

Constraining the Standard Model with Rare Electroweak Processes: Wγγ and Zγγ in CMS 8TeV Data

A. Belloni University of Maryland

HEP Seminar University of Virginia April 20th, 2016

A New Frontier

- LHC started 2016 collisions less than two weeks ago
 - Very hectic period for collaboration, restarting operations after long break
- The 2015 run left some interesting hints at possible new physics
 - Di-photon resonances?
- We expect to collect about an order of magnitude more 13TeV data this year
 - Ambitious plans for precision measurements and discoveries

LARGE HADRON COLLIDER IN THE LEP TUNNEL

A feasibility study of possible options

Dy
The CERN Machine Group

4/20/2016

Why Electroweak Physics?

- The Standard Model (SM) is extremely successful at describing particle interactions
 - But it does not tell the full story: neutrino masses? Dark matter and dark energy? Gravitation?
- The SM allows us to do very precise predictions of electroweak processes
 - Discrepancies between predictions and measurements clearly indicate the presence of new physics
- Final states with multiple bosons are particularly interesting
 - They are rare processes, only recently becoming measurable
 - They shed light on possible corrections to the interaction vertices contained in the SM Lagrangian

Outline

The CMS detector at the LHC Focus on calorimetry Physics with 8TeV data - Wyy and Zyy cross sections Limits on anomalous quartic gauge couplings with Wyy A look ahead to 2025 **Upgrade of the CMS hadronic** calorimeter Summary and prospects

4/20/2016

The Large Hadron Collider

- Record luminosity in 2012: 7.67.10³³ cm⁻²s⁻¹
- Up to 1380 colliding bunches
 - Up to ~35 interactions per bunch crossing
- 10¹¹ protons / bunch
- Stored Energy: 362MJ per beam
 - Tevatron: 2MJ
 - LHC magnets: 10GJ
 - Kinetic energy of 90kton aircraft carrier at battle speed (30knots)

The CMS Detector

4/20/2016

STIVENSITE

- Homogeneous calorimeter built with lead-tungstate crystals
 - PbWO₄: large-Z elements very effective in stopping electrons and photons
- About 80,000 3x3x20cm³ crystals, individually read by photo-diodes
 - Transverse size ~ 1 R_M ; typical photon contained in one cell, electron in 3-4 cells
- Crystal production took about 10 years
 - 2 days needed to grow each
 1.5kg crystal

Hadronic Calorimetry

- Plastic-scintillator/brass sampling calorimeter
 - 9cm brass layers are interleaved with ~4mm layers of plastic scintillator
 - Wavelength-shifting fibers bring the light from the plastic tiles to the photo detectors
- About 11,000 readout channels
 - $\delta\eta \times \delta\phi$ towers
 - 3200m² of plastic scintillator

8TeV Data Sample

CMS Integrated Luminosity, pp, 2012, $\sqrt{s} = 8$ TeV

4/20/2016

Physics of $W_{\gamma\gamma}$ and $Z_{\gamma\gamma}$

- WW $\gamma\gamma$, WZ $\gamma\gamma$, WWWW
- WW γ , WWZ
- Interested in measuring 4-boson vertices in SM Lagrangian
 - Quartic gauge couplings
- Very difficult to separate contribution of QGC from 3-boson vertices (triple gauge couplings) plus radiation of a photon
 - Final state radiation (FSR): a photon emitted by the charged lepton from the W decay
 - Initial state radiation (ISR): a photon emitted by a quark in the initial state

4/20/2016

More on Physics

- No ZZZZ, ZZγγ, ZZγ, Zγγ vertices in SM
 - Ζγγ can only result by a combination of ISR and FSR photons
 - Any evidence of a vertex with only neutral bosons indicates new physics

4/20/2016

4/20/2016

Methodology

• The Cross-Section Master Formula:

$$\sigma \cdot BR = \frac{N_{\rm obs} - N_{\rm bkg}}{C_{\rm V\gamma\gamma} \cdot \mathcal{L}_{\rm int}}$$

- N_{obs}: number of selected candidates in data sample
- N_{bkg}: expected number of background events
- $C_{V\gamma\gamma}$: fraction of signal expected to pass selection
- L_{int}: integrated luminosity

Jets Mis-reconstructed as γ

- Difficult to estimate with Monte Carlo
 - Probability that jet is reconstructed as a photon crucially depends on how hadronization is modeled: difficult to do properly
 - Fake rates (hopefully) small: a huge MC sample would be needed to obtain a robust estimate
- A data-driven method can solve both issues
 Rely on actual data to model mis-reconstruction
- A generalization of the *matrix method* is used
 - Allows us to properly account for mis-identification of jets as being the leading and/or sub-leading photon

