spacetime can be obtained by reducing the spacetime

on the time-like Killing vector and acting on the Kerr black hole with an infinite boost Harrison
transformation for Lagrangian density (1), where we set �1 = �2 = �3 ⌘ �, '1 = '2 = '3 ⌘
2p
3
�, ⇤F1 = F2 = ⇤F1 ⌘

q
2
3F and F2 =

p
2F , i.e. an Einstein-Dilaton-Axion gravity with

two U(1) gauge fields and respective dilaton couplings ↵1 = 1p
3
and ↵2 =

p
3. The subtracted

geometry of the multi-charged rotating black holes is expected to arise as a specific Harrison
transformation on a rotating charged black solution of (1). We defer technical aspects of these
calculations to follow-up work.

3 Asymptotically Conical Metrics

3.1 Lifshitz Scaling

The scaling limit, or equivalently the subtraction process, alters the environment that our black
holes find themselves in [12, 13]. In fact the asymptotic metrics take the form

ds2 =
� R

R0

�2p
dt2 +B2dR2 +R2

�
d✓2 + sin2 ✓2d�2)

�
(38)

with B and R0 constants. In our case B = 4 and p = 3. In general metrics with asymptotic form
(37) may be referred as Asymptotically Conical (AC). The spatial metric is conical because the
radial distance BR is a non-trivial multiple of the area distance R. Restricted to the equatorial
plane the spatial metric is that of a flat two-dimensional cone

ds2equ = B2dR2 +R2d�2 (39)

5One may verify that (33) with b ! 1 in the Einstein-Maxwell gravity (↵ = 0) takes the Schwarzschild metric
to the Robinson-Bertotti one. This type of transformation was employed recently in [21]. For another work,
relating the Schwarzschild geometry to AdS2 ⇥ S

2, see [22].
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(a=1,2,3; Cabc-anti-symmetric tensor) 
 



Compact form of the metric for rotating four-charge black holes 
 

Mass 

Four charges 

Angular momentum 

Special cases: 
  δI = δ   Kerr-Newman 
& a = 0   Reisner-Nordström; 
   δI = 0   Kerr 
& a = 0   Schwarzschild; 
 
δIà∞ mà0  w/m exp(2δI)-finite 
extremal (BPS) black hole 

= 0 outer & inner horizon 

                               M.C. & Youm  9603147 
                     Chong, M.C., Lü & Pope 0411045 

Or equivalently : m, a,  δI (I=0,1,2,3) 

l à a 

2.1. The Black Hole Metric

The setting for our discussion is the rotating black hole solution of four dimensional

string theory with four independent U(1) charges [5]. The asymptotic charges of the black

hole are parametrized as:

G4M =
1

4
m

3
∑

I=0

cosh 2δI ,

G4QI =
1

4
m sinh 2δI , (I = 0, 1, 2, 3) ,

G4J = ma(Πc −Πs) ,

(2.1)

where we employ the abbreviations

Πc ≡
3
∏

I=0

cosh δI , Πs ≡
3
∏

I=0

sinh δI . (2.2)

The parametric mass and angular momentum m, a both have dimension of length.

We write the 4D metric as a fibration over a 3D base space

ds24 = −∆−1/2
0 G(dt+A)2 +∆1/2

0

(

dr2

X
+ dθ2 +

X

G
sin2 θdφ2

)

, (2.3)

where for the black holes we consider

X = r2 − 2mr + a2 ,

G = r2 − 2mr + a2 cos2 θ ,

A =
2ma sin2 θ

G
[(Πc − Πs)r + 2mΠs] dφ ,

∆0 =
3
∏

I=0

(r + 2m sinh2 δI) + 2a2 cos2 θ[r2 +mr
3
∑

I=0

sinh2 δI + 4m2(Πc − Πs)Πs

− 2m2
∑

I<J<K

sinh2 δI sinh
2 δJ sinh2 δK ] + a4 cos4 θ .

(2.4)

The fibered form (2.3) of the metric does not reduce to the one usually presented in

textbooks for Kerr. However, the alternate form here simplifies manipulations significantly,

especially when all the string theory charges are included.

The rather complicated conformal factor ∆0 simplifies in some special cases. The

benchmark is the non-rotating case a = 0 where only the first term remains. However, the

expression also simplifies with rotation when the four charges are equal in pairs

∆0 = [(r + 2m sinh2 δ1)(r + 2m sinh2 δ2) + a2 cos2 θ]2 . (2.5)

The generic case with rotation and four independent charges does not simplify.
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  suggestive of weakly interacting 2-dim. CFT                         M.C., Youm ’96 
   w/ ``left-’’ & ``right-moving’’ excitations                                M.C., Larsen ’97 

Thermodynamics of outer & inner horizons    

M.C., Larsen ’11 

[Area of inner horizon    S-  =  SL – SR ] 

[inner horizon   β-  =  ½ (βL - βR ) ]  

Area of outer horizon   S+  =  SL + SR 

Surface gravity (inverse temperature)  of                 
    
 outer horizon   βH = ½ (βL + βR )  

Shown more recently, all independent of the warp factor Δo ! 

Similar  structure for angular velocities  Ω+,  Ω-  and momenta J+, J-.   
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Depend only on four parameters:  m,   a,                                       



Focus on the black hole “by itself” à 
enclose the black hole in a box  (à la Gibbons Hawking) à 
an equilibrium system w/ conformal symmetry manifest 

II. Subtracted Geometry - Motivation 

              The box leads to a ``mildly’’ modified geometry  
           changing only the warp factor Δ0à Δ 
           (same horizon thermodynamic quantities)  
       
                             Subtracted Geometry       M.C., Larsen ’11 

     
  Quantify  this ``conventional wisdom’’     M.C., Larsen ‘97-’99 
  that also non-extremal  black holes might have microscopic  
  explanation in terms of dual 2D CFT   
  



  via massless scalar field wave eq.:  wave eq. separable & 
  the radial part is solved by hypergeometric functions w/ SL(2,R)2      

   (manifest conformal symmetry) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Δ0 à Δ  such that wave eq. is separable:              (true for Δ 0 and Δ) 
 
 

f(r)+g(θ) 

f(r)+g(θ)-const. 
 

w/ 

 
 
& the radial part is solved by hypergeometric functions: 
                                                  à uniquely fixes Δ 
 

Determination of new warp factor Δ0 à Δ  

+ eϕ2+ϕ3 ∗F2 ∧ F2 + e−ϕ2+ϕ3 ∗F1 ∧ F1 + e−ϕ2−ϕ3 ∗F2 ∧F2)

− χ1 (F1 ∧F1 + F2 ∧ F2) , (1)

where the index i labelling the dilatons ϕi and axions χi ranges over 1 ≤ i ≤ 3. The four U(1)
field strengths can be written in terms of potentials as

F1 = dA1 − χ2 dA2 ,
F2 = dA2 + χ2 dA1 − χ3 dA1 + χ2 χ3 dA2 ,
F1 = dA1 + χ3 dA2 ,
F2 = dA2 .

The four-dimensional theory can be obtained from six-dimensions, by reducing on a two-torus
the following action (See, e.g., [15] and references therein.):

L6 = R ∗1− 1

2
∗dφ ∧ dφ− 1

2
e−

√
2φ ∗F(3) ∧ F(3) (2)

The above six-dimensional action is a consistent truncation of the Neveu-Schwarz Neveu-Schwarz
sector of toroidally compactified superstring theory.

In the following we shall employ the form of the gauge potentials AI (I = 1, 2, 3, 4) which
define: ∗F1, F2, ∗F1 and F2, respectively. (In the static case these gauge potentials all correspond
to electric fields.) The four-charge rotating solution [2] with all the sources explicitly displayed
was given in [15] 2 . Here we display the metric, only:

ds24 = −∆−1/2
0 G(dt+A)2 +∆1/2

0

(

dr2

X + dθ2 + X
G sin2 θdφ2

)

, (3)

where

X = r2 − 2mr + a2 ,
G = r2 − 2mr + a2 cos2 θ ,

A =
2ma sin2 θ

G
[(Πc −Πs)r + 2mΠs] dφ , (4)

and

∆0 =
4
∏

I=1

(r + 2m sinh2 δI) + 2a2 cos2 θ[r2 +mr
4

∑

I=1

sinh2 δI + 4m2(Πc −Πs)Πs

−2m2
∑

I<J<K

sinh2 δI sinh
2 δJ sinh2 δK ] + a4 cos4 θ . (5)

We are employing the following abbreviations:

Πc ≡
4
∏

I=1

cosh δI , Πs ≡
4
∏

I=1

sinh δI . (6)

The solution is parameterised by the bare mass parameter m, the rotational parameter a and
four charge parameters δI (I = 1, 2, 3, 4). The solution is written as a U(1) fibration over the

2Black hole solutions of the Lagrangian density (1) are generating solutions of N = 4 and N = 8 supergravity
theory, which can be obtained as a toroidal compactification on an effective heterotic string theory and Type IIA
superstring theory, respectively. The full set of solutions can be obtained by acting with a subset of respective
{S, T}- and U - duality transformations. (See e.g., [16].)
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 (with warp factor Δ0 – implicit): 



                                                rotating four-charge black holes 
 
Subtracted geometry for  

M.C., Larsen 1112.4856    

Comments:  while  Δ0 ~ r4,  Δ ~ r   (not asymptotically flat!) 
                     subtracted geometry depends only on four parameters: 
                     m,   a,   

2.1. The Black Hole Metric

The setting for our discussion is the rotating black hole solution of four dimensional

string theory with four independent U(1) charges [5]. The asymptotic charges of the black

hole are parametrized as:

G4M =
1

4
m

3
∑

I=0

cosh 2δI ,

G4QI =
1

4
m sinh 2δI , (I = 0, 1, 2, 3) ,

G4J = ma(Πc −Πs) ,

(2.1)

where we employ the abbreviations

Πc ≡
3
∏

I=0

cosh δI , Πs ≡
3
∏

I=0

sinh δI . (2.2)

The parametric mass and angular momentum m, a both have dimension of length.

We write the 4D metric as a fibration over a 3D base space

ds24 = −∆−1/2
0 G(dt+A)2 +∆1/2

0

(

dr2

X
+ dθ2 +

X

G
sin2 θdφ2

)

, (2.3)

where for the black holes we consider

X = r2 − 2mr + a2 ,

G = r2 − 2mr + a2 cos2 θ ,

A =
2ma sin2 θ

G
[(Πc − Πs)r + 2mΠs] dφ ,

∆0 =
3
∏

I=0

(r + 2m sinh2 δI) + 2a2 cos2 θ[r2 +mr
3
∑

I=0

sinh2 δI + 4m2(Πc − Πs)Πs

− 2m2
∑

I<J<K

sinh2 δI sinh
2 δJ sinh2 δK ] + a4 cos4 θ .

(2.4)

The fibered form (2.3) of the metric does not reduce to the one usually presented in

textbooks for Kerr. However, the alternate form here simplifies manipulations significantly,

especially when all the string theory charges are included.

The rather complicated conformal factor ∆0 simplifies in some special cases. The

benchmark is the non-rotating case a = 0 where only the first term remains. However, the

expression also simplifies with rotation when the four charges are equal in pairs

∆0 = [(r + 2m sinh2 δ1)(r + 2m sinh2 δ2) + a2 cos2 θ]2 . (2.5)

The generic case with rotation and four independent charges does not simplify.
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3

3.2. The Subtracted Geometry

The differential equation (3.2) with the effective potential (3.3) has simplifying features

beyond the seperability. The radial equation has two regular singularities, at r = r+ and

r = r−. The indices at these regular singularities are iβ±

2π , ie. essentially the outer and

inner horizon temperatures. The radial equation has a third singularity at infinity, but

this singularity is irregular. If it had been regular the radial equation would have been the

hypergeometric equation, with its SL(2, R) symmetry permuting the three singularities.

This situation is desirable because it would hint at an underlying conformal symmetry.

The irregular singularity at infinity is due to the asymptotic behavior ∆0 ∼ r4 at

large r which encodes the asymptotic flatness of spacetime. If instead ∆0 → ∆ ∼ r2 the

singularity at infinity in the radial equation would be regular. For even more special warp

factors with ∆0 → ∆ ∼ r at large r the radial equation maintains its hypergeometric char-

acter but, in addition, the angular equation simplifies to the familiar spherically symmetric

form
(

1

sin θ
∂θ sin θ∂θ +

1

sin2 θ
∂2
φ

)

χ(θ,φ) = −l(l + 1)χ(θ,φ) . (3.4)

When ∆ ∼ r the geometry thus indicates an unbroken SU(2) R-symmetry. In this case

the indices of the regular singularity at infinity are (l,−l − 1).

It was shown in section 2 that both the causal structure and the thermodynamics of

black holes is independent of the conformal factor ∆0. We interpret this as a demonstration

that an alternate ∆0 → ∆ corresponds to a black hole with the same internal structure as

the original one, but a black hole that finds itself in a different external environment.

