

Status of the LUX and LZ dark matter searches

Carter Hall, Univ. of Maryland September 9, 2015

Astrophysical evidence for dark matter

A picture of the universe 400,000 years after the big bang

The cosmic microwave background anisotropy as seen by Planck. 3

In a universe with no dark matter – CMB multipole expansion

CMB multipole expansion as measured by Planck

A picture of the universe 400,000 years after the big bang

The cosmic microwave background isotropy as seen by WMAP (no contrast enhancement).

6

Each dot is a galaxy with hundreds of billions of stars.

Credit: Andrey Kravtsov, KICP, U. Chicago

Neutrinos? – Seem to be too light

Fermilab 95-759

Two problems from particle physics

1) Why is the weak scale so light? → New weak physics? → WIMPs

2) Why no CP violation in QCD ? → Pececi-Quinn symmetry? → Axions

The Milky Way's dark matter halo

- **Typical orbital vel.** = 230 km/sec~ 0.1% speed of light
- Density: ~ $300 \text{ m}_{\text{proton}}$ / liter
 - WIMPs (~100 GeV): 3 per liter
 - Axions (~3 μ eV): 10¹⁷ per liter
- deBroglie wavelength:
 - WIMPs: larger than a nucleus. Coherent scalar scattering on ordinary nuclear matter, $\sigma \sim A^2$
 - Axions: ~100 m, larger than a laboratory. Behaves like a classical field. Resonant conversion in a cavity.
- Production:
 - WIMPs: thermal
 - Axions: athermal

WIMP

WIMPs and Neutrons scatter from the Atomic Nucleus

> Photons and Electrons scatter from the Atomic Electrons

Nuclear recoil spectra for various targets

13

Common radioactive decay here on earth

Shielding is not difficult @ 5 keV

Kinematics provides strong rejection

Simulation of self-shielding in liquid xenon

Liquid Xenon, 200 photons

17

Control backgrounds with a careful screening program

	Unit	Screening Result				
		U238	Th232	Co60	K40	Sc46
PMTs	mBq/PMT	9.5±0.6	2.7±0.3	2.6±0.1	66±2	>
Ti	mBq/kg	<0.18	<0.25	~1 de	/3 of LUX	4.4±0.3*
Cu	mBq/kg			2.1±0.19*	Jign gou	
PTFE	mBq/kg	<3	<			
HDPE	mBq/kg	<0.5	<0.35			
Stainless steel**	mBq/kg			19±1		

**Type 304 stainless steel used in electric field grids *Cosmogenic equilibrium at 1 mile above SL; decays below ground

Control backgrounds with a careful screening program

	Unit	Screening Result					
		U238	Th232	Co60	K40	Sc46	
PMTs	m Bq/PMT	9.5±0.6	<u>2.7±0.3</u>	<u>2.6±0.1</u>	66±2		
Ti	mBq/kg	<0.18	<0.25			4.4±0.3*	
Cu	mBq/kg			2.1±0.19*	Clean titanium		
PTFE	mBq/kg	<3	<		сгус	ostat	
HDPE	mBq/kg	<0.5	<0.35				
Stainless steel**	mBq/kg			19±1			

**Type 304 stainless steel used in electric field grids *Cosmogenic equilibrium at 1 mile above SL; decays below ground

Radioactive isotopes <u>dissolved in the liquid xenon</u> would defeat self-shielding

- Krypton-85 is the most important source of internal radioactivity
- Vendor-supplied xenon contains residual
 krypton at a relative concentration of ~10⁻⁷
- LUX goal: reduce Krypton concentration to $\sim 5 \times 10^{-12}$

Chromatographic Krypton Removal System (a) Case Western (Aug. – Dec. 2012)

Background rejection through nuclear recoil discrimination

• Nuclear recoils vs. electron recoils

Typical Event in LUX

Charge/Light (S2/S1) recoil discrimination in Liquid Xenon

Data from bench-top demonstration experiment at Case Western.

Thermosyphon

The LUX Detector

Low-radioactivity Titanium Cryostat

370 kg total xenon mass250 kg active liquid xenon118 kg fiducial mass

LUX assembly – 2010 - 2011

370 kg of liquid xenon

Sanford Underground Research Facility, Lead, South Dakota

Ray Davis – Homestake Solar Neutrino Experiment

Raymond Davis

2002

Dav Home

Davis' neutrino detection apparatus one kilometer underground in the Homestake Gold Mine, Lead, South Dakota. The tank contains 400,000 liters of perchloroethylene.

