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Outline

I Interactions between ultracold Rydberg atoms

I Stark-tuned Förster resonances

I Laser cooling and trapping with magneto-optical trap

I Experimental setup

I Time dependence of resonant energy transfer process and
observation of a catalysis e↵ect in the resonant energy transfer
between 85Rb Rydberg atoms



Rydberg Atoms

I Atoms in the highly excited states

I Large radius and large dipole-moment

I Strong long-range dipole-dipole interactions

I Long radiative lifetime

I Many-body physics and quantum information processing

I Studies of resonant energy transfer interactions



Rydberg atoms

Table: Properties of Rydberg atoms. Adapted from [2].

Property n⇤ dependence
Binding energy n⇤�2

Energy between adjacent states n⇤�3

Ionizing field n⇤�4

Orbital radius n⇤2

Geometrical cross-section n⇤4

Dipole moment n⇤2

Polarizability n⇤7

Radiative lifetime n⇤3



Interaction between Rydberg atoms

Dipole-dipole interaction

!"

R

Atom 1

Atom 2

z
!#

Figure: Schematic diagram of two interacting dipoles separated by a
distance R.
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Interaction between Rydberg atoms
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Figure: Transforming atomic state
basic into pair state basic reveals two
states that are almost degenerate
with a small energy di↵erence 4
called Förster defect.
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Figure: Stark structure of 85Rb showing the
dipole-coupled states of 34s1/2 and 34p3/2
with the dipole matrix element µ1 and 34p3/2
and 35s1/2 with the dipole matrix element
µ2.



Interaction between Rydberg atoms
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Stark-tuned Förster resonances

34p+ 34p ! 34s+ 35s
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Figure: Stark structures of the pair
states. Förster resonances are
observed at the fields where the level
crossings occur.



Laser cooling and trapping
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Figure: Doppler cooling scheme.
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Figure: The principle of
magneto-optical trapping [4].



Laser systems for magneto-optical trap
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Figure: Schematic layout of the laser
systems for magneto-optical trap.
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Laser systems for excitation to Rydberg states
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Figure: The schematic diagram of the
optical setup of the laser systems for
excitation of Rydberg states.
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Laser systems for excitation to Rydberg states
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Figure: The schematic diagram of the
optical setup of the laser systems for
excitation of Rydberg states.



Tuning curve of the commercial dye laser
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Figure: Tuning curve of Continuum
ND6000 laser with Rhodamine 6G
dye.
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the frequency doubling crystal vs. the
input laser energy.



Tunable homebuilt dye laser
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Figure: Schematic drawing of
homebuilt dye laser in
Littman configuration [3].
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Trap loss spectroscopy with fluorescence detection
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Figure: Schematic diagram of the
optical setup for fluorescence
detection.

479 479.5 480 480.5 481 481.50.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Wavelength (nm)
Fl

uo
re

sc
en

ce
 S

ig
na

l (
ar

b.
)

33d  
34d  

35d  36d  
37d  

Figure: Trap loss spectroscopy.



Detection of Rydberg atoms with field ionization

I The potential for the valance electron
of the Rydberg atoms in an external
field, E, in the z direction

V = � 1

|z| + Ez

I It has a saddle point at z = �1/
p
E

with the value of V = �2
p
E.

I Ionization occurs when V is greater
than the binding energy.

I The threshold field for ionization,

E =
1

16n⇤4

MOT beams MOT beams

Rydberg 
excitation 
beams

Rydberg 
excitation 
beams

Field plates Field plates

(b)(a)

Figure: Schematic diagram for the top
view of the two configurations of
electric field plates for detection of
Rydberg states by field ionization
method.



Detection of Rydberg atoms with field ionization
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Figure: Time-resolved signals of
Rydberg states detected by the field
ionization method with plate
separation of ⇠ 4.6 cm.
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Rydberg states detected by the field
ionization method with plate
separation of ⇠ 1.35 cm.