We will focus on the warp factors ∆ that preserve separability of the scalar wave

equation and also analyticity in the coordinates. These technical assumptions identify a

warp factor with the asymptotic behavior ∆ ∼ r uniquely as

∆0 → ∆ = (2m)3r(Π2
c − Π2

s) + (2m)4Π2
s − (2m)2(Πc − Πs)

2a2 cos2 θ . (3.5)

In particular, the condition of separability determines the θ-dependence by the requirement

that ∆−A2
red be factorizable by G:

∆−A2
red

G
= −4m2(Πc −Πs)

2 . (3.6)

The condition of separability is powerful even in the nonrotating limit a → 0. For example,

the analysis of the Schwarzchild geometry geometry presented in [10] is not consistent with

this criterion.
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Matter fields (gauge potentials and scalars)  
  
 Scalars: 

    
Gauge potentials:  

M.C., Gibbons 1201.0601 

2 The STU model and duality frames

In this section we review the bosonic sector of the 2-charge truncation of the STU model that is
relevant for describing the subtracted geometries. We will do so in the duality frame discussed in
[14], where both charges are electric, as well as in the one used in [17], where there is one electric and
one magnetic charge. We will refer to these frames as ‘electric’ and ‘magnetic’ respectively. As it
will become clear from the subsequent analysis, in order to compare the thermodynamics in the two
frames, it is necessary to keep track of boundary terms introduced by the duality transformations.

2.1 Magnetic frame

The bosonic Lagrangian of the STU model in the duality frame used in [17] is given by

2κ24L4 =R ⋆ 1− 1

2
⋆ dηa ∧ dηa −

1

2
e2ηa ⋆ dχa ∧ dχa

− 1

2
e−η0 ⋆ F 0 ∧ F 0 − 1

2
e2ηa−η0 ⋆ (F a + χaF 0) ∧ (F a + χaF 0)

+
1

2
Cabcχ

aF b ∧ F c +
1

2
Cabcχ

aχbF 0 ∧ F c +
1

6
Cabcχ

aχbχcF 0 ∧ F 0, (2.1)

where ηa (a = 1, 2, 3) are dilaton fields and η0 =
∑3

a=1 ηa. The symbol Cabc is pairwise symmetric
with C123 = 1 and zero otherwise. The Kaluza-Klein ansatz for obtaining this action from the
6-dimensional action (1.1) is given explicitly in [17]. This frame possesses an explicit triality sym-
metry, exchanging the three gauge fields Aa, the three dilatons ηa and the three axions χa. In this
frame, the subtracted geometries source all three gauge fields Aa magnetically, while A0 is electri-
cally sourced. Moreover, holographic renormalization turns out to be much more straightforward
in this frame compared with the electric frame.

In order to describe the subtracted geometries it suffices to consider a truncation of (2.1),
corresponding to setting η1 = η2 = η3 ≡ η, χ1 = χ2 = χ3 ≡ χ, and A1 = A2 = A3 ≡ A. The
resulting action can be written in the σ-model form

S4 =
1

2κ24

∫

M
d4x

√
−g

(
R[g]− 1

2
GIJ∂µϕ

I∂µϕJ − ZΛΣF
Λ
µνF

Σµν −RΛΣϵ
µνρσFΛ

µνF
Σ
ρσ

)
+SGH, (2.2)

where

SGH =
1

2κ24

∫

∂M
d3x

√
−γ 2K, (2.3)

is the standard Gibbons-Hawking [36] term and we have defined the doublets

ϕI =

(
η
χ

)
, AΛ =

(
A0

A

)
, I = 1, 2, Λ = 1, 2, (2.4)

as well as the 2× 2 matrices

GIJ =

(
3 0
0 3e2η

)
, ZΛΣ =

1

4

(
e−3η + 3e−ηχ2 3e−ηχ

3e−ηχ 3e−η

)
, RΛΣ =

1

4

(
χ3 3

2χ
2

3
2χ

2 3χ

)
. (2.5)

As usual, ϵµνρσ =
√
−g εµνρσ denotes the totally antisymmetric Levi-Civita tensor, where εµνρσ =

±1 is the Levi-Civita symbol. Throughout this paper we choose the orientation in M so that
εrtθφ = 1. We note in passing that the Lagrangian (2.2) is invariant under the global symmetry
transformation

eη → µ2eη, χ → µ−2χ, A0 → µ3A0, A → µA, ds2 → ds2, (2.6)

where µ is an arbitrary non-zero constant parameter.
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3 Asymptotically conical backgrounds

The general rotating subtracted geometry backgrounds are solutions of the equations of motion
following from the action (2.2) or (2.10) and take the form [14, 17]5

ds2 =

√
∆

X
dr̄2 − G√

∆
(dt̄+A)2 +

√
∆

(
dθ2 +

X

G
sin2 θdφ̄2

)
,

eη =
(2m)2√

∆
, χ =

a (Πc −Πs)

2m
cos θ,

A0 =
(2m)4a (Πc −Πs)

∆
sin2 θdφ̄+

(2ma)2 cos2 θ (Πc −Πs)
2 + (2m)4ΠcΠs

(Π2
c −Π2

s)∆
dt̄,

A =
2m cos θ

∆

([
∆− (2ma)2(Πc −Πs)

2 sin2 θ
]
dφ̄− 2ma (2mΠs + r̄(Πc −Πs)) dt̄

)
,

Ã = − 1

2m

(
r̄ −m− (2ma)2(Πc −Πs)

(2m)3(Πc +Πs)

)
dt̄+

(2ma)2(Πc −Πs)[2mΠs + r̄(Πc −Πs)] cos2 θ

2m∆
dt̄

+ a(Πc −Πs) sin
2 θ

(
1 +

(2ma)2(Πc −Πs)2 cos2 θ

∆

)
dφ̄, (3.1)

where

X = r̄2 − 2mr̄ + a2, G = X − a2 sin2 θ, A =
2ma

G
((Πc −Πs)r̄ + 2mΠs) sin

2 θdφ̄,

∆ = (2m)3(Π2
c −Π2

s)r̄ + (2m)4Π2
s − (2ma)2(Πc −Πs)

2 cos2 θ, (3.2)

and Πc, Πs, a and m are parameters of the solution.
In order to study the thermodynamics of these backgrounds it is necessary to identify which

parameters are fixed by the boundary conditions in the variational problem. A full analysis of the
variational problem for the actions (2.2) or (2.10) requires knowledge of the general asymptotic
solutions and is beyond the scope of the present paper. However, we can consider the variational
problem within the class of stationary solutions (3.1). To this end, it is convenient to reparameterize
these backgrounds by means of a suitable coordinate transformation, accompanied by a relabeling
of the free parameters. In particular, we introduce the new coordinates
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c −Π2

s)r̄ + (2m)4Π2
s − (2ma)2(Πc −Πs)

2,
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t =
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c −Π2
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(2m)3(Π2
c −Π2
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t̄, (3.3)

where ℓ and k are additional non-zero parameters, whose role will become clear shortly. Moreover,
we define the new parameters

ℓ4r± = (2m)3m(Π2
c +Π2
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2 ±
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c −Π2
s),
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5In order to compare this background with the expressions given in eqs. (24) and (25) of [14], one should take into
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constant pure gauge term. Moreover, there is a typo in eq. (25) of [14]: the term 2mΠ2
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by 2mΠs(Πs − Πc) cos
2 θdt̄.
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Magnetic frame 
Non-extremal black hole immersed in constant magnetic field 

Running dilaton: 
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 Asymptotic geometry of subtracted geometry is of  
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à black hole in an ``asymptotically conical box’’  
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ii. Subtracted geometry - as an infinite boost Harrison  
    transformations on the original BH             M.C., Gibbons 1201.0601 
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             SO(1,1):                                                        Sahay, Virmani 1305.2800 
                                                                                        M.C., Guica, Saleem 1302.7032.. 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                       

order to demonstrate the procedure we shall present the details for the Schwarzschild black hole,
only. In this case it is su�cient to employ the Einstein-Dilaton-Maxwell Lagrangian density,
with the dilation coupling ↵ = 1p

3
, which is a consistent truncation of the Lagrangian density

(1) with �i = 0, 'i = '2 = '3 ⌘ � 2p
3
�, ⇤F1 = F2 = ⇤F1 ⌘

q
2
3F and F2 = 0. [Of course for

the multi-charged rotating black holes one has to employ the full N=2 supergravity Lagrangian
density (1).]

We begin by considering static solutions to general Einstein-Dilaton-Maxwell equations with
the general dilation coupling ↵. The Lagrangian density is 4.:

p
�g

⇣1
4
R� 1

2
(@�)2 � 1

4
e�2↵�F 2

�
. (24)

Making the Ansatz
ds2 = �e2Udt2 + e�2U�ijdx

idxj , Fi0 = @i (25)

we obtain an e↵ective action density in three dimensions of the form

p
�
⇣
R(�ij)� 2�ij

⇣
@iU@jU + @i�@j�� e�2Ue�2↵�@i @j 

⌘⌘
(26)

Defining

x ⌘ U + ↵�p
1 + ↵2

, y ⌘ �↵U + �p
1 + ↵2

, (27)

the e↵ective action density becomes

p
�
⇣
R(�ij)� 2�ij

⇣
@ix@jx+ @iy@jy � e�2

p
1+↵2x@i @j 

⌘⌘
. (28)

Evidently we can consistently set y = 0 and we obtain a sigma model, whose fields x, map
into the target SL(2,R)/SO(1, 1), coupled to three dimensional Einstein gravity. The non-trivial
action of an SO(1, 1) subgroup of SL(2,R) is called a Harrison transformation.

More concretely, and following [19] but making some changes necessitated by considering a
reduction on time-like, rather than a space-like Killing vector we define a matrix (See also, e.g.,
[20] and references therein.):

P = e�
p
1+↵2(x+y)

✓
e2

p
1+↵2x � (1 + ↵2) 2 �

p
1 + ↵2 

�
p
1 + ↵2 �1

◆
, (29)

so that
P = PT , detP = �e�2

p
1+↵2y . (30)

Taking H 2 SO(1, 1) which acts on P as

P ! HPHT , (31)

it preserves not only the properties (30) but also the Lagrangian density (28) which can be cast
in the form:

p
�
⇣
R(�ij) +

1

1 + ↵2
�ijTr(@iP@jP

�1)
⌘
. (32)

It is straightforward to show that a Harrison transformation:

H ⇠
✓
1 0
� 1

◆
, (33)

4We choose the units in which 4⇡G = 1. Note that in the Lagrangian density (1) 16⇡G = 1 and the field
strengths di↵er by a factor of

p
2.
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It is straightforward to show that a Harrison transformation:

H =

✓
1 0
� 1

◆
, (34)

corresponds to:

y0 = y , e
p
1+↵2x0

= ⇤�1e
p
1+↵2x ,

 0 = ⇤�1[ +
�p

1 + ↵2
(e2

p
1+↵2x � (1 + ↵2) 2)] ; ⇤ = (� + 1)2 � �2e2

p
1+↵2x . (35)

Note, this transformation can also be determined as an analytic continuation of transformations
given in Section 2 of [20]. A Harrison transformation in the limit of an infinite boost corresponds
to � ! 1. One may verify that (34) with � ! 1 in the Einstein-Maxwell gravity (↵ = 0) takes the
Schwarzschild metric to the Robinson-Bertotti one. This type of transformation was employed
recently in [22]. For another work, relating the Schwarzschild geometry to AdS2 ⇥ S2, see [23].

In the case of ↵ = 1p
3
, we shall act with (34) on the Schwarzschild solution with e2U = 1� 2m

r ,

� = 0,  = 0. The transformation (35) with � = 1 results in ⇤ = 2m
r , and the metric (6) with

the subtracted geometry warp factor:

�s0 = r4 ! �s = (2m)3r , (36)

and the scalar field and the electric field strength :

e�
2�p
3 =

r
2m

r
,

r
2

3
Ft r =

1

2m
, (37)

i.e., this is the static subtracted geometry of Subsection 2.1, with ⇧c = 1, ⇧s = 0.
The subtracted geometry for the Kerr spacetime can be obtained by reducing the spacetime

on the time-like Killing vector and acting on the Kerr black hole with an infinite boost Harrison
transformation for Lagrangian density (1), where we set �1 = �2 = �3 ⌘ �, '1 = '2 = '3 ⌘
2p
3
�, ⇤F1 = F2 = ⇤F1 ⌘

q
2
3F and F2 =

p
2F , i.e. an Einstein-Dilaton-Axion gravity with

two U(1) gauge fields and respective dilaton couplings ↵1 = 1p
3
and ↵2 =

p
3. The subtracted

geometry of the multi-charged rotating black holes is expected to arise as a specific Harrison
transformation on a rotating charged black solution of (1). This has recently been confirmed
[14].