Matrix Method for Jet Fakes

Counted in data

- Release photon identification cuts to build three "loose" samples
 - Either or both the leading and sub-leading reconstructed photons can fail identification cuts
- Difference in efficiency of identification cut for jets misreconstructed as photons and for real photons allows one to separate the various components in data

E.g.: ε_{RF}^{TT} : probability that an event with a Real leading photon and a Fake subleading photon enters the Tight-Tight region (i.e., both objects satisfy the photon identification cuts

$\begin{pmatrix} N_{TT} \\ N_{TL} \\ N_{LT} \\ N_{LL} \end{pmatrix} = \begin{pmatrix} \epsilon_{RR}^{TT} & \epsilon_{RF}^{TT} & \epsilon_{FR}^{TT} & \epsilon_{FF}^{TT} \\ \epsilon_{RR}^{TL} & \epsilon_{RF}^{TL} & \epsilon_{FR}^{TL} & \epsilon_{FF}^{TL} \\ \epsilon_{RR}^{TT} & \epsilon_{RF}^{LT} & \epsilon_{FR}^{LT} & \epsilon_{FF}^{LT} \\ \epsilon_{RR}^{LL} & \epsilon_{RF}^{LL} & \epsilon_{FR}^{LL} & \epsilon_{FF}^{LL} \\ \epsilon_{RR}^{LL} & \epsilon_{RF}^{LL} & \epsilon_{FR}^{LL} & \epsilon_{FF}^{LL} \end{pmatrix} \begin{pmatrix} \alpha_{RR} \\ \alpha_{RF} \\ \alpha_{RF} \\ \alpha_{FF} \end{pmatrix}$

Measured in backgroundenriched data samples (ϵ for fake photons) and in MC (ϵ for real photons)

Invert the matrix and solve for α 's to obtain background estimate: $N_{bkg}^{TT} = \alpha_{RF} \epsilon_{RF}^{TT} + \alpha_{FR} \epsilon_{FR}^{TT} + \alpha_{FF} \epsilon_{FF}^{TT}$

4/20/2016

- Validation of background estimate performed using control region enriched in fake photons (sub-leading photon p_T fails analysis cut)
 - Test satisfactorily passed: data and re-normalized Monte Carlo samples agree within uncertainties

4/20/2016

- Monte Carlo $W_{\gamma\gamma}$ sample split between ISR- and FSR-enhanced samples
 - Clear distinction in $m(I,v,\gamma)$ vs. m(I,v) plane
- FSR diagrams dominate the cross section, but TGC and QGC appear predominantly in ISR-enhanced sample
 - Separation of MC signal important to guarantee that phase-space sensitive to TGC and QGC is well sampled

Correction to Truth Level

- Each cross section is measured in a *fiducial* region
 - $C_{V\gamma\gamma}$ corrects for efficiencies and geometric acceptance
- The fiducial region is defined by cuts as similar as possible to the analysis selection cuts
 - This allows to minimize the theory uncertainties on the cross-section measurement

 $\sigma \propto 1/$

data

v_{recc}

trigger

#MC W/Z after fiducial cuts on truth quantities

4/20/2016

A. Belloni :: HEP Seminar - University of Virginia

lata

reco

Candidate Selection – $W\gamma\gamma$

- Analysis cuts enhance the fraction of signal events
 - Lepton transverse momentum
 - Lepton isolation
 - Sum of energy in ∆R cone around lepton
 - Photon transverse momentum
 - Transverse mass m_T
- Events surviving selection are used to measure cross section
 - "Cut & count" analysis

$$m_{\rm T} = \sqrt{2 \cdot p_{\rm T}^{\ell} \cdot E_{\rm T}^{\rm miss} \left(1 - \cos(\phi_{\ell} - \phi_{E_{\rm T}^{\rm miss}})\right)}$$

4/20/2016

A. Belloni :: HEP Seminar - University of Virginia

1

- Cleaner sample: requiring two well-reconstructed leptons removes most backgrounds
- Main background: Z+jets where one (or two) jets are reconstructed as a photon

• Putting together observation in data, background estimates, and acceptance corrections, we obtain: $-\sigma^{(fid)}(pp \rightarrow W\gamma\gamma) \bullet B.R.(W \rightarrow \mu\nu) = 6.0 \pm 1.8^{(stat)} \pm 2.3^{(syst)} \pm 0.2^{(lumi)} \text{ fb}$ $-\sigma^{(fid)}(pp \rightarrow Z\gamma\gamma) \bullet B.R.(Z \rightarrow II) = 12.7 \pm 1.4^{(stat)} \pm 1.8^{(syst)} \pm 0.3^{(lumi)} \text{ fb}$

