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In this talk:

t1

t2

t3

•Two-dimensional lattice model containing square lattice, 
triangular lattice, and decoupled chain limits

•Site degrees of freedom are “parafermions”

•Strong evidence for emergent Fibonacci anyon 
quasiparticle on isotropic triangular lattice 

  (and likely “t1-t2” model as well)



Technique used in this talk is 
the density matrix renormalization group (DMRG)

Works by “compressing” many-body wavefunction
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DMRG can address wide variety of systems
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Frustrated magnets 
Infinite, finite T 
triangular lattice  
Heisenberg model:

Fermions 
e.g. continuum 1d 
systems

0

0.1

0.2

0.3

0.4

E
le

ct
ro

n
 D

en
si

ty

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60
x

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

External Potential v(x)

Exact Kohn-Sham Potential v
s
(x)

(a) (b)

Lattice models of ‘anyons’ in two dimensions...



A major goal of 21st century physics:  
build a scalable quantum computer

Ingredients: 
   -Qubits (e.g. a spin 1/2) 
   -Unitary operations on these qubits 

Challenges: 
   -Stability     (decoherence) 
   -Usefulness (universal computation?)

J. Cham, 2014



Promising approach for dealing with decoherence is 
topological quantum computing

In certain topological phases qubit space can be 
‘hidden’

⇠
two-level system*

four-level system)(cf. two spin 1/2’s ⇠

Information stored non-locally: 
decoherence protection

*for Majorana fermion case



⇠

More quasiparticles           additional qubits



⇠

More quasiparticles           additional qubits



⇠ Û

More quasiparticles           additional qubits

Qubits can be manipulated by ‘braiding’ 
quasiparticles



Encouraging progress in engineering such 
“non-Abelian anyons”

Microscopic platforms for Majorana zero modes

Experimental realization?

STOUDENMIRE, ALICEA, STARYKH, AND FISHER PHYSICAL REVIEW B 84, 014503 (2011)
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FIG. 2. (Color online) Even-odd sector ground-state energy
difference !E (upper panel) and entanglement spectrum at the center
bond (lower panel) for a 400-site chain with ! = 0.1, α = 0.3,
Vz = 0.3, and U = 0.1. The topological superconducting phase is
signaled by !E = 0 together with a twofold degeneracy in the bulk
entanglement spectrum.

degenerate.44 Physically, one may think of the entanglement
degeneracy as a precursor of the zero-energy Majorana edge
states that would appear if one were to cut the wire through a
bulk bond.45

In Fig. 2 we display !E (upper panel) and the entanglement
spectrum at the center of a 400-site chain (lower panel)
as a function of µ with ! = 0.1, α = 0.3, Vz = 0.3, and
U = 0.1. The region of parameter space over which there
is an entanglement degeneracy exactly corresponds to the
topological phase with !E = 0.

A third way to detect the topological phase numerically is
by extracting the wave functions of the Majorana edge modes
as follows. Let |0⟩ and |1⟩ be the minimum-energy many-body
wave functions for the wire in the even- and odd- parity sectors.
In the topological phase these are degenerate and can be related
through the Majorana operators γ1,2 that satisfy γ 2

a = 1 and
{γa,γb} = 2δab according to

|1⟩ = eiθγ1|0⟩ = ieiθγ2|0⟩. (9)

Here θ is related to the overall phase factors for |0⟩ and |1⟩,
and can always be absorbed into the definition of (say) |0⟩. Let
us assume the following expansion for γ1,2:

γa =
∑

j

∑

s=↑,↓

(
φ

(a)
js cjs + h.c.

)
, (10)

where φ(a) is the wave function corresponding to Majorana
mode γa . The component φ

(a)
is is given by the anticommutator

{c†is ,γa} = φ
(a)
is . (11)

Using Eqs. (9) and (11), one can show that

φ
(1)
is = eiθ ⟨1|c†is |0⟩ + e−iθ ⟨0|c†is |1⟩, (12)

φ
(2)
is = ieiθ ⟨1|c†is |0⟩ − ie−iθ ⟨0|c†is |1⟩. (13)

Thus measuring ⟨1|c†is |0⟩ and ⟨0|c†is |1⟩ numerically allows one
to back out the precise form of the Majorana wave functions
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FIG. 3. (Color online) Probability distribution p
(a)
j =

∑
s |φ(a)

js |2
of the single-particle Majorana edge state wave functions φ(1) (left
panel) and φ(2) (right panel) for a 400-site chain with ! = 0.1, α =
0.3, Vz = 0.3, U = 0.1, and µ = 0. For these parameter values the
system is in the topological phase (see Fig. 2); thus φ(1,2) are nonzero
only near a single edge of the system and decay exponentially into
the bulk.

when one is in the topological phase. Figure 3 shows an
explicit DMRG calculation of the probability distribution
p

(a)
j =

∑
s |φ(a)

js |2 of the Majorana wave functions, each of
which is indeed localized at a single edge in the topological
phase.