Detection of Rydberg atoms with field ionization
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Figure: Ion detection system before
installation in the vacuum chamber.
(a) The assembly for the channel
electron multiplier. (b) The assembly
of the plate used for field ionization
of Rydberg atoms.

Figure: Geometry of the ion detection
system. The magneto-optical trap
beams enter the central region of the
vacuum chamber through the slots in
the steel plates covered with
transparent nickel mesh.



Detection of Rydberg atoms with field ionization

Test assembly of the ion detection system before installing into the
vacuum chamber.



Detection of Rydberg atoms with field ionization
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Figure: Signals of the 45d state at
various energies of the excitation
pulsed laser beam. The energies from
(a) to (f) are ⇠ 20, 30, 40, 60, 75, and
90 µJ/pulse respectively.
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Experimental timing sequence
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Figure: Experimental timing diagram.



Observation of Stark-tuned Förster resonances

34p+ 34p ! 34s+ 35s
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Figure: Time-resolved signals of Rydberg states for the process
34p3/2 + 34p3/2 ! 34s1/2 + 35s1/2 . The signal in blue is for the resonant
electric field, and the signal in black is for the non-resonant electric field.



Observation of Stark-tuned Förster resonances
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Figure: Stark structures of the pair states.

Table: Calculated electric fields for Förster resonances.

Process Electric field (V/cm)
34p3/2,|1/2| + 34p3/2,|1/2| ! 34s1/2 + 35s1/2 5.83
34p3/2,|3/2| + 34p3/2,|1/2| ! 34s1/2 + 35s1/2 6.16
34p3/2,|3/2| + 34p3/2,|3/2| ! 34s1/2 + 35s1/2 6.53



Observation of Stark-tuned Förster resonances
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Figure: Förster resonance for the
process 34p3/2,|1/2| + 34p3/2,|1/2| !
34s1/2 + 35s1/2. The polarization of
the excitation laser beam is set to be
in the z direction.
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Figure: Förster resonances. The
polarization of the excitation laser
beam is set to be in the x direction.

Resonances observed at 6.3 V/cm,
6.6 V/cm, and 7.1 V/cm.



Catalysis of Stark-tuned interactions

I 34p+ 34p ! 34s+ 35s
Resonant at certain electric fields.

I 34p+ 34s ! 34s+ 34p, and

34p+ 35s ! 35s+ 34p

Resonant for all electric fields.

I Introduce 34d state atoms into the interaction.
An additional always resonant interaction channel

34p+ 34d ! 34d+ 34p



Observation of catalysis of Stark-tuned interactions
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Figure: The signals of Rydberg states 34d, 34p and 34s for the interaction
time of 7µs in the resonant electric field for
34p3/2,|mj |=1/2 + 34p3/2,|mj |=1/2 ! 34s1/2 + 35s1/2. The signal in red is for
the interaction without 34d state Rydberg atoms, and the signal in blue is
for the interaction with 34d state Rydberg atoms included.



Observation of catalysis of Stark-tuned interactions
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Figure: The signals of Rydberg states
34d and 34p for the interaction time
of 7µs in a non-resonant electric field.
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Figure: The signals for 34d state only
for the interaction time of 7µs in the
resonant (blue) and non-resonant
electric field (red).



Interaction time dependence
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Figure: Interaction time dependence
of the 34s state population for
34p3/2,|mj |=1/2 + 34p3/2,|mj |=1/2 !
34s1/2 + 35s1/2. The data in the
symbol ⇥ is for the process without
the 34d state atoms included in the
interaction, and that in symbol ⌥ is
for the process with the 34d atoms in
the interaction.
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Interaction time dependence
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Figure: Interaction time dependence
of the 34s state population for
34p3/2,|mj |=3/2 + 34p3/2,|mj |=1/2 !
34s1/2 + 35s1/2.
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Interaction time dependence
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Figure: Interaction time dependence
of the 34s state population for
34p3/2,|mj |=3/2 + 34p3/2,|mj |=3/2 !
34s1/2 + 35s1/2.
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Models for time dependence of the interaction

34p+ 34p ! 34s+ 35s

Simple models based on models developed by Westermann et al. [8]
Frozen Rydberg gas approximation [1, 5]

Two-atom model
The basis states for the two-atom model are

|ppi,
|ss0i, and
|s0si.