These results demonstrate that the subtracted geometry is a solution of the same theory as
the original black hole. Furthermore the original black hole and the subtracted geometry clearly
lie in the same duality orbit, specified above and passing through the original black hole. Thus
any physical property of the original black hole solution which is invariant under the duality
transformation of M-theory remains the property of the subtracted geometry. For example the
area of the horizon is unchanged.

3 Asymptotically Conical Metrics

The scaling limit, or equivalently the subtraction process, alters the environment that our black
holes find themselves in [12, 13]. In fact the subtracted geometry metric is asymptotically of the
form

ds2 = �
� R

R0

�2p
dt2 +B2dR2 +R2

�
d✓2 + sin2 ✓2d�2)

�
(38)
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iii. Subtracted geometry – as turning off certain integration constants 
     in harmonic functions of asymptotically flat black holes       
                                                Baggio, de Boer, Jottar,  Mayerson 1210.7695 
                                                                                   An,  M.C., Papardimitriou 1602.0150 
�
 
    

three dimensional base, independent of the charge parameters, and the warp factor denoted by
∆0.

In the static case one sets a = 0 and the solution simplifies significantly [17]:

ds24 = −∆−1/2
0s Xdt2 +∆1/2

0s

(

dr2

X + dθ2 + sin2 θdφ2
)

, (7)

where

X = r2 − 2mr , (8)

∆0s =
4
∏

I=1

(r + 2m sinh2 δI) , (9)

and the scalar fields and the gauge potentials take the form:

χi = 0 , eϕ1 =

[

(r + 2m sinh2 δ1)(r + 2m sinh2 δ3)

(r + 2m sinh2 δ2)(r + 2m sinh2 δ4)

]

1

2

,

eϕ2 =

[

(r + 2m sinh2 δ2)(r + 2m sinh2 δ3)

(r + 2m sinh2 δ1)(r + 2m sinh2 δ4)

]

1

2

, eϕ3 =

[

(r + 2m sinh2 δ1)(r + 2m sinh2 δ2)

(r + 2m sinh2 δ3)(r + 2m sinh2 δ4)

]

1

2

,

AI =
2m sinh δI cosh δI
r + 2m sinh2 δI

dt, (I = 1, 2, 3, 4) . (10)

2.1 Static Case

We shall first demonstrate the scaling limit, leading to the subtracted geometry of the general
static solution. We perform a scaling limit on the static solutions (7)-(10) where without loss
of generality we take three equal charges and the fourth one different by defining ∗F1 = F2 =
∗F1 ≡ F and F2 ≡ F . 3 We use the “tilde” notation for all the variables, with the choice of
charge parameters δ̃1 = δ̃2 = δ̃3 ≡ δ̃ and δ̃4 ≡ δ̃0. We take the following scaling limit with ϵ→ 0:

r̃ = rϵ, t̃ = tϵ−1, m̃ = mϵ ,

2m̃ sinh2 δ̃ ≡ Q = 2mϵ−1/3(Π2
c −Π2

s)
1/3, sinh2 δ̃0 =

Π2
s

Π2
c −Π2

s
, (11)

where the “tilde” coordinates and parameters of the scaled solution are related to those of the
subtracted geometry for the four-charge static black hole. In the latter case the metric of the
(unsbtracted) black hole solution is of the form (7), but with the subtracted geometry the metric
(7) is the same, except for the warp factor:

∆0s → ∆s = (2m)3r(Π2
c −Π2

s) + (2m)4Π2
s . (12)

The sources supporting this geometry are obtained by taking the scaling limit (11) in (10) (with
“tilde” coordinates and parameters):

χ1 = χ2 = χ3 = 0, eϕ1 = eϕ2 = eϕ3 =
Q2

∆
1

2

s

,

3While one can in principle perform a scaling limit with three unequal large charges Qi (I = 1, 2, 3), by

replacing in the scaling limit (11) Q → (Π3
I=1

QI)
1

3 , appropriate powers of QI in the scalar fields ϕi (i = 1, 2, 3)
and gauge field strengths ∗F1, F2, ∗F1 can be removed without loss of generality, resulting in the same gauge
choice for sources (15).

6

+2m̃ ã2 cos2 θ [e0 dt̃− ã sin2 θ sinh3 δ̃ cosh δ̃0 dφ]} . (18)

Here:

e = sinh2 δ̃ cosh2 δ̃ cosh δ̃0 sinh δ̃0(cosh
2 δ̃ + sinh2 δ̃)

− sinh3 δ̃ cosh δ̃(sinh2 δ̃ + 2 sinh2 δ̃0 + 2 sinh2 δ̃ sinh2 δ̃0),
e0 = sinh3 δ̃ cosh3 δ̃(cosh2 δ̃0 + sinh2 δ̃0)− sinh δ̃0 cosh δ̃0(3 sinh

4 δ̃ + 2 sinh6 δ̃) . (19)

Again, we take the scaling limit (11), and furthermore we take for the rotational parameter:

ã = aϵ . (20)

In terms of new coordinates and parameters the metric takes the form (3), where only the warp
factor changes:

∆0 → ∆ = (2m)3r(Π2
c −Π2

s) + (2m)4Π2
s − (2m)2a2(Πc −Πs)

2 cos2 θ . (21)

This geometry with the subtracted warp factor is sourced by the scalars:

χ1 = χ2 = χ3 = −2ma(Πc −Πs)cosθ

Q2
, eϕ1 = eϕ2 = eϕ3 =

Q2

∆
1

2

, (22)

and the gauge potentials:

A = − r

Q
dt+

(2m)2a2[2mΠ2
s − r(Πc −Πs)2] cos2 θ

Q∆
dt

−2ma(Πc −Πs) sin
2 θ

Q

(

1 +
(2m)2a2(Πc −Πs)2 cos2 θ

∆

)

dφ ,

A =
Q3[(2m)2ΠcΠs + a2(Πc −Πs)2 cos2 θ]

2m(Π2
c −Π2

s)∆
dt +

Q32ma(Πc −Πs) sin
2 θ

∆
dφ , (23)

resulting in field strengths with both electric and magnetic components. The (formally infinite)
factors of Q can again be removed from gauge potentials by removing corresponding factors from
scalar fields, and thus the sources take the canonical form:

χ1 = χ2 = χ3 = −a(Πc −Πs) cos θ

2m
, eϕ1 = eϕ2 = eϕ3 =

(2m)2

∆
1

2

, (24)

A = − r

2m
dt+

(2m)a2[2mΠ2
s − r(Πc −Πs)2] cos2 θ

∆
dt

−a(Πc −Πs) sin
2 θ(1 +

(2m)2a2(Πc −Πs)2 cos2 θ

∆
) dφ,

A =
(2m)4ΠcΠs + (2m)2a2(Πc −Πs)2 cos2 θ

(Π2
c −Π2

s)∆
dt +

(2m)4a(Πc −Πs) sin
2 θ

∆
dφ , (25)

Again, the sources supporting this geometry are those of the minimal supergravity in five-
dimensions, where F and F are the five-dimensional Maxwell and Kaluza-Klein field strengths,
respectively.

The scaling limits (11),(20) are reminiscent of the near-BPS dilute gas approximation [8],
which were generalized to rotating four-dimensional black holes in [18]. As a natural consequence,
the subtracted geometry of general black holes is a Kaluza-Klein coset of AdS3 × 4S2 just as in
the dilute-gas approximation [18]. Furthermore, there is an analogous microscopic interpretation
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(7) is the same, except for the warp factor:

∆0s → ∆s = (2m)3r(Π2
c −Π2

s) + (2m)4Π2
s . (12)

The sources supporting this geometry are obtained by taking the scaling limit (11) in (10) (with
“tilde” coordinates and parameters):

χ1 = χ2 = χ3 = 0, eϕ1 = eϕ2 = eϕ3 =
Q2

∆
1

2

s

,

3While one can in principle perform a scaling limit with three unequal large charges Qi (I = 1, 2, 3), by

replacing in the scaling limit (11) Q → (Π3
I=1

QI)
1

3 , appropriate powers of QI in the scalar fields ϕi (i = 1, 2, 3)
and gauge field strengths ∗F1, F2, ∗F1 can be removed without loss of generality, resulting in the same gauge
choice for sources (15).
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i. Subtracted geometry – as a scaling limit of near-horizon 
   black hole w/ three-large charges Q,  (mapped on m, a, Πc, Πs) 

Origin of subtracted geometry  

à non-extremal black hole microscopic properties associated with its    
     horizon are captured by a dual field theory of subtracted geometry 



Lift of subtracted geometry  
on a  circle S1 to five-dimension turns out to locally factorize  AdS3 x S2   
([SL(2,R) 2 x SO(3)]/Z2 symmetry) 
 
[globally S2  fibered over Bañados-Teitelboim-Zanelli (BTZ) black hole 
 w/ mass M3, angular momentum J3  &  3d cosmol. const. Λ=l-3] 
  

The quantities β1, β2 and β3 are removed by a gauge transformation φ −→ φ+(β1+β2+β3)t.

We shall assume from now on that this transformation has been performed. The final metric

can be cast in the following form:

ds2 =
√
∆

X

F 2

(

−dt2 +
F 2dr2

X2

)

+
√
∆dθ2 +

F 2 sin2 θ√
∆

(dφ+Wdt)2 , (6.22)

where

X = r2 − 2mr ,

F 2 = (2m)3
[

(Π2
c −Π2

s)r + (2m)Π2
s

]

,

W = −16m4ΠsΠcβ4
F 2

,

∆ = F 2 + (2m)6β2
4(Πc −Πs)

2 sin2 θ . (6.23)

The dilation fields are of the form:

eφ1 = eϕ2 = eϕ3 =
Q√
∆

, (6.24)

and the axion fields vanish. The Kaluza-Klein U(1) gauge field becomes

A2 =
Q32mΠcΠs

(Π2
c −Π2

s)F
2
dt− Q3(2m)2β4(Π2

c −Π2
s) sin

2 θ

∆
dφ+ , (6.25)

where Q is defined in (6.5) and φ+ = φ+ Ω+t, with Ω+ = β4ΠcΠ−1
s . The remaining three

gauge potentials become identified and are of the form (6.3) by setting a = 0.

One can of course remove Q in the scalar and gauge fields via a gauge transformation.

However, it is useful to keep it in the discussion of the lift.

6.3 Subtracted Geometry Lifted to Five Dimensions

We now provide a lift of the subtracted rotating geometry to five-dimensions5. The five-

dimensional metric for the scaling limit takes the form:

ds25 = eϕ1ds24 + e−2ϕ1(dz +A2)
2 , (6.26)

where we have to implement the scaling z → zϵ−1. This metric takes the form:

ds25 = ϵ−
2
3 (ds2S2 + ds2BTZ) , (6.27)

where

ds2S2 = 1
4ℓ

2
(

dθ2 + sin2 θdφ̄2
)

, (6.28)

5Partial results were provided in [5, 9]. Here we take particular care of the dimensions and of the

periodicities of metric coordinates.
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with

φ̄ = φ+
16ma(Πc −Πs)

ℓ3
(z + t) , (6.29)

and

ds2BTZ = −
(r23 − r23+)(r

2
3 − r23−)

ℓ2 r23
dt23 +

ℓ2r23
(r23 − r23+)(r

2
3 − r23−)

dr23 + r23(dφ3 +
r3+r3−
ℓr23

dt3)
2 ,

(6.30)

where

φ3 =
z

R
,

t3 =
ℓ

R
t ,

r23 =
16(2mR)2

ℓ4
[

2m(Π2
c −Π2

s)r + (2m)2Π2
s − a2(Πc −Πs)

2
]

. (6.31)

Here, R is the size of the circle S1 and ℓ = 4m(Π2
c − Π2

s)
1
3 is the radius of the AdS3.

Furthermore

r3± =
8mR

ℓ2

[

m(Πc +Πs)±
√

m2 − a2(Πc −Πs)
]

. (6.32)

The periodicity of z coordinate is 2πR, and thus the angular coordinate φ3 has the correct

periodicity of 2π. Note also that the 2π periodicity of φ̄ is ensured if 16ma(Πc −Πs)ℓ−3 is

quantized in units of R−1.

The lifted geometry is indeed locally AdS3 × S2 with the radius of AdS3 equal to ℓ and

the radius of S2 equal to ℓ
2 .

Subtracted Magnetised Geometry

This geometry also lifts to (6.27) where now φ̄ in (6.28) is defined as6

φ̄ = φ+ β4 z , (6.33)

and we set in all expressions above a = 0, i.e. the BTZ coordinates are related to {t, r, z}

as in (6.31) with a = 0. (Obviously, β4 = 0 corresponds to the lift of the static subtracted

geometry.) Note that the shift requires that β4 be quantized in units of R−1, in order for φ̄

to have the correct periodicity of 2π.