A cautionary remark is in order. The procedure outlined in
the preceding paragraph relied on our assumption in Eq. (10)
that the Majorana operators are purely linear in the lattice
fermion operators cjs and c

†
js . This assumption of course

holds in the noninteracting limit, though there is no obvious
reason why higher-order terms (involving, e.g., three-fermion
components) should be forbidden in an interacting system. One
can in fact write simple exactly solvable interacting models
where the Majorana operators involve only three-fermion
terms. Nevertheless, in all our simulations, including those
with very strong interactions, we empirically find that such
corrections, if present at all in our model, are exceedingly
weak. This can be deduced by computing φ(1) and φ(2)

as outlined above and then computing their normalization.
In all cases we examined, the normalizations deviate from
unity by less than 1%, strongly suggesting that a single-body
decomposition of the Majorana operators is indeed adequate.

Using these methods, one can employ DMRG to determine
the parameter range in which the topological phase exists, for
arbitrary-strength interactions. Figure 4 illustrates the phase
diagram for a 400-site chain with ! = 0.1 and α = 0.3 as
functions of µ and Vz, with three different interaction strengths.
The finite-U phase boundaries were obtained by sweeping Vz

at fixed µ and plotting the value at which !E first vanishes.
Note that the left phase boundary changes very little with
interactions since the electron density is extremely low in that
region of the phase diagram. The minimum of the topological
phase boundary additionally shifts to finite µ; this property
arises because the U repulsion adds a charging energy and
thus effectively renormalizes the chemical potential. Two more
important trends are also evident in the figure: as U increases,
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Figure 6. (a) Basic architecture required to stabilize a topological superconducting state in a 1D spin–orbit-coupled wire. (b) Band
structure for the wire when time-reversal symmetry is present (red and blue curves) and broken by a magnetic field (black curves). When the
chemical potential lies within the field-induced gap at k = 0, the wire appears ‘spinless’. Incorporating the pairing induced by the proximate
superconductor leads to the phase diagram in (c). The endpoints of topological (green) segments of the wire host localized, zero-energy
Majorana modes as shown in (d).

structure in the limit where h = 0. Due to spin–orbit coupling,
the blue and red parabolas respectively correspond to electronic
states whose spin aligns along +y and−y. Clearly no ‘spinless’
regime is possible here—the spectrum always supports an even
number of pairs of Fermi points for any µ. The magnetic field
remedies this problem by lifting the crossing between these
parabolas at k = 0, producing band energies

ϵ±(k) = k2

2m
− µ ±

√
(αk)2 + h2 (67)

sketched by the solid black curves of figure 6(b). When the
Fermi level resides within this field-induced gap (e.g. for µ

shown in the figure) the wire appears ‘spinless’ as desired.
The influence of the superconducting proximity effect on

this band structure can be intuitively understood by focusing
on this ‘spinless’ regime and projecting away the upper
unoccupied band, which is legitimate provided # ≪ h.
Crucially, because of competition from spin–orbit coupling
the magnetic field only partially polarizes electrons in the
remaining lower band as figure 6(b) indicates schematically.
Turning on # weakly compared with h then effectively
p-wave pairs these carriers, driving the wire into a topological
superconducting state that connects smoothly to the weak-
pairing phase of Kitaev’s toy model (see [34] for an explicit
mapping).

More formally, one can proceed as we did for the
topological insulator edge and express the full, unprojected
Hamiltonian in terms of operators ψ†

±(k) that add electrons
with energy ϵ±(k) to the wire. The resulting Hamiltonian
is again given by equations (57) and (58) (but with v →
α and band energies ϵ±(k) from equation (67)), explicitly
demonstrating the intraband p-wave pairing mediated by #.
Furthermore, equation (60) provides the quasiparticle energies
for the wire with proximity-induced pairing and again yields
a gap that vanishes only when h =

√
#2 + µ2. For fields

below this critical value the wire no longer appears ‘spinless’,
resulting in a trivial state, while the topological phase emerges
at higher fields,

h >
√

#2 + µ2 (topological criterion). (68)

Figure 6(c) summarizes the phase diagram for the wire. Note
that this is inverted compared with the topological insulator

edge phase diagram in figure 5(d). This important distinction
arises because the k2/(2m) kinetic energy for the wire causes
an upturn in the lower band of figure 6(b) at large |k|, thereby
either adding or removing one pair of Fermi points relative to
the edge band structure.