These states are coupled by the dipole-dipole interaction, V
dd

. For
example,

hpp|V
dd

|ss0i = µ1µ2

R3
,

where µ1 = hp|r|si and µ2 = hp|r|s0i are the dipole matrix elements,
and R is the distance between the two atoms.



Models for time dependence of the interaction

To find the time evolution of the fraction of s0 atoms we numerically
solve the time dependent Schrödinger equation.

i~dcj(t)
dt

=
X

k

c
k

(t)H 0
jk

,

where c
j

(t) and c
k

(t) are the time dependent probability amplitudes
for the basis states |�

j

i and |�
k

i respectively, and H 0
jk

= h�
j

|V
dd

|�
k

i.

number of atoms 2 3 4 6 8 10
number of states 3 7 19 141 1107 8953



Interaction time dependence
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The time evolution of the fraction of 34s atoms for each resonant
energy transfer process. The experimental data is scaled to fit to
simulation with the six-atom model.



Interaction time dependence
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Preliminary simulation results with a simple three-atom model with d
state atom placed midway between p state atoms. The matrix
element hp|r|di is set at an arbitrary value for this simulation.



Interaction time dependence

Time(µ s)
0 5 10 15 20 25 30 35 40 45 50

F
ra

ct
io

n
 o

f 
3
4
s 

a
to

m
s

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35 40 45 50
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

Preliminary simulation results with a six-atom model with four d
state atoms placed midway between two p state atoms. The matrix
element hp|r|di is set at an arbitrary value for this simulation.



Summary and outlook

Summary

I Interactions between ultracold Rydberg atoms

I Stark-tuned Förster resonances

I Experimental setup

I Time dependence of resonant energy transfer process and
observation of a catalysis e↵ect in the resonant energy transfer
between 85Rb Rydberg atoms

Outlook

I Develop models with more atoms to simulate the observed
catalysis e↵ect.

I Investigation of the coupling strength dependence of the catalysis
e↵ect with di↵erent states other than 34d state.



Thank you!



Interaction of Rydberg atoms
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Stark structure of Rydberg atoms

Stark E↵ect - atom in an external electric field

H = H
atom

+ Ez

The second-order energy shift

�E
Stark

=
X

nlm 6=n

0
l

0
m

0

|hnlm|Ez|n0l0m0i|2

E
n

0
l

0
m

0 � E
nlm

When the Stark energy shift is comparable to the energy di↵erence to
the next dipole coupled state, the diagonalization of the Hamiltonian
of the atom in the external electric field is necessary.



Rydberg atoms

Rydberg atoms are highly excited atoms.
In 1888 Rydberg discovered that the wavenumbers for di↵erent series
of the observed lines of alkali atoms can be expressed as [2]

⌫
l

= ⌫1l

� R
y

n⇤2 , (1)

where n⇤ = (n� �
nlj

), the constant �
nlj

being quantum defect of the
series l, ⌫1l

is the series limit, and R
y

= 109721.6 cm �1 is the
Rydberg constant.

The energy of a Rydberg state is given by

W = �k2Z2e4m
e

2n⇤2~2 . (2)

Rydberg constant is

R
y

=
k2Z2e4m

e

2~2 , (3)

where k = 1/4⇡✏0, Z is the atomic number, e is the charge of electron,
m

e

is the mass of electron, and ~ is the Planck constant.



Figure: Two-body interaction strength for ground-state Rb atoms, Rb
atoms excited to the 100s level, and ions. [6]
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