QGC Framework

 Effective Field Theory (EFT) provides a method to express the contribution of anomalous QGC to the SM Lagrangian

$$\mathcal{L}_{aQGC} = \mathcal{L}_{SM} + \sum_{i} \frac{f_i}{\Lambda^4} \mathcal{O}_i + \dots$$

- O_i is a dimension-8 operator: it is the lowest order at which we can have anomalous QGC without anomalous TGC (not seen in data so far)
- Among the 14 operators that contribute to the WWγγ vertex, our analysis is sensitive to five of them
 - Largest sensitivity offered by events with leading photon p_T >70GeV, and both photons reconstructed in the CMS barrel calorimeter

Effect of anomalous QGC stronger at high Q²: expect improved sensitivity in 13TeV data analyses

QGC Limits

- Likelihood ratio used as test statistic
 - Distributed as a χ^2 with one degree of freedom
- Expected limits indicate how sensitive analysis is
 - They indicate which limit we could set if data agreed with SM prediction
- Small excess over SM prediction observed in data
 - Observed limits are weaker than expected

Standard Model (almost) excluded at 1σ!

Summary – $\sigma \bullet B.R.$

CMS

Definition of $W^{\pm}\gamma\gamma$ Fiducial Region

 $\begin{array}{l} p_{\mathrm{T}}^{\gamma} > 25 \, \mathrm{GeV}, \, |\eta^{\gamma}| < 2.5\\ p_{\mathrm{T}}^{\ell} > 25 \, \mathrm{GeV}, \, |\eta^{\ell}| < 2.5\\ \end{array}$ Exactly one candidate muon and two candidate photons $m_{\mathrm{T}}(\ell, \nu(\mathrm{s})) > 40 \, \mathrm{GeV}\\ \Delta R(\gamma, \gamma) > 0.4 \, \mathrm{and} \, \Delta R(\gamma, \ell) > 0.4 \end{array}$

Definition of $Z\gamma\gamma$ Fiducial Region

 $\begin{array}{l} p_{\rm T}^{\gamma} > 15 \, {\rm GeV}, \ |\eta^{\gamma}| < 2.5 \\ p_{\rm T}^{\ell} > 10 \, {\rm GeV}, \ |\eta^{\ell}| < 2.5 \end{array}$

Exactly two candidate leptons and two candidate photons lead $p_{\rm T}^{\ell} > 20 \,{\rm GeV}$ $M_{\ell\ell} > 40 \,{\rm GeV}$ $\Delta R(\gamma, \gamma) > 0.4, \, \Delta R(\gamma, \ell) > 0.4, \, {\rm and} \, \Delta R(\ell, \ell) > 0.4$

 $\sigma^{(\text{fid, exp})}(W\gamma\gamma) \bullet B.R. = 6.0 \pm 1.8 \pm 2.3 \pm 0.2 \text{ fb}$ $\sigma^{(\text{fid, theory NLO})}(W\gamma\gamma) \bullet B.R. = 4.76 \pm 0.53 \text{ fb}$ $\sigma^{(\text{fid, exp})}(Z\gamma\gamma) \bullet B.R. = 12.7 \pm 1.4 \pm 1.8 \pm 0.3 \text{ fb}$ $\sigma^{(\text{fid, theory NLO})}(Z\gamma\gamma) \bullet B.R. = 12.95 \pm 1.47 \text{ fb}$ A Dellering UED Consistent of Vincinia

4/20/2016

Expected Limits (TeV^{-4})

 $-30.5 < \frac{f_{T0}}{4} < 31.1$

 $-36.9 < \frac{f_{T1}}{4} < 37.5$

 $-83.2 < \frac{f_{T2}}{\sqrt{4}} < 83.2$

 $-623 < \frac{f_{M2}}{M^4} < 603$

 $-1080 < \frac{f_{M3}}{M^4} < 1110$

Observed Limits (TeV^{-4})