Since a wire in its topological phase naturally forms a
boundary with a trivial state (the vacuum), Majorana modes
γ1 and γ2 localize at the wire’s ends when the inequality
in equation (68) holds. Majorana-trapping domain walls
between topological and trivial regions can also form at the
wire’s interior by applying gate voltages to spatially modulate
the chemical potential [34, 117] or by driving supercurrents
through the adjacent superconductor [102] (using the same
mechanism discussed in section 3.2). Figure 6(d) illustrates
an example where four Majoranas form due to a trivial region
in the center of a wire.

It is useful address how one optimizes the 1D wire setup
to streamline the route to experimental realization of this
proposal. This issue is subtle, counterintuitive, and difficult
even to define precisely given several competing factors.
First, how well should the wire hybridize with the parent
superconductor? The naive guess that the hybridization should
ideally be as large as theoretically possible to maximize the
pairing amplitude # imparted to the wire is incorrect. One
practical issue is that exceedingly good contact between the
two subsystems may lead to an enormous influx of electrons
from the superconductor into the wire, pushing the Fermi level
far above the Zeeman-induced gap of figure 6(b) where the
topological phase arises. Restoring the Fermi level to the
desired position by gating will then be complicated by strong
screening from the superconductor.

Reference [93] emphasized a more fundamental issue
related to the optimal hybridization. The topological phase’s
stability is determined not only by the pairing gap induced at
the Fermi momentum, EkF ∝ #, but also the field-induced
gap at zero momentum, E0 = |h −

√
#2 + µ2|, required

to open a ‘spinless’ regime. The minimum excitation gap
for the topological phase is set by the smaller of these two
energies. As reviewed in section 3.1, increasing the tunneling
& between the wire and superconductor indeed enhances #

but simultaneously reduces the Zeeman energy h. From the
effective action in equation (49) we explicitly have h = Zhbare

and # = (1 − Z)#sc, where hbare is the Zeeman energy for

15
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Lutchyn et al. PRL 105, 077001 (2010)

V. Mourik et al., Science 336, 1003 (2012). A. Das et al., Nat. Phys. 8, 887 (2012).

We use InSb nanowires (15), which are
known to have strong spin-orbit interaction and
a large g factor (16). From our earlier quantum-
dot experiments, we extract a spin-orbit length
lso ≈ 200 nm corresponding to a Rashba param-
eter a ≈ 0.2 eV·Å (17). This translates to a spin-
orbit energy scale a2m*/(2ħ2) ≈ 50 meV (m* =
0.015me is the effective electron mass in InSb,
me is the bare electron mass, and ħ is Planck’s
constant h divided by 2p). Importantly, the g
factor in bulk InSb is very large (g ≈ 50), yield-
ing EZ/B ≈ 1.5 meV/T. As shown below, we find
an induced superconducting gap D ≈ 250 meV.
Thus, for m = 0, we expect to enter the topo-
logical phase for B ~ 0.15 T where EZ starts to
exceed D. The energy gap of the topological
superconductor is estimated to be a few kelvin
(17), if we assume a ballistic nanowire. The
topological gap is substantially reduced in a dis-
ordered wire (18, 19). We have measured mean
free paths of ~300 nm in our wires (15), implying
a quasi-ballistic regime in micrometer-long wires.
With these numbers, we expect Majorana zero-
energy states to become observable below 1 K
and around 0.15 T.

A typical sample is shown in Fig. 1B.We first
fabricate a pattern of narrow (50-nm) and wider
(300-nm) gates on a silicon substrate (20). The
gates are covered by a thin Si3N4 dielectric be-
fore we randomly deposit InSb nanowires. Next,
we electrically contact those nanowires that
have landed properly relative to the gates. The
lower contact in Fig. 1B fully covers the bottom
part of the nanowire. We have designed the up-
per contact to only cover half of the top part of
the nanowire, avoiding complete screening of
the underlying gates. This allows us to change
the Fermi energy in the section of the nanowire
(NW) with induced superconductivity. We have
used either a normal (N) or superconducting (S)
material for the lower and upper contacts, re-
sulting in three sample variations: (i) N-NW-S,
(ii) N-NW-N, and (iii) S-NW-S. Here, we dis-
cuss our main results on the N-NW-S devices,
whereas the other two types, serving as control
devices, are described in (20).

