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What is a rms charge radius and how is
it measured?

2 There is no definite nuclear boundary, so we end up
measuring a range of radii from which the mean can be
determined.

2 Typically determined by analyzing electron elastic
scattering measurements. Almost everything we know
about nuclear and atomic physics has been discovered
by scattering experiments. (e.g., Rutherford’s
discovery of nucleus, discovery of quarks etc.).

2 Can be determined by measuring the effect of of finite
nuclear size on the energy levels of atomic electrons.

2 Also can be determined from studying the transition
energies in muonic atoms.



Why Charge Radii are Important

F. Buchinger et.al., Phys. Rev. C 49, 1402 (1994)

The charge radius of a nuclus is one of the most fundamental
measurements in nuclear physics:

2 It plays a key role in studying the characteristics of a
nucleus and testing theoretical models of nuclei.

2 It provides direct information of the Coulomb energy of
nuclei; therefore, it is important for nuclear mass
formulae.

2 It can serve to impose strong constraints on the saturation
properties of nuclear forces.

2 The study of nuclear charge radii is critically important for
atomic physics in precision spectroscopy studies of atoms.

2 Connects atomic and subatomic physics.



How well do we know the charge radii
of nuclei?

2 It is very well known for carbon(2C), and other heavy
nuclei.

2 Thought to be very well known for hydrogen('H) until
recently.

2 Large discrepency found between the lamb shift
measurement of muonic hydrogen (~0.8408+/-0.0004
fm) and previous measurements from electron
scattering experiments and spectroscopic
measurements from atomic hydrogen (~0.875+/- 0.006
fm).

2 There is no reliable electron scattering results for
boron(°B) and lithium(6Li).



The LEDEX Experiment and our
Motivation

Low Energy Deuteron Experiment (LEDEX) was proposed
to resolve discrepencies between the existing world data
sets for describing the structure function of the deuteron.

Liquid hydrogen and carbon were added to cross-check
the experimental procedure and to allow the deuteron
form factor to be determined relative to these cross
sections at every point.

Renewed attention due to the discrepencies found in the
charge radius determinations of the proton.

Motivated from the new ab-intitio theoretical calculations
for the charge radii of Lithium and Boron.



Feynman Diagrams and Cross-Section

.

Formulations
Po —; P4
do do >, 9 G% + 17G%,
A A - ((ZQ/)AIOtt[QTGJ\fta‘n (@/2) + 147
q
5 do do (Za)*E?* E  ,0

COS —.

"3 Jqy IPoimt = Gy 1Mot = Ak2sind(©/2) E 2



Hall A Setup




LEDEX Target system

Liquid Target Ladder Solid Targets



Extraction of the Experimental Cross-
Section

The working formula for extracting the cross section is:
do [dQ=(1/(L xtxAQxI. £.))x Countsx R

Obtain net counts after substracting the back-ground and dummy
from a calibrated run and apply necessary cuts (e.g. acceptance,
particle Identification etc.).

Obtain the wire chamber Efficiencies (e.g. triggering, tracking etc.)
Use MCEEP to find the radiative correction factor.

Divide the yield by mceep phase space and efficiencies and multiply by
radiative correction factor to find the cross -section for hydrogen,

deuteruim and carbon.

For lithium and boron, there is no simulation method, and hence, we
found their cross-sections relative to carbon.



Example of a calibrated Carbon Run
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Cross-section results for boron carbide and lithium with
respect to carbon
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Behaviour at Diffraction Miniama

P. Gueye et.al., in preparation
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Uncertainties

1
2 Statistcal~ .

e Sysltematiez Quantity e S}Stl(\zll(l)]rz::l:lllzj;tigfltz[lgf]tle& Random|[%]

Beam Current 0.5 —
Solid Angle 1.0

Composition 0.05 —
Target thickness 0.6 —
Efficiency — 1.0
Radiation correction 1.0 —
Background subtraction — 1.0

Overall 1.53 1.41




Form Factor and its Parametrization

2 For spin zero nucleus the form factor is all electric and
for an unpolarized beam it is related to cross-section as

do do
d2 d<2,,,
2 In the kinematics of this experiment the charge form

factor is dominant and magnetic and multipole
contributions are negligible except for boron.

F(q)|

2 The charge form factor can be approximated by a fourier
transformation of charge distribution

_Lpr oo sinGan) s
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Form Factor and its Parametrization

The charge distribution can be written as a combination of a complete set of zeroth order

Bessel functions of the first kind : . NJxr
©  sin(——)

a, — R <R
nmr

p(={,,.; *

By choosing a cutoff radius beyond which charge distribution would be zero, we get
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Thus, if we know the values of F(q) around the roots of the Bessel function, the
coefficients can be found by solving a set of linear equations.