 $-37.5 < \frac{f_{T0}}{\Lambda^4} < 38.1$

 $-46.1 < \frac{f_{T1}}{\Lambda^4} < 46.9$

 $-103 < \frac{f_{T2}}{\sqrt{4}} < 103$

 $-751 < \frac{f_{M2}}{\Lambda^4} < 729$

 $-1290 < \frac{f_{M3}}{4} < 1340$

Summary – aQGC

- Expected limits
 - Define sensitivity of analysis
- Observed limits
 - Worse than expected due to up fluctuation of data yield vs. prediction
- Comparison with other measurements (f_{T0}/Λ^4) :
 - Wγγ (ATLAS): (-16,16)

$$- Z\gamma \rightarrow WW: (-3.8, 3.4)$$

Note: CMS Wyy uses only muon channel

4/20/2016

Calorimetry in 2025-2035

4/20/2016

- The CMS Hadronic calorimeter uses plastic scintillator as active material
 - It is know that radiation breaks the plastic and creates "color centers" which absorb scintillation light
- The crucial question is: how long will it take the HCAL to become dark?
 - The lesson from 2012 data: shorter than it was originally thought

After an irradiation of 10krad, we see the light-yield reduction predicted for 1Mrad

How does a Scintillator work?

- An organic scintillator is typically composed of three parts
 - A polymer base (typically PVT, polystyrene, or Silicon-based materials)
 - A primary dopant (~1%)
 - A secondary dopant (~0.05%)
- Particles excite the base, the excitation of the base can migrate to the primary dopant, producing detectable light
 - In crystals, excitons transfer the energy; in liquids, solvent-solvent interactions and collisions
- The secondary dopant shifts the light to longer wavelengths, to make it more easily detected
 - Maximize the overlap with the wavelength range at which photodetectors are most efficient

Effects of radiation:

- Breaks polymer chains and create radicals that absorb UV light
- Damages fluors, reducing their ability to shift light to longer wavelengths

Some parameters to model radiation damage

- Presence of oxygen
- Total irradiation dose and dose rate
- Temperature of irradiation

4/20/2016

Upgrade Timeline

4/20/2016

R & D Directions and Plans

- Identify candidate materials offering improved radiation tolerance
 - Tune dopant concentration
 - Emit at a longer wavelength
- Irradiate materials in different environment, at different total doses and dose rates
 - Radioactive sources (Co-60, Cs-137)
 - LHC beam halo
- Measure light yield with different methods
 - Spectrofluorometers, cosmic rays, radioactive sources (Pu-239: α source)
- Map light-yield reduction as a function of multiple parameters
 - O₂ concentration; total dose; dose rate; temperature; dopant concentration...

UMD Co-60 source

Irradiated plastic scintillator vs. new

4/20/2016

Promising technique to understand effect of radiation on material
 One can excite separately dopants

4/20/2016

α -source Measurements

Compare irradiation of same type of scintillator at different dose rates

The lower the dose rate, the higher the damage

4/20/2016

4/20/2016

Concluding Remarks

- Concluded (?) 8TeV precision measurements
 - First observation of Zyy at hadronic collider
- Already enough data to look for rare processes
 - Electroweak cross-section measurements spanning almost seven orders of magnitude
- Very exciting R&D program to define calorimeters for the next decade(s)
 - First round at systematic study of radiation damage as a function of environment and material characteristics
- Ready to catch any new physics
 - Started collecting more statistics at 13TeV

4/20/2016

Backup

4/20/2016

First pp Collisions in 2009! Disclaimer: this is the ATLAS control room...