To perform spectroscopy on the induced su-
perconductor, we created a tunnel barrier in the
nanowire by applying a negative voltage to a
narrow gate (dark green area in Fig. 1, B and C).
A bias voltage applied externally between the N
and S contacts drops almost completely across
the tunnel barrier. In this setup, the differential
conductance dI/dV at voltage V and current I is
proportional to the density of states at energy E =
eV (where e is the charge on the electron) relative
to the zero-energy dashed line in Fig. 1C. Figure
1D shows an example taken at B = 0. The two
peaks at T250 meV correspond to the peaks in the
quasi-particle density of states of the induced
superconductor, providing a value for the in-
duced gap, D ≈ 250 meV. We generally find a
finite dI/dV in between these gap edges. We ob-
serve pairs of resonances with energies symmetric
around zero bias superimposed on nonresonant

currents throughout the gap region. Symmetric
resonances likely originate from Andreev bound
states (21, 22), whereas nonresonant current in-
dicates that the proximity gap has not fully de-
veloped (23).

Figure 2 summarizes our main result. Figure
2A shows a set of dI/dV-versus-V traces taken at

increasingB fields in 10-mTsteps from 0 (bottom
trace) to 490 mT (top trace), offset for clarity. We
again observe the gap edges at T250 meV. When
we apply a B field between ~100 and ~400 mT
along the nanowire axis, we observe a peak at
V= 0. The peak has an amplitude up to ~0.05·2e2/h
and is clearly discernible from the background
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Fig. 1. (A) Outline of theoretical proposals. (Top) Conceptual device layout with a semiconducting
nanowire in proximity to an s-wave superconductor. An external B field is aligned parallel to the wire.
The Rashba spin-orbit interaction is indicated as an effective magnetic field, Bso, pointing perpendicular
to the nanowire. The red stars indicate the expected locations of a Majorana pair. (Bottom) Energy, E,
versus momentum, k, for a 1D wire with Rashba spin-orbit interaction, which shifts the spin-down band
(blue) to the left and the spin-up band (red) to the right. Blue and red parabolas are for B = 0; black
curves are for B ≠ 0, illustrating the formation of a gap near k = 0 of size Ez (m is the Fermi energy with
m = 0 defined at the crossing of parabolas at k = 0). The superconductor induces pairing between states
of opposite momentum and opposite spin, creating a gap of size D. (B) Implemented version of the-
oretical proposals. Scanning electron microscope image of the device with normal (N) and super-
conducting (S) contacts. The S contact only covers the right part of the nanowire. The underlying gates,
numbered 1 to 4, are covered with a dielectric. [Note that gate 1 connects two gates, and gate 4
connects four narrow gates; see (C).] (C) (Top) Schematic of our device. (Bottom) illustration of energy
states. The green rectangle indicates the tunnel barrier separating the normal part of the nanowire on
the left from the wire section with induced superconducting gap, D. [In (B), the barrier gate is also
shown in green.] An external voltage, V, applied between N and S drops across the tunnel barrier. Red
stars again indicate the idealized locations of the Majorana pair. Only the left Majorana is probed in
this experiment. (D) Example of differential conductance, dI/dV, versus V at B = 0 and 65 mK, serving
as a spectroscopic measurement on the density of states in the nanowire region below the
superconductor. Data are from device 1. The two large peaks, separated by 2D, correspond to the quasi-
particle singularities above the induced gap. Two smaller subgap peaks, indicated by arrows, likely
correspond to Andreev bound states located symmetrically around zero energy. Measurements are
performed in dilution refrigerators with the use of the standard low-frequency lock-in technique
(frequency = 77 Hz, excitation = 3 mV) in the four-terminal (devices 1 and 3) or two-terminal (device 2)
current-voltage geometry.
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Figure 5 | Low-bias conductance as a function of applied magnetic field parallel to the wire axis (type II device, D4), at a higher chemical potential. a, 2D
colour plot. b, Cuts with bias and magnetic field for VRG = 1.224 V. The two shoulder peaks come closer with B but remain split and parallel to each other
over a wide range of magnetic field (60–85 mT). They disappear when the Al superconductivity is quenched. c, Zoom in of the cuts in the interval
65–120 mT, allowing clear observation of the splitting.

potential under the aluminium contact. Indeed, none of the features
observed in type II devices was also observed in two separate type I
devices (D1 and D2).