Davis Cavern @ SURF, September 2009

Davis Cavern @ SURF, Spring 2012

LUX received beneficial occupancy on July 1st, 2012 ³²

On top of the water shield, Sept. 2012

LUX installed in the water tank, Sept. 2012

LUX Run 3 Operations

- Detector cool-down Jan. 2013, Xe condensed mid-Feb. 2013
- 95% Data taking efficiency during WIMP search period (minus storms)
- Waited until after WIMP search data was in-hand before performing the precision tritium calibration

LUX Run 3 – Data Selection

Cut	Explanation	Events Remaining
All Triggers	S2 Trigger >99% for S2 _{raw} >200 phe	83,673,413
Detector Stability	Cut periods of excursion for Xe Gas Pressure, Xe Liquid Level, Grid Voltages	82,918,901
Single Scatter Events	Identification of S1 and S2. Single Scatter cut.	6,585,686
S1 energy	Accept 2-30 phe (energy ~ 0.9-5.3 keVee, ~3-18 keVnr)	26,824
S2 energy	Accept 200-3300 phe (>8 extracted electrons) Removes single electron / small S2 edge events	20,989
S2 Single Electron Quiet Cut	Cut if >100 phe outside S1+S2 identified +/-0.5 ms around trigger (0.8% drop in livetime)	19,796
Drift Time Cut away from grids	Cutting away from cathode and gate regions, 60 < drift time < 324 us	8731
Fiducial Volume (R,Z)t cut	Radius < 18 cm, 38 < drift time < 305 us, 118 kg fiducial	160
LUX fiducial volume cut – 118 kg

External calibration sources: ¹³⁷Cs & neutrons (AmBe & ²⁵²Cf)

Calibration source guide tubes

Self-shielding makes external gamma sources mostly ineffectual

Tritium: an ideal electron-recoil band calibration source

- Single Scatter events
- Q = 18.6 keV
- Mean energy: 5 keV
- Peak energy: 3 keV
- Bare tritium diffuses quickly into detector components.
- Use tritiated methane instead.

н

Tritium event locations in LUX – August 2013

Charge vs Light from tritium in LUX at 170 V/cm

9/9/15

Tritium combined energy spectrum

115,000 fiducial tritium events December 2013 tritium injection

LUX detector threshold from tritium

LUX electron recoil band from tritium

115,000 fiducial tritium events December 2013 tritium injection

9/9/15

Liquid xenon charge and light yields vs energy

LUX Preliminary

170 V/cm

9/9/15

Electron-recoil and nuclear-recoil calibration data

low S2s

LUX WIMP search data

Simulated 8.6 GeV WIMP, $\sigma = 1.9 \text{ x} 10^{-41} \text{ cm}^2$

LUX 90% C.L. exclusion limits – low mass

LUX 90% C.L. exclusion limits – high mass

Scale-up LUX fiducial mass by 50

LZ = LUX + ZEPLIN

University of Alabama University at Albany SUNY Berkeley Lab (LBNL) University of California, Berkeley **Brookhaven National Laboratory Brown University** University of California, Davis Fermi National Accelerator Laboratory Kavli Institute for Particle Astrophysics & Cosmology Lawrence Livermore National Laboratory University of Maryland University of Michigan Northwestern University University of Rochester University of California, Santa Barbara University of South Dakota South Dakota School of Mines & Technology South Dakota Science and Technology Authority **SLAC National Accelerator Laboratory** Texas A&M Washington University University of Wisconsin 53 Yale University

31 institutions currentlyAbout 180 peopleContinuing to expand collaboration

LIP Coimbra (Portugal) MEPhI (Russia) Edinburgh University (UK) University of Liverpool (UK) Imperial College London (UK) University College London (UK) University of Oxford (UK) STFC Rutherford Appleton Laboratories (UK) University of Sheffield (UK)

Time Evolution

Timeline

Year	Month	Activity		
2012	March	LZ (LUX-ZEPLIN) collaboration formed		
	May	First Collaboration Meeting		
	September	DOE CD-0 for G2 dark matter experiments		
2013	November	LZ R&D report submitted		
2014	July	LZ Project selected in US and UK		
2015	April	DOE CD-1/3a approval, similar in UK Begin long-lead procurements(Xe, PMT, cryostat		
2016	April	DOE CD-2/3b approval, baseline, all fab starts		
2017	June	Begin preparations for surface assembly @ SURF		
2018	July	Begin underground installation		
2019	Feb	Begin commissioning		

WIMP discovery limits – How low can we go?