4/20/2016

Current aQGC Limits

Mar 2016				ſ		Mar 2016	CMS					
£ 1,4		Channel	Limits	JLdt	VS 0 T-V/		ATLAS		Channel	Limits	∫ <i>L</i> dt	√s
τ _{M,0} /Λ		νν νγ Ζν	[-7.70+01, 8.10+01]	19.3 fb ⁻¹	8 TeV	$f_{T,0}/\Lambda^4$			Wγγ	[-3.8e+01, 3.8e+01]	19.4 fb ⁻¹	8 TeV
		Z r Wv	[-7, 7e+01, 7, 3e+01]	19.7 ID 10.7 fb ⁻¹	8 TeV	1,0	k		Wvv	[-1 6e+01 1 6e+01]	20.2 fb ⁻¹	8 TeV
	· · ·	ee W/W	[-3.3e+01, 3.2e+01]	19.7 ID 19.4 fb ⁻¹	8 TeV				••11 M/V/		20.3 10	o Tev
		$\gamma\gamma \rightarrow WW$	[-1.5e+01, 1.5e+01]	5.1 fb^{-1}	7 TeV			4	vvvγ	[-2.50+01, 2.40+01]	19.3 fb"	8 lev
	H	γγ→WW	[-4.6e+00, 4.6e+00]	19.7 fb ⁻¹	8 TeV		H		Zγ	[-3.8e+00, 3.4e+00]	19.7 fb ⁻¹	8 TeV
$f_{M,1}/\Lambda^4$		ŴVγ	[-1.3e+02, 1.2e+02]	19.3 fb ⁻¹	8 TeV		⊢ —I		Wγ	[-5.4e+00, 5.6e+00]	19.7 fb ⁻¹	8 TeV
ini, i	⊢−−−−− −	Zγ	[-1.9e+02, 1.8e+02]	19.7 fb ⁻¹	8 TeV		F1		ss WW	[-4.2e+00, 4.6e+00]	19.4 fb ⁻¹	8 TeV
	⊢−− 1	Wγ	[-1.2e+02, 1.3e+02]	19.7 fb ⁻¹	8 TeV	£ / A 4			Marar	[4.60,01,4.70,01]	10.110	0 To\/
	FI	ss WW	[-4.4e+01, 4.7e+01]	19.4 fb ⁻¹	8 TeV	I _{T,1} /A			•• <i>?</i> ?	[-4.00+01, 4.70+01]	19.4 10	0160
		γγ→WW	[-5.7e+01, 5.7e+01]	5.1 fb ⁻¹	7 TeV		F-4		Ζγ	[-4.4e+00, 4.4e+00]	19.7 fb ⁻	8 TeV
	[m]	γγ→WW	[-1.7e+01, 1.7e+01]	19.7 fb ⁻¹	8 TeV		H		Wγ	[-3.7e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV
$f_{M,2}/\Lambda^4$		Wγγ	[-2.5e+02, 2.5e+02]	20.3 fb ⁻¹	8 TeV		F-1		ss WW	[-2.1e+00, 2.4e+00]	19.4 fb ⁻¹	8 TeV
	H	Zγ	[-3.2e+01, 3.1e+01]	19.7 fb ⁻¹	8 TeV	f/A ⁴			7v	[-9 9e+00 9 0e+00]	10.7 fb ⁻¹	8 TeV
4	H	ννγ	[-2.6e+01, 2.6e+01]	19.7 fb ⁻	8 leV	'T,2 / 1					13.7 10	0.101
f _{M,3} /Λ*	· · ·	····· ννγγ Ζ	[-4.70+02, 4.40+02]	20.3 fb	8 TeV				vvγ	[-1.10+01, 1.20+01]	19.7 fb	8 I e V
		Zγ	[-5.80+01, 5.90+01]	19.7 fb ⁻¹	8 TeV		FI		ss WW	[-5.9e+00, 7.1e+00]	19.4 fb ⁻¹	8 TeV
f / A 4		 	[-4.3e+01, 4.4e+01]	19.7 fb ⁻¹	8 TeV	$f_{T.5}/\Lambda^4$	н		Wγ	[-3.8e+00, 3.8e+00]	19.7 fb ⁻¹	8 TeV
$\frac{I_{M,4}/\Lambda}{f_{M,4}}$			[-4.00+01, 4.00+01]	19.7 fb ⁻¹		$f_{r,a}/\Lambda^4$	н		Wγ	[-2.8e+00, 3.0e+00]	19 7 fb ⁻¹	8 TeV
$f_{\rm M,5}/\Lambda^4$		W ₂	$[-0.30\pm01, 0.30\pm01]$	19.7 ID 10.7 fb ⁻¹	8 TeV	f / 4			Ma		10.7 fb ⁻¹	9 ToV
'M,6 / 1	· · ·	ee W/W/	[-6.5e+01, 6.3e+01]	19.7 fb ⁻¹	8 TeV	T,7 //			-		19.7 10	orev
f_{MT}/Λ^4		Ψγ	[-1.6e+02, 1.6e+02]	19.7 fb ⁻¹	8 TeV	f _{T,8} / A*	H		Ζγ	[-1.8e+00, 1.8e+00]	19.7 fb ⁻	8 lev
WI,7	. F	ss WW	[-7.0e+01, 6.6e+01]	19.4 fb ⁻¹	8 TeV	$f_{T,9} / \Lambda^4$	н		Zγ	[-4.0e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV
				1500							150	
-	-500 0	500	1000	1500	4	-{	0 0	50		100	150	4
		aQQ	GC Limits @95	% C.L.	[TeV⁻⁴]				aQ	GC Limits @95	% C.L.	[TeV ⁻ 4]
	_		_							_		
	I f	ε /λ4						If	1 \ 4			
	I	M,x″ 1 1						T ,x	11			