Measurements were performed on two separate devices of
type II (D3 and D4), and one of them was thermally cycled a
few times. The differential conductance GR was measured between
the superconducting contact and the right contact, keeping the
left side of the wire pinched-off. For a fixed global gate voltage,
VGG, the conductance fluctuated around constant values, exhibiting
rather abrupt jumps at certain values of the local right gate

voltage, VRG—indicating an added subband transport. In the first
subband, conductance diamonds were measured near the pinched-
off regime, indicating distinct Coulomb blockade behaviour. At
higher VRG, a Kondo-correlated behaviour was apparent (with
an odd–even effect), followed by Fabry–Perot oscillation with
an average conductance of G ⇠ 2e2/h (ref. 44). The oscillation
period corresponded approximately to 400 nm, which is of the
order of the bare wire’s segment length (reaffirming the dominant
reflection from two weak barriers at the two end contacts—see
Supplementary Information).

892 NATURE PHYSICS | VOL 8 | DECEMBER 2012 | www.nature.com/naturephysics

Fu, Kane PRB 79, 161408(R) (2009)

Simplified

Oreg et al. arxiv:1003.1145 (2010)



New platforms under way for parafermions,  
simplest generalization of Majorana fermions 

2/3 FQHE 1/3 FQHE bilayer

crossed tunneling region

Clarke, Alicea, and Shtengel, Nat. Commun. 4, 1348 (2013) Barkeshli and Qi, PRX 2, 031013 (2012)
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New platforms under way for parafermions,  
simplest generalization of Majorana fermions 

2/3 FQHE 1/3 FQHE bilayer

crossed tunneling region

Clarke, Alicea, and Shtengel, Nat. Commun. 4, 1348 (2013) Barkeshli and Qi, PRX 2, 031013 (2012)

⇠

⇠

Majorana:

Z3 Parafermion:

2-level system

3-level system

*also different commutation relations from Majorana

*

superconductor



Schemes will continue to improve....

New platforms under way for parafermions,  
simplest generalization of Majorana fermions 

2/3 FQHE

superconductor

1/3 FQHE bilayer

crossed tunneling region

Clarke, Alicea, and Shtengel, Nat. Commun. 4, 1348 (2013) Barkeshli and Qi, PRX 2, 031013 (2012)[Needs d
evelop

ment]

But why pursue them?



Because Majorana fermions & parafermions 
insufficient for universal quantum computation

⇠ Û

⇠ Û

Not enough operations



Yet parafermions may hold the key...

This talk: 
       parafermions could hybridize to yield  
       Fibonacci anyons

t1
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Yet parafermions may hold the key...

This talk: 
       parafermions could hybridize to yield  
       Fibonacci anyons

t1

t2

t3

" "

"



Unlike parafermion

Fibonacci anyons

⇠
3-level system

⇠ 1 level system



Unlike parafermion

Fibonacci anyons

⇠
3-level system

⇠ 1, 1 level system



Unlike parafermion

Fibonacci anyons

⇠
3-level system

⇠ 1, 1, 2 level system



Unlike parafermion

Fibonacci anyons

⇠
3-level system

⇠ 1, 1, 2, 3 level system



Unlike parafermion

Fibonacci anyons

⇠
3-level system

⇠ 1, 1, 2, 3, 5 level system



More importantly, Fibonacci quasiparticles have 
universal braiding

⇠ Û

enough operations for 
quantum computing



Finally, parafermion lattice model just a “crutch”

t1

t2

t3

“Smeared” limit could be sufficient for Fibonacci*

1/3 FQHE bilayer

crossed tunneling region

1/3 FQHE bilayer

uniform tunneling

" ?

*Barkeshli, Vaezi PRL 113, 236804 (2014). Also see: Liu et al. arxiv:1502.05391; Geraedts et al. arxiv:1502.01340 for negative result 



Hybridizing Parafermions



Warmup #1: parafermion dimer

i j

Simplest parafermion Hamiltonian

[ ! = ei2⇡/3 ]H = � t

2
(!↵†

i↵j + !̄↵†
j↵i)

Strongly interacting, despite appearance



Warmup #1: parafermion dimer

i j

Hamiltonian (by mapping to ‘clock’ variables):

[ ! = ei2⇡/3 ]H = � t

2
(!↵†

i↵j + !̄↵†
j↵i)

" #
t/2

�t
t/2

Positive           , unique ground statet > 0

Negative          , two ground statest < 0

Sign of    important!t



Warmup #2: two-leg ladder

5

consists of descendents of {", �, �†} (with scaling dimen-
sions { 2

5

, 1

15

, 1

15

} respectively). The specific counting57 of
states appears in Fig. 11.