Charge Radius

2 Charge radii have been extracted using mathematica by
evaluating the integral:

Where, R.. :
[ prd’r=2

2 The error in the charge radii are found through a Monte
Carlo simulation Technique.
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Charge Density Distribution of Carbon and
its Charge Radius
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Excitation Spectra for Boron-Carbide
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F-B Parametrization Results for Boron
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Charge Density and Charge Radius for Boron
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F-B Parametrization Results for Lithium
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Charge Density and Charge Radius for Deuterium
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F-B Parametrization result for Hydrogen
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Breakdown of F-B parametrization technique

A

F-B Parametrization technique does not work work well for very light
nuclei.

Needs unrealistically large number of Fourier-Bessel coefficients.

Solution is to go with the usual technique of finding the slope of the form
factor at g=0, as

LR @)t @) .
Fa) = 5 [ pe)-lar — S - L
1 R 2 R ) )
= - /)(7')(137 — G(IZ /)(7')1'2(137'4—...
o :
2
= 1—%<72 . > .
< 72 > = —GdF(Q)

But this introduces new problems. The fit function needs to be
extrapolated in the region where we do not have experimental data and
different fit functions produce different results.

Next, we focus on the lowest momentum transfer data available where
the definition of rms radius as a slope of form factor is more appropriate.



'H charge radius result from the lowest momentum transfer Measurements

D.W. Higinbotham et.al.,arXiv:1510.01293
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Conclusions

Elastic scattering data for several light nuclei have been
analyze and Form factors are parametrized with Fourier
Bessel analysis and charge densities are found.

The charge radii were determined by integrating over the
normalized charge density distribution function and are
compared with theoretical calculations.

Results for 2C are consistent with previous measurements
and new results are obtained for °B and °Li. The results for
carbon, boron, lithium and deuterium are found to be in
excellent agreement with the latest theoretical
calculations.

Ambiguities in determining the charge radius for the
proton from elastic scattering experiments are discussed.
Lowest momentum transfer measurement with model
independent fit function yield a charge radius result for
hydrogen closer to the muonic hydrogen result.



Beamline

2 Beam Energy Measurement
2 The Tiefenbach Method
2 eP Method

2 Beam Charge Monitor
2 Unser Monitor
2 Silver Calorimeter

2 Beam Positon Monitor



HRS Spectrometer
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Tracking and Triggering
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Geometric and Particle Identification Cuts
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Dummy Subtraction
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Efficiencies
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Counts

Counts

Background Subtraction
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Radiation Correction

2 Internal Radiation

2 Real
2 Soft (< 0.35 MeV) L
2 Hard (> 0.35 MeV)
2 Virtual -
2 External Radiation
2 Atomic Collision Pttt TR

2 Straggling
2 External Bremsstrahlung
2 Multiple scattering



Scattering of light from a Sphere




Why Electron Scattering ?

2 Positives:
2 Simple Reaction Mechanism.
2 Cross-section is calculable

A o o 1 o
@ Interaction strength is small (z-— ): involves small
perturbation.

2 Very accurately known; gives confidence in predicting
the result.

2 Negatives

2 Needs High Intensity beam, thicker targets, large solid
angle detectors.

2 Radiative effects need to be corrected for.



Energy of the electron beam

2 Electron’s Debroglie wavelength (h/mv) is long
compared the size of nucleus: nucleus is seen as a

point.

2 Wavelength is comparable to the size of the nucleus:
can resolve the finite size.

2 Wavelength much shorter than nuclear size: resolve
the nuclear internal structure.



Scattering Cross-Section

In general , the cross-section is the effective area of the

collision region. * O

The cross-section for this diagramis, O = TR’

N

When a beam of particles hits the target, the no. of particles
colliding in a time t with the target, will be a cylindrical
region equal to

N=n,v, to N=® o



Differential Scattering Cross-section

In reality, only a fraction of all reactions are detected. A
detector of area ‘A’ is placed at a distance r and at an
angle © with respect to the beam direction, covering a
solid angle AQ.

do(E,0) N(E,0,AQ)
dQ ®.N,.AQ

N

Target Plane




CEBAF Accelerator
HOW CEBAF WORKS

Each linear accelerator uses Magnets in the arcs steer the
superconducting technology o~ glectron beam from one straight
drive electrons to higher and section of the tunnel to the next
higher energies. for up to five orbits.

The electron beam begins its first
orbit at the injector. At nearly the
speed of light, the electron beam
circulates the 7/8 mile track in
24 millionths of a second.

A refrigeration plant provides liquid
helium for ultra-low-temperature,
superconducting operation.

\

U The electron beam is delivered to the
experimental halls for simultaneous
research by three teams of physicists.



Some Other Parametrization Models for Hydrogen
1
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Results for hydrogen charge radius

Fit-Function(Model)  Data Source Trms(fm)
(H—p},ﬂ, LEDEX + Saskatoon+ Mainz+JLab 0.849 + 0.004
: LEDEX + Saskatoon+ Mainz+JLab 0.861 + 0.003
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