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In this talk:

« Two-dimensional lattice model containing square lattice,
triangular lattice, and decoupled chain limits

«Site degrees of freedom are “parafermions”

«Strong evidence for emergent Fibonacci anyon
quasiparticle on isotropic triangular lattice
(and likely “t;-t,” model as well)



Technique used in this talk is
the density matrix renormalization group (DMRG)

Works by “compressing” many-body wavefunction
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DMRG can address wide variety of systems
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Lattice models of ‘anyons’ in two dimensions...



A major goal of 21t century physics:
build a scalable quantum computer

Ingredients:
-Qubits (e.g. a spin 1/2)
-Unitary operations on these qubits

Challenges:
-Stability  (decoherence)
-Usefulness (universal computation?)



Promising approach for dealing with decoherence is
topological quantum computing

In certain topological phases qubit space can be
‘hidden’

N__

two-level system*™

(cf. two spin1/2’s /" ./~ four-level system)

Information stored non-locally:
decoherence protection

*for Majorana fermion case



More quasiparticles —» additional qubits




More quasiparticles —» additional qubits




More quasiparticles —» additional qubits

Qubits can be manipulated by ‘braiding’
quasiparticles



Encouraging progress in engineering such
“non-Abelian anyons”

Microscopic platforms for Majorana zero modes
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Experimental realization?
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V. Mourik et al., Science 336, 1003 (2012). A. Das et al., Nat. Phys. 8, 887 (2012).



New platforms under way for parafermions,
simplest generalization of Majorana fermions

2/3 FQHE
l superconductor l
Clarke, Alicea, and Shtengel, Nat. Commun. 4, 1348 (2013) Barkeshli and Qi, PRX 2, 031013 (2012)
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*also different commutation relations from Majorana



New platforms under way for parafermions,
simplest generalization of Majorana fermions

2/3 FQHE

s ()

superconductor

Clarke, Alicea, and Shtengel, Nat¥e’om -4, 1348 (2013) Barkeshli and Qi, PRX 2, 031013 (2012)

Schemes will continue to improve....

But why pursue them?



Because Majorana fermions & parafermions
insufficient for universal quantum computation




Yet parafermions may hold the key...

This talk:
parafermions could hybridize to yield
Fibonacci anyons
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Unlike parafermion
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Unlike parafermion
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Unlike parafermion

. N_——

3-level system

Fibonacci anyons

- ~ 1,1,2,3,5 level system



More importantly, Fibonacci quasiparticles have
universal braiding

~ T — —
X

enough operations for
quantum computing




Finally, parafermion lattice model just a “crutch”
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“Smeared” limit could be sufficient for Fibonacci*

-

*Barkeshli, Vaezi PRL 113, 236804 (2014). Also see: Liu et al. arxiv:1502.05391; Geraedts et al. arxiv:1502.01340 for negative result




Hybridizing Parafermions /



Warmup #1: parafermion dimer
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Simplest parafermion Hamiltonian

Strongly interacting, despite appearance



Warmup #1: parafermion dimer

t

e—o H-= —§(waTozj + wala;) w=ce

1 J

( J

Hamiltonian (by mapping to ‘clock’ variables):

£/2
—t
t/2

Positive ¢ > 0, unique ground state Y

Negative ¢ < 0, two ground states  _L_

Sign of ¢ important!



Warmup #2: two-leg ladder

I I(t I\t I A &—0 = ¢ (woz,l.t a; + H.c)
s o 2 1~ 1 7

t3

‘Squeezed’ system will ‘point’ us toward
2d Fibonacci phase

Can understand in two limits:
e 11 >> 19,13

e 1o > 11,13



Warmup #2: two-leg ladder
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t1 >> to,13

Parafermions “pair”
along rungs

Remain in trivial gapped phase for small 2,3



Warmup #2: two-leg ladder
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to > 11,13

Parafermions “pair”

\\\‘ diagonally
O Fractionalized 3-fold

degenerate edge state

Remain in topological phase for small t1,13



Warmup #2: two-leg ladder

Phases compete for 1 =~ t2

DMRG results for phase boundary:

t11
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Trivial

| & Topological
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Continuous transition
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Warmup #2: two-leg ladder I IQQI\“I |

t3

Duality argument shows transition exactly at t1 = t2!