6.4 Relation of the BTZ Black Hole Coordinates to the AdS3 Coordinates

According to [14, 15] AdS3 is the quadric

u2 + v2 − x2 − y2 = ℓ2 , (6.34)

6It was observed in [25] that such a shift produces a magnetic field for the Kaluza-Klein U(1) gauge

potential and thus a four-dimensional geometry in a Kaluza-Klein magnetic field.
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 Conformal symmetry of AdS3 can be promoted to Virasoro algebra 
 of dual two-dimensional  CFT                                 à la Brown-Hennaux 
 Standard statistical entropy  (via AdS3/CFT2)                      à la Cardy 
à Reproduces entropy of 4D black holes 

M.C., Larsen 1112.4856 



                                                                                                M.C., Larsen 1106.3341 

  All also works in parallel for subtracted geometry of  
  most general five-dimensional black holes 
  (specified by mass, three charges and two angular momenta) 
                                                                                                             
                                                                                                          M.C., Youm 9603100 

Subtracted geometry 
also works for most general black holes  of  the  STU Model  
(specified by mass, four electric and four magnetics charges and angular 
momentum)     
 

Chow, Compère 1310.1295;1404.2602          

[Δ0 à Δ= A r + B cos2θ +C;  A,B,C-horrendous]     

M.C., Larsen 1406.4536



Further developments  
Quantum aspects of subtracted geometries: 
 
i)  Quasi-normal modes - exact results for scalar fields 
      two damped branches à no black hole bomb  
    M.C., Gibbons 1312.2250,  M.C., Gibbons, Saleem 1401.0544  
 
ii)  Entanglement entropy –minimally coupled scalar 
        M.C., Satz, Saleem 1407.0310   
iii) Vacuum polarization   <φ2>   analytic expressions  
       at the horizon: static M.C., Gibbons, Saleem, Satz 1411.4658 
                                     rotating M.C., Satz,  Saleem 1506.07189 
      outside & inside horizon: rotating M.C., Satz 1609….  

  

iv) Thermodynamics of subtracted geometry 
M.C., Gibbons, Saleem 1412.5996 (PRL) via  Komar integral: 

No time 

à Systematic approach via variational principle highligts 



 
 
 
Following lessons from AdS geometries   
 
achieved through an algorithmic procedure for subtracted geometry: 
 
•   integration constants, parameterizing solutions of the eqs. of motion, separated 
      into `normalizable’ - free to vary & ‘non-normalizable’ modes – fixed   

•  non-normalizable modes – fixed only up to transformations induced by 
local symmetries of the bulk theory (radial diffeomorphisms & gauge transf.) 

•  covariant boundary term, Sct, to the bulk action - determined  
    by solving asymptotically the radial Hamilton-Jacobi eqn. à 
    
    total action S+Sct  independent of the radial coordinate  
 
•  first class constraints of Hamiltonian formal. lead to conserved charges  
    associated with Killing vectors  
 
•  conserved charge satisfy the first law of thermodynamics  

Heningson,Skenderis’98; Balasubramanian,Kraus’99; deBoer,Verlinde2’99,… 

Skenderis,Papadimitriou’04,Papadimitriou’05 

III. Thermodynamics via variational principle 
An, M.C., Papadimitriou 1602.0150 



•  Identify normalizable  and non-rormalizable modes 

3 Asymptotically conical backgrounds

The general rotating subtracted geometry backgrounds are solutions of the equations of motion
following from the action (2.2) or (2.10) and take the form [14, 17]5

ds2 =

√
∆

X
dr̄2 − G√

∆
(dt̄+A)2 +

√
∆

(
dθ2 +

X

G
sin2 θdφ̄2

)
,

eη =
(2m)2√

∆
, χ =

a (Πc −Πs)

2m
cos θ,

A0 =
(2m)4a (Πc −Πs)

∆
sin2 θdφ̄+

(2ma)2 cos2 θ (Πc −Πs)
2 + (2m)4ΠcΠs

(Π2
c −Π2

s)∆
dt̄,

A =
2m cos θ

∆

([
∆− (2ma)2(Πc −Πs)

2 sin2 θ
]
dφ̄− 2ma (2mΠs + r̄(Πc −Πs)) dt̄

)
,

Ã = − 1

2m

(
r̄ −m− (2ma)2(Πc −Πs)

(2m)3(Πc +Πs)

)
dt̄+

(2ma)2(Πc −Πs)[2mΠs + r̄(Πc −Πs)] cos2 θ

2m∆
dt̄

+ a(Πc −Πs) sin
2 θ

(
1 +

(2ma)2(Πc −Πs)2 cos2 θ

∆

)
dφ̄, (3.1)

where

X = r̄2 − 2mr̄ + a2, G = X − a2 sin2 θ, A =
2ma

G
((Πc −Πs)r̄ + 2mΠs) sin

2 θdφ̄,

∆ = (2m)3(Π2
c −Π2

s)r̄ + (2m)4Π2
s − (2ma)2(Πc −Πs)

2 cos2 θ, (3.2)

and Πc, Πs, a and m are parameters of the solution.
In order to study the thermodynamics of these backgrounds it is necessary to identify which

parameters are fixed by the boundary conditions in the variational problem. A full analysis of the
variational problem for the actions (2.2) or (2.10) requires knowledge of the general asymptotic
solutions and is beyond the scope of the present paper. However, we can consider the variational
problem within the class of stationary solutions (3.1). To this end, it is convenient to reparameterize
these backgrounds by means of a suitable coordinate transformation, accompanied by a relabeling
of the free parameters. In particular, we introduce the new coordinates

ℓ4r = (2m)3(Π2
c −Π2

s)r̄ + (2m)4Π2
s − (2ma)2(Πc −Πs)

2,

k

ℓ3
t =

1

(2m)3(Π2
c −Π2

s)
t̄, φ = φ̄− 2ma(Πc −Πs)

(2m)3(Π2
c −Π2

s)
t̄, (3.3)

where ℓ and k are additional non-zero parameters, whose role will become clear shortly. Moreover,
we define the new parameters

ℓ4r± = (2m)3m(Π2
c +Π2

s)− (2ma)2(Πc −Πs)
2 ±

√
m2 − a2(2m)3(Π2

c −Π2
s),

ℓ3ω = 2ma(Πc −Πs), B = 2m, (3.4)

5In order to compare this background with the expressions given in eqs. (24) and (25) of [14], one should take into
account the field redefinition A → −A, χ → −χ, before the dualization of A, as mentioned in footnote 4, and add a
constant pure gauge term. Moreover, there is a typo in eq. (25) of [14]: the term 2mΠ2

s cos
2 θdt̄ should be replaced

by 2mΠs(Πs − Πc) cos
2 θdt̄.
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Introduce new coordinates: 

Rescaled radial coord.: 

Rescaled time:  

Trade four parameters  m, a, Πc, Πs  for:     

 
r+, r-, ω - normalizable modes   
B - non-renormalizable mode  
(fixed up to bulk diffeomorphisms & global gauge symmetries) 
 
 

ß 

ß 



`Vacuum’ solution 
 
obtained by turning off r+, r-, ω – three normalizable modes: 
 
 

which can be inverted in order to express the old parameters in terms of the new ones, namely

Πc,s =
ℓ2

B2

(
1

2
(
√
r+ +

√
r−)±

√
ℓ2ω2 +

1

4
(
√
r+ −√

r−)
2

)

,

a =
Bℓω

2
√

ℓ2ω2 + 1
4

(√
r+ −√

r−
)2 , m = B/2. (3.5)

Rewriting the background (3.1) in terms of the new coordinates and parameters we obtain6

eη =
B2/ℓ2√

r + ℓ2ω2 sin2 θ
, χ =

ℓ3ω

B2
cos θ,

A0 =
B3/ℓ3

r + ℓ2ω2 sin2 θ

(√
r+r− kdt+ ℓ2ω sin2 θdφ

)
,

A =
B cos θ

r + ℓ2ω2 sin2 θ
(−ω

√
r+r− kdt+ rdφ) ,

Ã = − ℓ

B

(
r − 1

2
(r+ + r−)

)
kdt+

ωℓ3

B
cos2 θ

(
ω
√
r+r− kdt− rdφ

r + ω2ℓ2 sin2 θ

)
+

ωℓ3

B
dφ,

ds2 =
√

r + ℓ2ω2 sin2 θ

(
ℓ2dr2

(r − r−)(r − r+)
− (r − r−)(r − r+)

r
k2dt2 + ℓ2dθ2

)

+
ℓ2r sin2 θ√

r + ℓ2ω2 sin2 θ

(
dφ−

ω
√
r+r−
r

kdt

)2

. (3.6)

Several comments are in order here. Firstly, the two parameters r± are the locations of the
outer and inner horizons respectively, and clearly correspond to normalizable perturbations. A
straightforward calculation shows that ω is also a normalizable mode. We will explicitly confirm
this later on by showing that the long-distance divergences of the on-shell action are independent
of ω. Setting the normalizable parameters to zero we arrive at the background

eη =
B2/ℓ2√

r
, χ = 0, A0 = 0, A = B cos θdφ, Ã = − ℓ

B
rkdt,

ds2 =
√
r

(
ℓ2
dr2
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− rk2dt2 + ℓ2dθ2 + ℓ2 sin2 θdφ2

)
, (3.7)

which we shall consider as the vacuum solution. The fact that the background (3.7) is singular
does not pose any difficulty since it should only be viewed as an asymptotic solution that helps us
to properly formulate the variational problem. Changing the radial coordinate to ϱ = ℓr1/4, the
vacuum metric becomes

ds2 = 42dϱ2 −
(ϱ
ℓ

)6
k2dt2 + ϱ2

(
dθ2 + sin2 θdφ2

)
, (3.8)

which is a special case of the conical metrics discussed in [14]. Different conical geometries are
supported by different matter fields. Although we focus on the specific conical backgrounds obtained
as solutions of the STU model here, we expect that our analysis, modified accordingly for the
different matter sectors, applies to general asymptotically conical backgrounds.

6 Since these solutions carry non-zero magnetic charge, the gauge potential A must be defined in the north
(θ < π/2) and south hemispheres respectively as [38, 39], Anorth = A−Bdφ and Asouth = A +Bdφ, where A is the
expression given in (3.6).
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Non-normalizable (fourth) mode B, along with l and k, fixed up to 
radial diffeomorphism: 
 
 

The asymptotic structure of (stationary) conical backgrounds is parameterized by the three non-
zero constants B, ℓ and k. In the most restricted version of the variational problem, these three
parameters should be kept fixed. However, there is a 2-parameter family of deformations of these
boundary data still leading to a well posed variational problem, as we now explain. The first de-
formation corresponds to the transformation of the boundary data induced by reparameterizations
of the radial coordinate. Namely, under the bulk diffeomorphism

r → λ−4r, λ > 0, (3.9)

the boundary parameters transform as

k → λ3k, ℓ → λℓ, B → B. (3.10)

This transformation is a direct analogue of the so called Penrose-Brown-Henneaux (PBH) diffeo-
morphisms in asymptotically AdS backgrounds [40], which induce a Weyl transformation on the
boundary sources. The PBH diffeomorphisms imply that the bulk fields do not induce boundary
fields, but only a conformal structure, that is boundary fields up to Weyl transformations [32]. This
dictates that the variational problem must be formulated in terms of conformal classes rather than
representatives of the conformal class [22]. In the case of subtracted geometries, variations of the
boundary parameters of the form

δ1k = 3ϵ1k, δ1ℓ = ϵ1ℓ, δ1B = 0, (3.11)

correspond to motion within the equivalence class (anisotropic conformal class) defined by the
transformation (3.10), and therefore lead to a well posed variational problem.

A second deformation of the boundary data that leads to a well posed variational problem is

δ2k = 0, δ2ℓ = ϵ2ℓ, δ2B = ϵ2B. (3.12)

To understand this transformation, one must realize that the parameters B and ℓ do not correspond
to independent modes, but rather only the ratio B/ℓ, which can be identified with the source of
the dilaton η. In particular, keeping B/ℓ fixed ensures that the variational problem is the same in
all frames of the form

ds2α = eαηds2, (3.13)

for some α, which will be important for the uplift of the conical backgrounds to five dimensions.
The significance of the parameter B is twofold. It corresponds to the background magnetic field
in the magnetic frame and variations of B are equivalent to the global symmetry transformation
(2.6) or (2.12) of the bulk Lagrangian. Moreover, as we will discuss in the next section, it enters
in the covariant asymptotic second class constraints imposing conical boundary conditions. The
transformation (3.12) is a variation of B combined with a bulk diffeomorphism in order to keep the
modes k and B/ℓ fixed. The relevant bulk diffeomorphism is a rescaling of the radial coordinate of
the form (3.9), accompanied by a rescaling t → λ3t of the time coordinate.