WIMP discovery limits – How low can we go?

Coherent neutrino scattering sets fundamental constraints due to:

- statistical fluctuations
- theoretical uncertainty on rates

PHYSICAL REVIEW D 89, 023524 (2014)

From Billard, Strigari, Figueroa-Feliciano, arXiv:1307.5458

The LZ collaboration

Thank you!

Light and Charge Yields

- Modeled using the Noble Element Simulation Technique (NEST), based on the canon of existing experimental data.
- Artificial cutoff in light and charge yields assumed below 3 keVnr, to be conservative.
- Includes E field quenching of light signal (77-82% compared to zero field)
- Charge yield: 26 phe/e-

63

LUX detector threshold translated to recoil energy

LUX PMTs

- 122 x 2" diameter R8778 Hamamatsu
- U/Th 10/2 mBq/PMT
- Demonstrated QE: average=33%, max 39% at 175 nm
- U/Th content ~ 9/3 mBq/PMT

LUX Calibrations – ^{83m}Kr

- ⁸³Rb produces ^{83m}Kr when it decays; this krypton gas can then be flushed into the LUX gas system to calibrate the detector as a function of position.
- Provides reliable, efficient, homogeneous calibration of both S1 and S2 signals, which then decays away in a few hours, restoring low-background operation.

Bonus: tomography of Xe flow

^{83m}Kr source (⁸³Rb coated on charcoal, within xenon gas plumbing)

Uranium-238 decay chain

LUX Run 3 – Background Levels

ER < 5 keVee in 118 kg

> Log10 (DRUee)

			50
Background Component	Source	10 ⁻³ x evts/keVee/kg/day	45 40
Gamma-rays	Internal Components including PMTS (80%), Cryostat, Teflon	1.8 ± 0.2 _{stat} ± 0.3 _{sys}	35 30 [cm] 30 25
¹²⁷ Xe (36.4 day half-life)	Cosmogenic 0.87 -> 0.28 during run	$0.5 \pm 0.02_{stat} \pm 0.1_{sys}$	20 15
²¹⁴ Pb	²²² Rn	0.11-0.22 _(90% CL)	10
⁸⁵ Kr	Reduced from 130 ppb to 3.5 ± 1 ppt	$0.13 \pm 0.07_{sys}$	50
Predicted	Total	$2.6 \pm 0.2_{stat} \pm 0.4_{sys}$	45
Observed	Total	3.1 ± 0.2 _{stat}	40

• Dedicated publication is coming

Xenon purification system and impurity monitoring

Maryland xenon sampling system. COM Fully automated and sensitive to ~

ppt Kr and ~0.1 ppb O₂.

Monitoring of impurities in the LUX xenon with the Maryland sampling system

Enables real-time detection of air leaks, purifier malfunctions, ect.

Removal of 'tritiated methane' from liquid xenon – bench-top experiments @ Maryland, (2012 – 2013)

2 PMTs immersed in liquid xenon, and surrounded by samples of plastics used in LUX

Maryland students Richard Knoche and Jon Balajthy.

LUX 90% C.L. exclusion limits

72
LUX detector threshold vs S1

LUX electron recoil discrimination

WIMP discovery limits – How low can we go?

Coherent neutrino scattering sets constraints due to:

- statistical fluctuations
- theoretical uncertainty on rates

From Billard, Strigari, Figueroa-Feliciano, arXiv:1307.5458

LUX Run 3 – Background Levels

Full gamma spectrum, excluding region ±2 cm from top/ bottom grids

ADMX - The Axion Dark Matter eXperiment

- Conversion of axions into EM radiation via the inverse Primakoff effect
- Use strong static magnetic field to induce $a \rightarrow \gamma$.
- Microwave cavity has a tunable resonant frequency. $Q \sim 10^5$
- Axion conversion is resonantly enhanced when m_a ~ hv of cavity.
- Measure total microwave power with RF receiver.

 $g_{a\gamma\gamma}$

Microwave cavity, ~0.5 m x 1.5 m

What would an axion look like in ADMX?

UCLA 27Feb14 LJR 21

Leslie Rosenberg, DM 2014 UCLA

Gen 2 ADMX Projected Sensitivity

JV Sloan 12 April, 2015

Jim Sloan (U Washington) – Session J2: Dark Matter IV