Suggestive field theory picture

For t; =t2 =0, t3 >0, each chain described by
‘Z; parafermion’ conformal field theory (CFT):2

1) Zamolodchikov, Fateev Phys. Lett. A 92, 37 (1982).
2) Fendley J. Stat. Mech. (2012) P11020.
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Warmup #2: two-leg ladder I I(t2I\t11 |

t3

Fine tuning 0 < t; =t5 << 1 couples only left mover
of bottom chain to right mover of top chain
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Warmup #2: two-leg ladder I I(t2I\t11 |

i3

Fine tuning 0 < t; =t5 << 1 couples only left mover
of bottom chain to right mover of top chain

Other fields remain gapless,
critical ladder described by single Z; pfn. field theory




Z; parafermion CFT has central charge c=4/5 (=0.8)
Confirmed by DMRG on critical ladder
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Critical t1 = ?2 line will serve as a precursor of
Fibonacci phase in 2d

Trivial '

‘ Topblogical
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Towards Two Dimensions




Upon adding more legs,
critical line could become stable 2d phase
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Upon adding more legs,
critical line could become stable 2d phase
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Why expect this?

Iterating field theory argument for weak ¢ =12 >0
edge modes get separated by macroscopic distance
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Why expect this?

Iterating field theory argument for weak ¢ =12 >0
edge modes get separated by macroscopic distance




Coupled chain picture thus ‘points’ in interesting
direction in parameter space to explore

t1 =1t >0




Presence of chiral gapless edge modes suggests we will
reach a topological phase

Which one?



Edge theory has six primary fields {1,¢,%", 0,07, ¢}

¥ and " are continuum limit of lattice parafermions

Treating ¥ and ' as local leaves two sectors:

{1,2, 97} {e,0,0"} (={1,¢,9"} x¢)

This implies
— two degenerate ground states
= one non-trivial quasiparticle (Fibonacci anyon)

— counting of low ‘energy’ entanglement spectra

This phase called the Fibonacci phase



Prior reasoning based on weakly-coupled chains

Do subleading interactions eventually couple edge modes?
Stable to finite ti,t2?
Does Fibonacci phase persist to isotropic point t1 = to = t3?

Stability for t1 #to ?

Approach isotropic t; = ts = t3 limit non-perturbatively
with DMRG on cylinders



Two-dimensional results: Fibonacci



Line of attack

def
«Gradually increase 11 =2 =t (t3

and number of legs N, = 4,6,8,10

« Apply DMRG to infinitely long cylinders (iDMRQG)

1)



Line of attack

def
«Gradually increase t1 = 12 =t (t3=1)

and number of legs N, = 4,6,8,10

« Apply DMRG to infinitely long cylinders (iDMRQG)



Immediately see two quasi-degenerate ground states

Energy splitting of ground states versus t; for N, = 4:
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For small ¢, = 0.2, y- correlation length apparently
less than circumference of N, =4 cylinder

Seeing two-dimensional topological states?
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Q:

How to observe physics with no local order parameter?

How to distinguish degenerate ground states?

A:

Entanglement entropy and entanglement ‘spectrum’
by ‘cutting’ the wavefunction




“Entanglement spectrum” is set of probabilities for
system to be in different states near the cut
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“Entanglement entropy” measures log(
system fluctuates through
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Entanglement spectra of ground states show

sharp degeneracies i
\1,5>:ZO n) > o—En

Spectrum of “virtual edge” has precise agreement with
field theory (Z3 parafermion CFT) of edge spectrum

L 2(x5) L eece B A
N, =4 5 (x4) ) (shifted and rescaled)
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From finite-size scaling, can measure topological
entanglement entropy