4 Boundary counterterms and renormalized conserved charges

The first law of black hole thermodynamics is directly related to the variational problem and the
boundary conditions imposed on the solutions of the equations of motion. As we briefly reviewed
in the previous section, in non-compact spaces, where the geodesic distance to the boundary is
infinite, the bulk fields induce only an equivalence class of boundary fields, which implies that
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2 The STU model and duality frames

In this section we review the bosonic sector of the 2-charge truncation of the STU model that is
relevant for describing the subtracted geometries. We will do so in the duality frame discussed in
[14], where both charges are electric, as well as in the one used in [17], where there is one electric and
one magnetic charge. We will refer to these frames as ‘electric’ and ‘magnetic’ respectively. As it
will become clear from the subsequent analysis, in order to compare the thermodynamics in the two
frames, it is necessary to keep track of boundary terms introduced by the duality transformations.

2.1 Magnetic frame

The bosonic Lagrangian of the STU model in the duality frame used in [17] is given by

2κ24L4 =R ⋆ 1− 1

2
⋆ dηa ∧ dηa −

1

2
e2ηa ⋆ dχa ∧ dχa

− 1

2
e−η0 ⋆ F 0 ∧ F 0 − 1

2
e2ηa−η0 ⋆ (F a + χaF 0) ∧ (F a + χaF 0)

+
1

2
Cabcχ

aF b ∧ F c +
1

2
Cabcχ

aχbF 0 ∧ F c +
1

6
Cabcχ

aχbχcF 0 ∧ F 0, (2.1)

where ηa (a = 1, 2, 3) are dilaton fields and η0 =
∑3

a=1 ηa. The symbol Cabc is pairwise symmetric
with C123 = 1 and zero otherwise. The Kaluza-Klein ansatz for obtaining this action from the
6-dimensional action (1.1) is given explicitly in [17]. This frame possesses an explicit triality sym-
metry, exchanging the three gauge fields Aa, the three dilatons ηa and the three axions χa. In this
frame, the subtracted geometries source all three gauge fields Aa magnetically, while A0 is electri-
cally sourced. Moreover, holographic renormalization turns out to be much more straightforward
in this frame compared with the electric frame.

In order to describe the subtracted geometries it suffices to consider a truncation of (2.1),
corresponding to setting η1 = η2 = η3 ≡ η, χ1 = χ2 = χ3 ≡ χ, and A1 = A2 = A3 ≡ A. The
resulting action can be written in the σ-model form

S4 =
1

2κ24

∫

M
d4x

√
−g

(
R[g]− 1

2
GIJ∂µϕ

I∂µϕJ − ZΛΣF
Λ
µνF

Σµν −RΛΣϵ
µνρσFΛ

µνF
Σ
ρσ

)
+SGH, (2.2)

where

SGH =
1

2κ24

∫

∂M
d3x

√
−γ 2K, (2.3)

is the standard Gibbons-Hawking [36] term and we have defined the doublets

ϕI =

(
η
χ

)
, AΛ =

(
A0

A

)
, I = 1, 2, Λ = 1, 2, (2.4)

as well as the 2× 2 matrices

GIJ =

(
3 0
0 3e2η

)
, ZΛΣ =

1

4

(
e−3η + 3e−ηχ2 3e−ηχ

3e−ηχ 3e−η

)
, RΛΣ =

1

4

(
χ3 3

2χ
2

3
2χ

2 3χ

)
. (2.5)

As usual, ϵµνρσ =
√
−g εµνρσ denotes the totally antisymmetric Levi-Civita tensor, where εµνρσ =

±1 is the Levi-Civita symbol. Throughout this paper we choose the orientation in M so that
εrtθφ = 1. We note in passing that the Lagrangian (2.2) is invariant under the global symmetry
transformation

eη → µ2eη, χ → µ−2χ, A0 → µ3A0, A → µA, ds2 → ds2, (2.6)

where µ is an arbitrary non-zero constant parameter.
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Appendices

A Radial Hamiltonian formalism

In this appendix we present in some detail the radial Hamiltonian formulation of the reduced STU
σ-model (2.2). This analysis can be done abstractly, without reference to the explicit form of the
σ-model functions GIJ , ZΛΣ and RΛΣ, and it therefore applies to the electric Lagrangian (2.10) as
well, provided AL, ZΛΣ and RΛΣ are replaced with their electric frame analogues in(2.11).

The first step towards a Hamiltonian formalism is picking a suitable radial coordinate u such
that constant-u slices, which we will denote by Σu, are diffeomorphic to the boundary ∂M of M.
Moreover, it is convenient to choose u to be proportional to the geodesic distance between any fixed
point in M and a point in Σu, such that14 Σu → ∂M as u → ∞. Given the radial coordinate u,
we then proceed with an ADM-like decomposition of the metric and gauge fields [47]

ds2 = (N2 +NiN
i)du2 + 2Nidudx

i + γijdx
idxj ,

AL = aΛdu+AΛ
i dx

i, (A.1)

where {xi} = {t, θ,φ}. This is merely a field redefinition, trading the fully covariant fields gµν and
AL

µ for the induced fields N , Ni, γij , aΛ and AΛ
i on Σu. Inserting this decomposition in the σ-model

action (2.2) and adding the Gibbons-Hawking term (2.3) leads to the radial Lagrangian

L =
1

2κ24

∫
d3xN

√
−γ

{
R[γ] +K2 −KijK

ij − 1

2N2
GIJ(ϕ)

(
ϕ̇I −N i∂iϕ

I
) (

ϕ̇J −N j∂jϕ
J
)

− 2

N2
ZΛΣ(ϕ)γ

ij
(
ȦΛ

i − ∂ia
Λ −NkFΛ

ki

)(
ȦΣ

j − ∂ja
Σ −N lFΣ

lj

)
(A.2)

−4RΛΣ(ϕ)ϵ
ijk
(
ȦΛ

i − ∂ia
Λ
)
FΣ
jk −

1

2
GIJ(ϕ)∂iϕ

I∂iϕJ − ZΛΣ(ϕ)F
Λ
ijF

Σij

}
,

where

Kij =
1

2N
(γ̇ij −DiNj −DjNi) , (A.3)

is the extrinsic curvature of the radial slices Σu, Di denotes a covariant derivative with respect to
the induced metric γij on Σu, while a dot ˙ stands for a derivative with respect to the Hamiltonian
‘time’ u.

14We assume M to be a non-compact space with infinite volume such that the geodesic distance between any point
in the interior of M and a point in ∂M is infinite.
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     Decomposition leads to the radial Lagrangian L w/ canonical momenta: 
The canonical momenta conjugate to the induced fields on Σu following from the Lagrangian

(A.2) are

πij =
δL

δγ̇ij
=

1

2κ24

√
−γ
(
Kγij −Kij

)
, (A.4a)

πI =
δL

δϕ̇I
= − 1

2κ24
N−1√−γ GIJ

(
ϕ̇J −N i∂iϕ

J
)
, (A.4b)

πi
Λ =

δL

δȦΛ
i

= − 2

κ24
N−1√−γZΛΣ

(
γij
(
ȦΣ

j − ∂ja
Σ
)
−NjF

Σji
)
− 2

κ24

√
−γ RΛΣϵ

ijkFΣ
jk. (A.4c)

Notice that the momenta conjugate to N , Ni, and aΛ vanish identically, since the Lagrangian (A.2)
does not contain any radial derivatives of these fields. It follows that the fields N , Ni, and aΛ are
Lagrange multipliers, implementing three first class constraints, which we will derive momentarily.
The canonical momenta (A.4) allow us to perform the Legendre transform of the Lagrangian (A.2)
to obtain the radial Hamiltonian

H =

∫
d3x

(
πij γ̇ij + πI ϕ̇

I + πi
ΛȦ

Λ
i

)
− L =

∫
d3x

(
NH +NiHi + aΛFΛ

)
, (A.5)

where

H =− κ24√
−γ

(
2

(
γikγjl −

1

2
γijγkl

)
πijπkl + GIJ(ϕ)πIπJ

+
1

4
ZΛΣ(ϕ)

(
πΛi +

2

κ24

√
−γRΛM (ϕ)ϵi

klFM
kl

)(
πi
Σ +

2

κ24

√
−γRΣN (ϕ)ϵipqFN

pq

))

+

√
−γ

2κ24

(
−R[γ] +

1

2
GIJ(ϕ)∂iϕ

I∂iϕJ + ZΛΣ(ϕ)F
Λ
ijF

Σij

)
, (A.6a)

Hi =− 2Djπ
ij + πI∂

iϕI + FΛij

(
πΛj +

2

κ24

√
−γRΛΣ(ϕ)ϵj

klFΣ
kl

)
, (A.6b)

FΛ =−Diπ
i
Λ. (A.6c)

Since the canonical momenta conjugate to the fields N , Ni, and aΛ vanish identically, the corre-
sponding Hamilton equations lead to the first class constraints

H = Hi = FΛ = 0, (A.7)

which reflect respectively diffeomorphism invariance under radial reparameterizations, diffeomor-
phisms along the radial slices Σu and a U(1) gauge invariance for every gauge field AΛ

i .

Hamilton-Jacobi formalism

The first class constraints (A.7) are particularly useful in the Hamilton-Jacobi formulation of the
dynamics, where the canonical momenta are expressed as gradients of Hamilton’s principal function
S[γ, AΛ,ϕI ] as

πij =
δS
δγij

, πi
Λ =

δS
δAΛ

i

, πI =
δS
δϕI

. (A.8)

Since the momenta conjugate to N , Ni, and aΛ vanish identically, the functional S[γ, AΛ,ϕI ]
does not depend on these Lagrange multipliers. Inserting the expressions (A.8) for the canonical
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κ24

√
−γRΣN (ϕ)ϵipqFN

pq

))

+

√
−γ

2κ24

(
−R[γ] +

1

2
GIJ(ϕ)∂iϕ

I∂iϕJ + ZΛΣ(ϕ)F
Λ
ijF

Σij

)
, (A.6a)

Hi =− 2Djπ
ij + πI∂

iϕI + FΛij

(
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First class constraints                                  - Hamilton Jacobi eqs.  
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ΛȦ

Λ
i

)
− L =

∫
d3x

(
NH +NiHi + aΛFΛ

)
, (A.5)

where

H =− κ24√
−γ

(
2

(
γikγjl −

1

2
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H = Hi = FΛ = 0, (A.7)

which reflect respectively diffeomorphism invariance under radial reparameterizations, diffeomor-
phisms along the radial slices Σu and a U(1) gauge invariance for every gauge field AΛ
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The first class constraints (A.7) are particularly useful in the Hamilton-Jacobi formulation of the
dynamics, where the canonical momenta are expressed as gradients of Hamilton’s principal function
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Since the momenta conjugate to N , Ni, and aΛ vanish identically, the functional S[γ, AΛ,ϕI ]
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space of equivalence classes of boundary data. We have therefore determined that a complete set
of boundary counterterms for the variational problem in the magnetic frame is
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)
. (4.11)

As we mentioned at the beginning of this section, the freedom to choose the value of the parameter
α does not correspond to a choice of scheme. Instead, it is a direct consequence of the presence of
the second class constraints (4.4). The scheme dependence corresponds to the freedom to include
additional finite local terms, which do not affect the divergent part of the solution. Later on we
will consider situations where additional conditions on the variational problem require a specific
value for α, or particular finite counterterms.

4.1.2 The variational problem

Given the counterterms Sct, the regularized action in the magnetic frame is defined as the sum of
the on-shell action (2.2) and the counterterms (4.11) on the regulating surface Σu, namely

Sreg = S4 + Sct. (4.12)

As is shown in appendix B, the limit

Sren = lim
r→∞

Sreg, (4.13)

exist and we will refer to its value as the ‘renormalized’ on-shell action, following standard termi-
nology in the context of the AdS/CFT duality.

A generic variation of the renormalized on-shell action takes the form

δSren = lim
r→∞

∫
d3x

(
Πijδγij +Πi

ΛδA
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where the renormalized canonical momenta are given by
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δγij
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δAΛ
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, ΠI = πI +
δSct

δϕI
. (4.15)

Inserting the asymptotic form of the backgrounds (3.6) into the definitions (A.4) of the canonical
momenta and in the functional derivatives (4.8) we obtain
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sin θ
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)
, (4.16e)

with all other components vanishing identically.
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Finally, we can use these expressions to evaluate the variation (4.14) of the renormalized action
in terms of boundary data. To this end we need to perform the integration over θ and remember
that the magnetic potential A is not globally defined, as we pointed out in footnote 6. In particular,
taking Anorth ∼ B(cos θ − 1)dφ and Asouth ∼ B(cos θ + 1)dφ we get

δSren = − 1

2κ24

∫
dtdφ (r+ + r−)kℓδ log

(
kB3/ℓ3

)
, (4.17)

independently of the value of the parameter α. Note that the combination kB3/ℓ3 of boundary
data is the unique invariant under both the equivalence class transformation (3.11) and the trans-
formation (3.12). We have therefore demonstrated that by adding the counterterms (4.11) to the
bulk action, the variational problem is formulated in terms of equivalence classes of boundary data
under the transformations (3.11) and (3.12). This is an explicit demonstration of the general result
that formulating the variational problem in terms of equivalence classes of boundary data under
radial reparameterizations is achieved via the same canonical transformation that renders the on-
shell action finite. As we will now demonstrate, the same boundary terms ensure the finiteness of
the conserved charges, as well as the validity of the first law of thermodynamics.