Prediction for these topological states?3

Sl — CLNy — M Y1 = 10g(D) ~ (0.6430
S. = aN, — 7. ve = log(D/¢) ~ 0.1617

T

Constrained quantum ~
fluctuations D=\1+¢

o= (1+v5)/2

1) Levin, Wen PRL 96, 110405 (2006)

2) Kitaev, Preskill PRL 96, 110404 (2006)

3) Zhang, Grover, Turner, Oshikawa, Vishwanath,
PRB 85, 235151 (2012)



Topological entanglement entropy, state |1)
(two strengths of ¢, )*

o t; = 0.4, State |1)
e t; =0.6, State |1)

* Up to —log V3 shift



Topological entanglement entropy, state |¢)
(two strengths of ¢, )*

o t; =04, State |¢)
e t; =0.6, State |¢)

10

* Up to —log V3 shift



Topological entanglement entropy shows
completeness of ground states

Y Ve e M 4T e
Exact log D =~ 0.6430|log(D/p) ~ 0.1617 1
t; = 0.4% 0.6235 0.1393 1.0442
t, =0.4° 0.6306 0.1538 1.0186
t. =0.6 0.6498 0.1562 1.0043

T

All ground states accounted for

*Ny=4,6,8 fitted
b
Only Ny=4,6, fitted



Approach isotropic limit on larger cylinders,
energy splitting:
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Fibonacci phase at isotropic triangular lattice
and beyond



Strong evidence that isotropic triangular lattice of
Z; parafermions lies deep within Fibonacci phase

Weakly-coupled wires approach
safely guided us deep into gapped,
topological phase




Initial results for anisotropic square lattice
yield no evidence of Fibonacci phase

Different phase?

—
E E E\t
- - L U1
—— —



Adiabatically move toward square lattice

o fix value of ;
o gradually reduce ¢2 to zero
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Measure entanglement entropy along these lines



Observe peaks in entanglement entropy

Results for N, =8  (largest)
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Empirically fit peaks to quadratic to estimate location



Combining results for N, =4,6,8

Peak locations:
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RG argument predicts critical line along

tQC — tlc — C(t2c + tlc)8/5
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Transforming N, = 8 fit under all permutations of
t1,t2,13 gives estimate for phase boundary

|
|

(tla t27 t3)

A lIsotropic triangular point
O Isotropic square point



Square lattice in different phase,
but direct attack not useful

Two degen. ground states, but large finite-size effects

Energy splitting:

0.015

0.000 ~
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A lIsotropic triangular point

t=(t1,12,t3) O Isotropic square point



So we attacked from limit of decoupled chains
with negative-sign of interactions

t=(0,-1,0)

™ t'=(1,0,0)

0,0,1) -

/t:(

F: (tla t27 t3)

Similar coupled chain argument + DMRG numerics
finds topological phase but no Fibonacci anyon



Wrap up




In this talk, showed that an isotropic,
next-neighbor model of coupled parafermions
realizes a highly non-trivial 2D phase (Fibonacci phase)

Could guide search for ‘smeared out’ limit of such

a model, for example
«uniform superconductor coupled to 2/3 fractional QHE
«coupled fractional QHE bilayers

2/3 FQHE

SUpCI'COIl[HCtOI’




More generally,
weakly-coupled chain analytics

+ DMRG style numerics

= fruitful approach for discovering simple
lattice models deep in interesting phases

Other short-range lattice models for topological phases?

Useful for finding 2D phases without
gapless edges?



“Beyond DMRG” methods are coming 2—

L:R

Poilblanc, J. Stat. Mech. P10026 (2(

Efficient schemes for contracting / optimizing
infinite 2D variational wavefunctions
(so called Tensor Product States / PEPS)?

Known how to write topological states as simple tensor
product states...

Study proximate phases by adding small number of
variational parameters

1) Evenbly, Vidal 1412.0732 (2014)
2) Lubasch, Cirac, Banuls, PRB 90, 064425 (2014)



Summary

e Isotropic triangular lattice of (Z;) parafermions
lies deep within Fibonacci phase

e Isotropic square lattice likely hosts a different
(Abelian) topological phase

« Powerful combination of coupled-chain analytics
+ DMRG numerics