4.1.3 Conserved charges

Let us now consider conserved charges associated with local conserved currents. This includes
electric charges, as well as conserved quantities related to asymptotic Killing vectors. Magnetic
charges do not fall in this category, but they can be described in this language in the electric frame,
as we shall see later on.

In the radial Hamiltonian formulation of the bulk dynamics, the presence of local conserved
currents is a direct consequence of the first class constraints FΛ = 0 and Hi = 0 in (A.6).7 As
in the case of asymptotically AdS backgrounds, these constraints lead respectively to conserved
electric charges and charges associated with asymptotic Killing vectors.8 In particular, the gauge
constraints in FΛ = 0 in (A.6) take the form

Diπ
i = 0, Diπ

0i = 0, (4.18)

where πi and π0i are respectively the canonical momenta conjugate to the gauge fields Ai and
A0

i . Since the boundary counterterms (4.11) are gauge invariant, it follows from (4.15) that these
conservation laws hold for the corresponding renormalized momenta as well, namely

DiΠ
i = 0, DiΠ

0i = 0. (4.19)

This implies that the quantities

Q(e)
4 = −

∫

∂M∩C
d2xΠt, Q0(e)

4 = −
∫

∂M∩C
d2xΠ0t, (4.20)

where C denotes a Cauchy surface that extends to the boundary ∂M, are both conserved and finite
and correspond to the electric charges associated to these gauge fields.

7These constraints can be derived alternatively by applying the general variation (4.14) of the renormalized action
to U(1) gauge transformations and transverse diffeomorphisms, assuming the invariance of the renormalized action
under such transformations. This method will be used in order to derive the conserved charges in the electric frame.

8In asymptotically locally AdS spaces, the Hamiltonian constraint H = 0 can be used in order to construct
conserved charges associated with conformal Killing vectors of the boundary data [22]. For asymptotically conical
backgrounds, the Hamiltonian constraint leads to conserved charges associated with asymptotic transverse diffeomor-
phisms, ξi, that preserve the boundary data up to the equivalence class transformations (3.11).
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data is the unique invariant under both the equivalence class transformation (3.11) and the trans-
formation (3.12). We have therefore demonstrated that by adding the counterterms (4.11) to the
bulk action, the variational problem is formulated in terms of equivalence classes of boundary data
under the transformations (3.11) and (3.12). This is an explicit demonstration of the general result
that formulating the variational problem in terms of equivalence classes of boundary data under
radial reparameterizations is achieved via the same canonical transformation that renders the on-
shell action finite. As we will now demonstrate, the same boundary terms ensure the finiteness of
the conserved charges, as well as the validity of the first law of thermodynamics.

4.1.3 Conserved charges

Let us now consider conserved charges associated with local conserved currents. This includes
electric charges, as well as conserved quantities related to asymptotic Killing vectors. Magnetic
charges do not fall in this category, but they can be described in this language in the electric frame,
as we shall see later on.

In the radial Hamiltonian formulation of the bulk dynamics, the presence of local conserved
currents is a direct consequence of the first class constraints FΛ = 0 and Hi = 0 in (A.6).7 As
in the case of asymptotically AdS backgrounds, these constraints lead respectively to conserved
electric charges and charges associated with asymptotic Killing vectors.8 In particular, the gauge
constraints in FΛ = 0 in (A.6) take the form

Diπ
i = 0, Diπ

0i = 0, (4.18)

where πi and π0i are respectively the canonical momenta conjugate to the gauge fields Ai and
A0

i . Since the boundary counterterms (4.11) are gauge invariant, it follows from (4.15) that these
conservation laws hold for the corresponding renormalized momenta as well, namely

DiΠ
i = 0, DiΠ

0i = 0. (4.19)

This implies that the quantities

Q(e)
4 = −

∫

∂M∩C
d2xΠt, Q0(e)

4 = −
∫

∂M∩C
d2xΠ0t, (4.20)

where C denotes a Cauchy surface that extends to the boundary ∂M, are both conserved and finite
and correspond to the electric charges associated to these gauge fields.

7These constraints can be derived alternatively by applying the general variation (4.14) of the renormalized action
to U(1) gauge transformations and transverse diffeomorphisms, assuming the invariance of the renormalized action
under such transformations. This method will be used in order to derive the conserved charges in the electric frame.

8In asymptotically locally AdS spaces, the Hamiltonian constraint H = 0 can be used in order to construct
conserved charges associated with conformal Killing vectors of the boundary data [22]. For asymptotically conical
backgrounds, the Hamiltonian constraint leads to conserved charges associated with asymptotic transverse diffeomor-
phisms, ξi, that preserve the boundary data up to the equivalence class transformations (3.11).
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Conserved currents, a consequence of the first class constraints  
 

Asymptotic Killing vector ζi 

Similarly, the momentum constraint Hi = 0 in (A.6), which can be written in explicit form as

− 2Djπ
j
i + πη∂iη + πχ∂iχ+ F 0

ijπ
0j + Fijπ

j

+
1

2κ24

√
−γ ϵjkl

(
χ3F 0

ijF
0
kl +

3

2
χ2F 0

ijFkl + 3χFijFkl +
3

2
χ2FijF

0
kl

)
= 0, (4.21)

leads to finite conserved charges associated with asymptotic Killing vectors. Note that the terms
in the second line are independent of the canonical momenta and originate in the parity odd terms
in the STU model Lagrangian.9 However, for asymptotically conical backgrounds of the form (3.6)
these terms are asymptotically subleading, the most dominant term being

√
−γϵjklχFijFkl = O(r−1), (4.22)

and so the momentum constraint asymptotically reduces to

− 2Djπ
j
i + πη∂iη + πχ∂iχ+ F 0

ijπ
0j + Fijπ

j ≈ 0. (4.23)

Since the counterterms (4.11) are invariant with respect to diffeomorphisms along the surfaces of
constant radial coordinate, it follows from (4.15) that this constraint holds for the renormalized
momenta as well,

− 2DjΠ
j
i +Πη∂iη +Πχ∂iχ+ F 0

ijΠ
0j + FijΠ

j ≈ 0. (4.24)

Given an asymptotic Killing vector ζ i satisfying the asymptotic conditions

Lζγij = Diζj +Djζi ≈ 0, LζA
Λ
i = ζj∂jA

Λ
i +AΛ

j ∂iζ
j ≈ 0, Lζϕ

I = ζ i∂iϕ
I ≈ 0, (4.25)

the conservation identity (4.24) implies that the quantity

Q[ζ] =

∫

∂M∩C
d2x

(
2Πt

j +Π0tA0
j +ΠtAj

)
ζj, (4.26)

is both finite and conserved, i.e. it is independent of the choice of Cauchy surface C. However, there
are a few subtleties in evaluating these charges. Firstly, Gauss’ theorem used to prove conservation
for the charges (4.26) assumes differentiability of the integrand across the equator at the boundary.
If the gauge potentials are magnetically sourced, as is the case for Ai in the magnetic frame, then
the gauge should be chosen such that Ai is continuous across the equator. In particular, contrary
to the variational problem we discussed earlier, the gauge that should be used to evaluate these
charges is the one given in (3.6), and not the one discussed in footnote 6.

Secondly, the charges (4.26) are not generically invariant under the U(1) gauge transformations
AΛ

i → AΛ
i + ∂iαΛ. These gauge transformations though must preserve both the radial gauge

(4.3) and the asymptotic Killing conditions (4.25). Preserving the radial gauge implies that the
gauge parameter must depend only on the transverse coordinates, i.e. αΛ(x) (see e.g. [22]), while
respecting the Killing symmetry leads to the condition

ζ i∂iα
Λ = constant. (4.27)

Under such gauge transformations the charges (4.26) are shifted by the corresponding electric
charges (4.20). As will become clear in section 5, this compensates a related shift in the electric
potential such that the Smarr formula and the first law are gauge invariant. Nevertheless, gauge

9In the AdS/CFT context are interpreted as a gravitational anomaly in the dual QFT.
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Mass

The mass is the conserved charge associated with the Killing vector11 ζ = −∂t − Ω∞∂φ. Since
Ω∞ = 0 in the coordinate system (3.6), (4.26) gives12

M4 = −
∫

∂M∩C
d2x

(
2Πt

t +Πt
0A

0
t +ΠtAt

)
=

ℓk

8G4
(r+ + r−) . (5.9)

The same result is obtained in the electric frame using (4.50). As for the electric and magnetic
potentials, the gauge potentials at the boundary do not contribute to the mass in the gauge (3.6).

Angular momentum

The angular momentum is defined as the conserved charge corresponding to the Killing vector
ζ = ∂φ, which gives

J4 =

∫

∂M∩C
d2x (2Πt

φ +Πt
0A

0
φ +ΠtAφ) = − ωℓ3

2G4
. (5.10)

The same result is obtained in the electric frame.

Free energy

Finally, the full Gibbs free energy, G̃4, is related to the renormalized Euclidean on-shell action in
the electric frame, where all charges are electric. Namely,

Ĩ4 = S̃E
ren = −S̃ren = β4G̃4, (5.11)

with β4 = 1/T4 and S̃ren defined in (4.33). The Euclidean on-shell action in the magnetic frame
similarly defines another thermodynamic potential, G4, through

I4 = SE
ren = −Sren = β4G4, (5.12)

where Sren was given in (4.13). Evaluating this we obtain (see appendix B)

I4 =
β4ℓk

8G4

(
(r− − r+) + 2ω2ℓ2

√
r−
r+

)
. (5.13)

Moreover, (4.28) implies that the on-shell action is given by

Ĩ4 = I4 +
3

2κ24

∫

H+

Ã ∧ F = I4 − β4Φ
(m)
4 Q(m)

4 . (5.14)

11The overall minus sign relative to the Killing vector used in [22] can be traced to the fact that the free energy is
defined as the Lorentzian on-shell action in section 5 of that paper, while in section 6 it is defined as the Euclidean
on-shell action. We adopt the latter definition here.

12In [21] the mass for static subtracted geometry black holes was evaluated from the regulated Komar integral
and the Hawking-Horowitz prescription and shown to be equivalent. Both the Smarr formula and the first law of
thermodynamics were shown to hold in the static case. In the rotating case, the chosen coordinate system of the
subtracted metric in [21] has non-zero angular velocity at spatial infinity which was erroneously not included in the
thermodynamics analysis of the rotating subtracted geometry. Furthermore, the evaluation of the regulated Komar
integral in the rotating subtracted geometry would have to be performed; this would lead to an additional contribution
to the regulated Komar mass due to rotation, and in turn ensure the validity of the Smarr formula and the first law
of thermodynamics.
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Conserved currents for gauge potentials:  

•  Conserved Charges 

Conserved charges:  

 Hi = 0  

Similarly, the momentum constraint Hi = 0 in (A.6), which can be written in explicit form as

− 2Djπ
j
i + πη∂iη + πχ∂iχ+ F 0

ijπ
0j + Fijπ

j

+
1

2κ24

√
−γ ϵjkl

(
χ3F 0

ijF
0
kl +

3

2
χ2F 0

ijFkl + 3χFijFkl +
3

2
χ2FijF

0
kl

)
= 0, (4.21)

leads to finite conserved charges associated with asymptotic Killing vectors. Note that the terms
in the second line are independent of the canonical momenta and originate in the parity odd terms
in the STU model Lagrangian.9 However, for asymptotically conical backgrounds of the form (3.6)
these terms are asymptotically subleading, the most dominant term being

√
−γϵjklχFijFkl = O(r−1), (4.22)

and so the momentum constraint asymptotically reduces to

− 2Djπ
j
i + πη∂iη + πχ∂iχ+ F 0

ijπ
0j + Fijπ

j ≈ 0. (4.23)

Since the counterterms (4.11) are invariant with respect to diffeomorphisms along the surfaces of
constant radial coordinate, it follows from (4.15) that this constraint holds for the renormalized
momenta as well,

− 2DjΠ
j
i +Πη∂iη +Πχ∂iχ+ F 0

ijΠ
0j + FijΠ

j ≈ 0. (4.24)

Given an asymptotic Killing vector ζ i satisfying the asymptotic conditions

Lζγij = Diζj +Djζi ≈ 0, LζA
Λ
i = ζj∂jA

Λ
i +AΛ

j ∂iζ
j ≈ 0, Lζϕ

I = ζ i∂iϕ
I ≈ 0, (4.25)

the conservation identity (4.24) implies that the quantity

Q[ζ] =

∫

∂M∩C
d2x

(
2Πt

j +Π0tA0
j +ΠtAj

)
ζj, (4.26)

is both finite and conserved, i.e. it is independent of the choice of Cauchy surface C. However, there
are a few subtleties in evaluating these charges. Firstly, Gauss’ theorem used to prove conservation
for the charges (4.26) assumes differentiability of the integrand across the equator at the boundary.
If the gauge potentials are magnetically sourced, as is the case for Ai in the magnetic frame, then
the gauge should be chosen such that Ai is continuous across the equator. In particular, contrary
to the variational problem we discussed earlier, the gauge that should be used to evaluate these
charges is the one given in (3.6), and not the one discussed in footnote 6.

Secondly, the charges (4.26) are not generically invariant under the U(1) gauge transformations
AΛ

i → AΛ
i + ∂iαΛ. These gauge transformations though must preserve both the radial gauge

(4.3) and the asymptotic Killing conditions (4.25). Preserving the radial gauge implies that the
gauge parameter must depend only on the transverse coordinates, i.e. αΛ(x) (see e.g. [22]), while
respecting the Killing symmetry leads to the condition

ζ i∂iα
Λ = constant. (4.27)

Under such gauge transformations the charges (4.26) are shifted by the corresponding electric
charges (4.20). As will become clear in section 5, this compensates a related shift in the electric
potential such that the Smarr formula and the first law are gauge invariant. Nevertheless, gauge

9In the AdS/CFT context are interpreted as a gravitational anomaly in the dual QFT.
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Conserved currents:  

Conserved ``charges’’:  

Mass: 

Angular Momentum: 

Angular velocity

We define the physical (diffeomorphism invariant) angular velocity as the difference between the
angular velocity at the outer horizon and at infinity, namely

Ω4 = ΩH − Ω∞ =
gtφ
gφφ

∣∣∣
∂M

−
gtφ
gφφ

∣∣∣
H+

= ωk

√
r−
r+

. (5.3)

In the coordinate system (3.6) there is no contribution to the angular velocity from infinity, but
there is in the original coordinate system (3.1). The rotation at infinity was not taken into account
in [21], which is why our result does not fully agree with the one obtained there.

Electric charges

In the magnetic frame there is only one non-zero electric charge given by (4.20), whose value is

Q0(e)
4 = −

∫

∂M∩C
d2xΠ0t =

ℓ4

4G4B3

(√
r+r− + ω2ℓ2

)
. (5.4)

In the electric frame both electric charges defined in (4.45) are non-zero:

Q̃(e)
4 = −

∫

∂M∩C
d2x π̃t =

3B

4G4
, Q̃0(e)

4 = Q0(e)
4 . (5.5)

Magnetic charge

The only non-zero magnetic charge is present in the magnetic frame and it is equal to one of the
electric charges in the electric frame:

Q(m)
4 = − 3

2κ24

∫

∂M∩C
F = Q̃(e)

4 . (5.6)

Electric potential

We define the electric potential as

Φ0(e)
4 = A0

iKi
∣∣∣
H+

= k

(
B

ℓ

)3√r−
r+

, (5.7)

where K = ∂t + ΩH∂φ is the null generator of the outer horizon. Note that A0
iKi is constant over

the horizon [22] and so leads to a well defined electric potential. However, as we remarked in the
previous section, the electric potential is not gauge invariant. Under gauge transformations it is
shifted by a constant (see (4.27)) which compensates the corresponding shift of the charges (4.26)
in the Smarr formula and the first law.

Magnetic potential

Similarly, the magnetic potential is defined in terms of the gauge field Ãi in the electric frame as

Φ(m)
4 = ÃiKi

∣∣∣
H+

=
ℓk

2B

(
(r− − r+) + 2ω2ℓ2

√
r−
r+

)
. (5.8)
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the horizon [22] and so leads to a well defined electric potential. However, as we remarked in the
previous section, the electric potential is not gauge invariant. Under gauge transformations it is
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FΛ = 0 
 



•  Thermodynamic relations and the first law  
 
 

Smarr’s Formula: 
 
 

An interesting observation is that the value of the renormalized action in the magnetic frame,
as well as the value of all other thermodynamic variables, is independent of the parameter α in the
boundary counterterms (4.11). This property is necessary in order for the thermodynamic variables
in the electric and magnetic frames to agree, and in order to match with those of the 5D uplifted
black holes that we will discuss in section 6. Recall that the terms multiplying α are designed
so that their leading asymptotic contribution to the Hamilton-Jacobi solution (4.7), as well as to
the derivatives (4.8), vanishes by means of the asymptotic constraints (4.4). This is the reason
why any value of α leads to boundary counterterms that remove the long-distance divergences.
However, the parameter α does appear in the renormalized momenta, as is clear from (4.16), and
in the unintegrated value of the renormalized action. Nevertheless, α does not enter in any physical
observable. This observation results from the explicit computation of the thermodynamic variables,
but we have not been able to find a general argument that ensures this so far.

5.2 Thermodynamic relations and the first law

We can now show that the thermodynamic variables we just computed satisfy the expected ther-
modynamic relations, including the first law of black hole mechanics.

Quantum statistical relation

It is straightforward to verify that the total Gibbs free energy G̃4 satisfies the quantum statistical
relation [36]

G̃4 = M4 − T4S4 − Ω4J4 − Φ0(e)Q0(e) − Φ(m)
4 Q(m)

4 . (5.15)

Similarly, the thermodynamic potential G4, which was obtained from the on-shell action in the
magnetic frame, satisfies

G4 = M4 − T4S4 − Ω4J4 − Φ0(e)Q0(e). (5.16)

Note that the shift of the mass and angular momentum under a gauge transformation (4.27) is
compensated by that of the electric potentials so that these relations are gauge invariant.

First law

In order to demonstrate the validity of the first law we must recall the transformations (3.11)
and (3.12) of the non-normalizable boundary data that allow for a well posed variational problem.
In particular, variations of B, k and ℓ that are a combination of the two transformations (3.11)
and (3.12) are equivalent to generic transformations keeping kB3/ℓ3 fixed. Considering such a
transformations, as well as arbitrary variations of the normalizable parameters r± and ω, we obtain

dM4 − T4dS4 − Ω4dJ4 − Φ0(e)
4 dQ0(e)

4 − Φ(m)
4 dQ(m)

4 = 0. (5.17)

Smarr formula

Finally, one can explicitly check that the Smarr formula

M4 = 2S4T4 + 2Ω4J4 +Q0(e)
4 Φ0(e)

4 +Q(m)
4 Φ(m)

4 , (5.18)

also holds. This identity can be derived by applying the first law to the one-parameter family of
transformations

δM4 = ϵM4, δS4 = 2ϵS4, δJ4 = 2ϵJ4, δQ0(e)
4 = ϵQ0(e)

4 , δQ(m)
4 = ϵQ(m)

4 , (5.19)
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compensated by that of the electric potentials so that these relations are gauge invariant.

First law

In order to demonstrate the validity of the first law we must recall the transformations (3.11)
and (3.12) of the non-normalizable boundary data that allow for a well posed variational problem.
In particular, variations of B, k and ℓ that are a combination of the two transformations (3.11)
and (3.12) are equivalent to generic transformations keeping kB3/ℓ3 fixed. Considering such a
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also holds. This identity can be derived by applying the first law to the one-parameter family of
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An interesting observation is that the value of the renormalized action in the magnetic frame,
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First law:    

Varying parameters: r+, r-, ω, and  B, k,  l  subject to  kB3/l3 –fixed  
               original parameters m, a, Πc, Πs  & a scaling parameter 
                 

Quantum statistical relation:  
 

Free Energy: 

Mass

The mass is the conserved charge associated with the Killing vector11 ζ = −∂t − Ω∞∂φ. Since
Ω∞ = 0 in the coordinate system (3.6), (4.26) gives12

M4 = −
∫

∂M∩C
d2x

(
2Πt

t +Πt
0A

0
t +ΠtAt

)
=

ℓk

8G4
(r+ + r−) . (5.9)

The same result is obtained in the electric frame using (4.50). As for the electric and magnetic
potentials, the gauge potentials at the boundary do not contribute to the mass in the gauge (3.6).

Angular momentum

The angular momentum is defined as the conserved charge corresponding to the Killing vector
ζ = ∂φ, which gives

J4 =

∫

∂M∩C
d2x (2Πt

φ +Πt
0A

0
φ +ΠtAφ) = − ωℓ3

2G4
. (5.10)

The same result is obtained in the electric frame.

Free energy

Finally, the full Gibbs free energy, G̃4, is related to the renormalized Euclidean on-shell action in
the electric frame, where all charges are electric. Namely,

Ĩ4 = S̃E
ren = −S̃ren = β4G̃4, (5.11)

with β4 = 1/T4 and S̃ren defined in (4.33). The Euclidean on-shell action in the magnetic frame
similarly defines another thermodynamic potential, G4, through

I4 = SE
ren = −Sren = β4G4, (5.12)

where Sren was given in (4.13). Evaluating this we obtain (see appendix B)

I4 =
β4ℓk

8G4

(
(r− − r+) + 2ω2ℓ2

√
r−
r+

)
. (5.13)

Moreover, (4.28) implies that the on-shell action is given by

Ĩ4 = I4 +
3

2κ24

∫

H+

Ã ∧ F = I4 − β4Φ
(m)
4 Q(m)

4 . (5.14)

11The overall minus sign relative to the Killing vector used in [22] can be traced to the fact that the free energy is
defined as the Lorentzian on-shell action in section 5 of that paper, while in section 6 it is defined as the Euclidean
on-shell action. We adopt the latter definition here.

12In [21] the mass for static subtracted geometry black holes was evaluated from the regulated Komar integral
and the Hawking-Horowitz prescription and shown to be equivalent. Both the Smarr formula and the first law of
thermodynamics were shown to hold in the static case. In the rotating case, the chosen coordinate system of the
subtracted metric in [21] has non-zero angular velocity at spatial infinity which was erroneously not included in the
thermodynamics analysis of the rotating subtracted geometry. Furthermore, the evaluation of the regulated Komar
integral in the rotating subtracted geometry would have to be performed; this would lead to an additional contribution
to the regulated Komar mass due to rotation, and in turn ensure the validity of the Smarr formula and the first law
of thermodynamics.
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IV. Holography via 2D Einstein-Maxwell-Dilaton 
M.C., Papadimitriou 1608.07018 

 4D STU fields can be consistently Kaluza-Klein reduced on S2 by    
 one-parameter family of Ansätze: 

KK reduction ansatz

The 4D truncation of the STU model can be consistently Kaluza-Klein reduced on
S2 by means of the one-parameter family of KK ansätze
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where � is an arbitrary parameter. For any value of �, the resulting 2D theory is
the Einstein-Maxwell-Dilaton theory we considered above – � drops out in 2D!

However, by comparing the KK ansatz with the 4D black hole solutions we see
that � = !`

3
/B

3, i.e. � is the angular parameter of the 4D black hole.

The parameter � allows any solution of the 2D EMD theory to be uplifted to a
family of 4D solutions, i.e. it acts as a solution generating mechanism.
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where � is an arbitrary parameter. For any value of �, the resulting 2D theory is
the Einstein-Maxwell-Dilaton theory we considered above – � drops out in 2D!

However, by comparing the KK ansatz with the 4D black hole solutions we see
that � = !`

3
/B

3, i.e. � is the angular parameter of the 4D black hole.

The parameter � allows any solution of the 2D EMD theory to be uplifted to a
family of 4D solutions, i.e. it acts as a solution generating mechanism.
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rotational parameter of subtracted geometry 

ds2
2, Ψ, A(2)  -fields of 2D Einstein-Maxwell-Dilaton Gravity: 

2D Einstein-Maxwell-Dilaton (EMD) model

We would like to develop the holographic dictionary for the 2D
Einstein-Maxwell-Dilaton (EMD) model

S2D =

1

2

2
2

✓ˆ
d2

x

p
�g e

� 
⇣
R[g] +

2

L

2
� 1

4

e

�2 
F

ab

F

ab

⌘
+

ˆ
dt
p
�� e

� 
2K

◆

This model is rather special since it can be obtained by circle reduction of 3D
Einstein-Hilbert gravity
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This ensures that a meaningful holographic dictionary exists for this theory, but
certain aspects are in fact generic and apply to a wider class of 2D dilaton gravity
models.
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B = 2L; λ-independent 



Web of theories
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Web of Theories  
Subtracted geometry Locally: AdS3 x S2 

KK Ansatz  



Running dilaton solutions

The general solution with running dilaton takes the form
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where ↵(t), �(t) and µ(t) are arbitrary functions of time, while m and Q are
arbitrary constants.

The leading asymptotic behavior of this solution is
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and so the arbitrary functions ↵(t), �(t) and µ(t) should be identified with the
sources of the corresponding dual operators.
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•  Arbitrary functions α(t), β(t) and µ(t)  identified with the  
     sources of the corresponding dual operators  
 

Leading asymptotic behavior: 

Equations of motion in Fefferman-Graham gauge

In the Fefferman-Graham gauge
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The general solution of this system of equations can be obtained analytically.
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running dilaton 

Analytic general solution: 

  General solution of 2D EMD Gravity – running dilaton 

•  4D uplift results in asymptotically conformally AdS2×S2 subtracted 
    geometries, generalized to include arbitrary time-dependent sources  
 



 Repeat Radial Hamiltonian Formalism in 2D 

Holographic dictionary for running dilaton solutions

Since the asymptotic solutions with running dilaton are different from those with
constant dilaton, the holographic dictionary is different for the two cases.

For the running dilaton solutions the boundary counterterms are
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Holographic dictionary for running dilaton solutions

Since the asymptotic solutions with running dilaton are different from those with
constant dilaton, the holographic dictionary is different for the two cases.
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Radial Hamiltonian formulation

Inserting the radial ADM decomposition

ds

2
= (N

2
+N

t

N

t

)du

2
+ 2N

t

dudt+ �

tt

dt

2

of the metric in the 2D action gives the radial Lagrangian

L =

1

2

2
2

ˆ
dt
p
��N

✓
� 2

N

K

⇣
˙

 �N

t

@

t

 

⌘
� 1

2N

2
e

�2 
F

ut

F

u

t

+

2

L

2
� 2⇤

t

◆
e

� 

where K = �

tt

K

tt

and the extrinsic curvature K

tt

is given by

K

tt

=

1

2N

(�̇

tt

� 2D

t

N

t

)

with the dot denoting a derivative with respect to the radial coordinate u, and D

t

standing for the covariant derivative with respect to the induced metric �
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Radial ADM decomposition: 

Renormalized one-point functions: 

Countertern Action: 



Holographic dictionary for running dilaton solutions

Evaluating these expressions using the general solutions with running dilaton
gives the one-point functions
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All three operators are crucial to describe the physics. In particular, these
one-point functions satisfy the Ward identities
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From these relations we deduce that the scalar operator O
 

is a marginally
relevant operator and the theory has a conformal anomaly, solely due to the
source of the scalar operator. We will see later that this anomaly matches
precisely that of the 2D CFT dual to 3D Einstein-Hilbert gravity, which provides the
UV completion of the 2D dilaton theory.
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Explicit one-point functions: 

Ward Identities:  
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Conformal anomaly: 

Dynamical time and Schwarzian derivative

One of the key reasons behind the recent interest in 2D dilaton gravity is the
appearance of the Schwarzian derivative in the effective action, which also
emerges in the effective IR description of the Sachdev-Ye-Kitaev model.

In particular, the Schwarzian derivative is the effective action for the operator
T +O

 

, which captures solely the ‘dynamics’ of boundary reparameterizations
since it is equal to the conformal anomaly.

Legendre transforming the generating functional with respect to the combined
source ↵(t) = �(t) and writing the boundary metric as �↵

2
(t)dt

2
= � (df(t))

2 in
terms of an arbitrary time reparameterization function f(t), gives the effective
action
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is the Schwarzian derivative.
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 Legandre transformed generating function ( w/                         ): 

Schwarzian derivative  

Holographic dictionary for running dilaton solutions

The renormalized on-shell action can be obtained (up to a constant that depends
on global properties) by integrating the relations
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which is the exact generating function of the theory.
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Holographic dictionary for running dilaton solutions
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 Exact generating function (                                                     ): 

counterterterm that explicitly depends of the cuto↵, since from (2.4) we see that �p�� ⇤
t

e� ⇠
@
t

(�0/↵), precisely matching the expression for the conformal anomalyA. Notice that the conformal
anomaly is proportional to the source � of the scalar operator dual to the dilaton  , and hence, the
dilaton plays a central role in AdS2 holography and the breaking of the symmetries of the vacuum.

Generating functional The renormalized one-point functions (3.14) can be expressed as
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which is identified with the generating function of connected correlation functions in the dual
theory. As the one-point functions (3.14), this expression for the generating functional is exact
in the sources ↵(t), �(t) and µ(t). Successively di↵erentiating the generating functional or the
one-point functions with respect to these sources one can evaluate any n-point correlation function
of the operators T , O

 

and J t in the dual theory.

E↵ective action and the Schwarzian derivative The Legendre transform of the generating
functional with respect to a particular source gives the 1PI e↵ective action for the corresponding
operator. Setting the sources ↵(t) and �(t) of the operators T and O

 

equal probes the ‘pure gauge
dynamics’ sector of the theory that is described by correlation functions of the e↵ective operator
T +O

 

, which through the trace Ward identity (3.16) is equal to the conformal anomaly.
Legendre transforming the generating functional with respect to the combined source ↵(t) =

�(t) leads to the e↵ective action
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Expressing the boundary metric as �↵2(t)dt2 = � (d⌧(t))2 in terms of the ‘dynamical time’ ⌧(t)
[12], i.e. an arbitrary time reparameterization function, the e↵ective action (3.19) takes the form
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Z
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denotes the Schwarzian derivative. This form of the e↵ective action arises in the infrared limit of the
Sachdev-Ye-Kitaev model [15, 16] and is a key piece of evidence for the holographic identification
of this model with AdS2 dilaton gravity [10, 11, 12].

6The full expression for the renormalized on-shell action includes an integration constant that depends on global
properties of the solution on which it is evaluated. This integration constant can be determined by explicitly evaluating
the radial integral for any particular solution. This is necessary, for example, in order to compute the free energy.
Note, however, that the value of this additive constant is renormalization scheme dependent.
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theory. As the one-point functions (3.14), this expression for the generating functional is exact
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Expressing the boundary metric as �↵2(t)dt2 = � (d⌧(t))2 in terms of the ‘dynamical time’ ⌧(t)
[12], i.e. an arbitrary time reparameterization function, the e↵ective action (3.19) takes the form
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denotes the Schwarzian derivative. This form of the e↵ective action arises in the infrared limit of the
Sachdev-Ye-Kitaev model [15, 16] and is a key piece of evidence for the holographic identification
of this model with AdS2 dilaton gravity [10, 11, 12].

6The full expression for the renormalized on-shell action includes an integration constant that depends on global
properties of the solution on which it is evaluated. This integration constant can be determined by explicitly evaluating
the radial integral for any particular solution. This is necessary, for example, in order to compute the free energy.
Note, however, that the value of this additive constant is renormalization scheme dependent.
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theory. As the one-point functions (3.14), this expression for the generating functional is exact
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Expressing the boundary metric as �↵2(t)dt2 = � (d⌧(t))2 in terms of the ‘dynamical time’ ⌧(t)
[12], i.e. an arbitrary time reparameterization function, the e↵ective action (3.19) takes the form
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denotes the Schwarzian derivative. This form of the e↵ective action arises in the infrared limit of the
Sachdev-Ye-Kitaev model [15, 16] and is a key piece of evidence for the holographic identification
of this model with AdS2 dilaton gravity [10, 11, 12].

6The full expression for the renormalized on-shell action includes an integration constant that depends on global
properties of the solution on which it is evaluated. This integration constant can be determined by explicitly evaluating
the radial integral for any particular solution. This is necessary, for example, in order to compute the free energy.
Note, however, that the value of this additive constant is renormalization scheme dependent.
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theory. As the one-point functions (3.14), this expression for the generating functional is exact
in the sources ↵(t), �(t) and µ(t). Successively di↵erentiating the generating functional or the
one-point functions with respect to these sources one can evaluate any n-point correlation function
of the operators T , O

 

and J t in the dual theory.

E↵ective action and the Schwarzian derivative The Legendre transform of the generating
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equal probes the ‘pure gauge
dynamics’ sector of the theory that is described by correlation functions of the e↵ective operator
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Expressing the boundary metric as �↵2(t)dt2 = � (d⌧(t))2 in terms of the ‘dynamical time’ ⌧(t)
[12], i.e. an arbitrary time reparameterization function, the e↵ective action (3.19) takes the form
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denotes the Schwarzian derivative. This form of the e↵ective action arises in the infrared limit of the
Sachdev-Ye-Kitaev model [15, 16] and is a key piece of evidence for the holographic identification
of this model with AdS2 dilaton gravity [10, 11, 12].

6The full expression for the renormalized on-shell action includes an integration constant that depends on global
properties of the solution on which it is evaluated. This integration constant can be determined by explicitly evaluating
the radial integral for any particular solution. This is necessary, for example, in order to compute the free energy.
Note, however, that the value of this additive constant is renormalization scheme dependent.

12

``dynamic time’’ 

c.f., Sadchev, Ye, Kitaev ’93,… Almeheiri, Polochinski ’14; 
      Maldacena, Stanford, Yang ’16; Engelsoy, Merens, Verlinde ’16,…  



Asymptotic symmetries: subset of Penrose-Brown-Henneaux (PBH) 
transformations (diffeomorphisms and gauge transformations preserving 
the Fefferman-Graham gauge)  that preserve boundary conditions: 

Asymptotic symmetries and conserved charges 

Conserved Charges: boundary terms obtained by varying the action 
with respect to the asymptotic symmetries (and Ward identities) à   
 
U(1)xU(1): 

Running dilaton solutions

The PBH transformations that preserve the form of the general running dilaton
solution are parameterized by three arbitrary functions "(t), �(t) and '(t), and act
on the sources as
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Running dilaton solutions

The PBH transformations that preserve the form of the general running dilaton
solution are parameterized by three arbitrary functions "(t), �(t) and '(t), and act
on the sources as

�PBH↵ = @

t

("↵) + ↵�/L, �PBH� = "�

0
+ ��/L, �PBHµ = @

t

("µ+ ')

These three functions correspond respectively to time reparameterizations, i.e.
boundary diffeomorphisms, Weyl transformations, and gauge transformations.

The asymptotic symmetries obtained by imposing

�PBH (sources) = 0

are
" = ⇠1

�

↵

, �/L = �⇠1
�

0

↵

, ' = ⇠2 � ⇠1
�

↵

µ

where ⇠1,2 are arbitrary constants. The symmetry algebra is therefore
u(1)� u(1), whose corresponding charges are the mass and the electric charge:

Q1 = �
✓
�T � L

2

2
2

�

02

↵

2

◆
=

mL

2

2
2

, Q2 = ↵J t

=

Q



2
2

.

I. Papadimitriou AdS2 holography and non-extremal black holes 43 / 503D perspective: two copies of the Virasoro algebra with the Brown-
Henneaux central charge. Only L±

0 are realized non-trivially in 2D. 

Running dilaton solutions

The PBH transformations that preserve the form of the general running dilaton
solution are parameterized by three arbitrary functions "(t), �(t) and '(t), and act
on the sources as

�PBH↵ = @

t

("↵) + ↵�/L, �PBH� = "�

0
+ ��/L, �PBHµ = @

t

("µ+ ')

These three functions correspond respectively to time reparameterizations, i.e.
boundary diffeomorphisms, Weyl transformations, and gauge transformations.

The asymptotic symmetries obtained by imposing

�PBH (sources) = 0

are
" = ⇠1

�

↵

, �/L = �⇠1
�

0

↵

, ' = ⇠2 � ⇠1
�

↵

µ

where ⇠1,2 are arbitrary constants. The symmetry algebra is therefore
u(1)� u(1), whose corresponding charges are the mass and the electric charge:

Q1 = �
✓
�T � L

2

2
2

�

02

↵

2

◆
=

mL

2

2
2

, Q2 = ↵J t

=

Q



2
2

.

I. Papadimitriou AdS2 holography and non-extremal black holes 43 / 50

à constrain functions ε(t), σ(t) and φ(t)  in term of  two constants ξ1,2   
        



Constant dilaton solutions and  AdS2 holography                                                                                                       
                     c.f., Strominger ’98, …Castro, Grumiller, Larsen, McNees ’08,…     
                                          Compère, Song, Strominger ’13,…Castro, Song’14,…  
 
 
Holography depends on the structure of non-extremal constant 
dilaton solutions and choice of boundary conditions    à 
  
Provided systematic holographic dictionary for each choice 
                                                                 M.C., Papadimitriou 1608.07018 
                                                               
  
 
 
 
 
 
 
 

Note: non-extremal running dilaton solution     à   
          extremal running-dilaton solution  
          with RG flow to IR fixed point 
          extremal constant dilaton solution         à  
          non-extremal constant dilaton branch (`Coulomb phase’) 
          (does not lift into subtracted geometry) 
 
 

 No Time  

Q=mL/2 

VEV of irrelevant scalar op.     



Summary/Outlook with focus on AdS2 Holography  

•  Provided consistent KK Ansätze  that allow us to uplift  any 
solution of 2D EMD gravity to 4D STU solutions, which are 
non-extremal 4D black holes, asymptotically (conformally) 
AdS2×S2 – subtracted geometry. 

     [Works also for 5D solutions asymptotically (conformally) AdS2xS3.] 

 
 

•  Constructed complete holographic dictionary of  
     2D EMD gravity theory obtained by an S2 reduction of  
     4D STU subtracted geometry & constant dilaton solutions. 

•  2D EMD gravity has a well defined UV fixed point, 
     described by a sector of  2D CFT.  
 

•  Many aspects of the holographic description are generic  
     and should apply to generic 2D dilaton gravity theories. 