Outside of the highly anisotropic, weakly-coupled-
chain limit, the analytical methods used to establish the
preceding results break down entirely. Addressing the
broader phase diagram of the model—particularly the
extent of the Fibonacci phase—is the central goal of this
paper. For this we turn to density matrix renormaliza-
tion group (DMRG) calculations of the ground states of
Eq. (5), primarily on infinitely long cylinders using the
infinite DMRG algorithm proposed in Ref. 58. To imple-
ment the Hamiltonian in Eq. (5) we do not work directly
with parafermion operators [Eqs. (1)–(2)]. Instead, fol-
lowing Appendix B we map the parafermion degrees of
freedom to Z

3

clock variables, which provides a much
more convenient (but formally equivalent) representation
for numerics.

It is worth noting some technical features of the model
in Eq. (5) that facilitate our DMRG studies. Retain-
ing all possible first- and second-neighbor interchain cou-
plings in a square-lattice arrangement of the parafermion
sites would lead to a one-dimensional Hamiltonian (as
seen by the DMRG algorithm) with interactions up to
a range d

max

= 2N
y

, where N
y

is the circumference of
the quasi-2D cylinder used for the simulation. In con-
trast, the pattern of triangular lattice couplings we study
here (Fig. 1) gives a one-dimensional Hamiltonian with
a maximum range scaling only as d

max

= N
y

. Addition-
ally, as we discuss in the next section, the two-chain limit
(N

y

= 2) of the triangular model with open y-boundary
conditions is self-dual for a certain choice of parameters.
Appealing to self-duality allows us to exactly determine
the location of an important line of critical points that
roughly represents a remnant of the Fibonacci phase com-
pressed into a two-chain system. Finally, the properties
of the bona fide 2D Fibonacci phase enumerated above
provide sharp numerical fingerprints that we can use to
track the phase diagram in our multi-chain simulations
(N

y

> 2), which we describe in Sec. IV.

III. TWO-CHAIN LIMIT

Before considering the model Eq. (5) on multi-leg cylin-
ders, it is helpful to understand the limit of only two
coupled chains with open boundary conditions in the y
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open boundary conditions along the y direction.
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FIG. 6. Pairing of sites in the ground state for the two-chain
ladder system in the limits of (a) dominant t1 > 0, which
produces a trivial gapped phase, and (b) dominant t2 > 0,
which produces a topological gapped phase with a three-fold
ground-state degeneracy.

direction (see Fig. 5). As we will see this limit already
contains precursors of the 2D Fibonacci phase that we
will uncover later on when studying wider geometries.
Throughout this section we assume t

3

� 0 for simplicity
but consider either sign of t

1,2

.
To understand the phase diagram of the two-chain sys-

tem, first consider the limit where t
1

> 0 greatly exceeds
both t

2

and t
3

. In the extreme case with t
2

= t
3

= 0,
the ground state is found by pairing each parafermion
site with the one directly above or below it, yielding the
trivial product state illustrated in Fig. 6(a). (Saying that
two parafermions ↵

i

and ↵
j

‘pair’ means that they form

an eigenstate of 1

2

(! ↵†
i

↵
j

+ H.c.) with maximal eigen-
value 1.) Because this limit supports a unique ground
state protected by a robust gap, this trivial phase per-
sists upon restoring su�ciently small t

2,3

couplings.
Consider next the limit with t

2

> 0 much larger than t
1

and t
3

. With t
1

= t
3

= 0 the ground state again arises by
pairing sites, but now in the skewed pattern depicted in
Fig. 6(b). Any finite ladder with open boundaries along
the horizontal direction thus contains one unpaired site
at each end—signifying a topologically nontrivial phase.
These two decoupled end sites, taken together, form a
degenerate three-level system. It follows that there are
three degenerate ground states distinguished by their ‘tri-
ality’, defined as

Q =
Y

n

!↵†
2n

↵
2n�1

, (6)

which admits eigenvalues 1, !, or !2. Restoring small,
finite t

1

and t
3

only splits the ground-state degeneracy by
an exponentially small amount in the system size, as the
processes mixing the end states require tunneling across
a macroscopic number of sites. (Note that this argument
applies only to the ground states. The excited states,
strictly three-fold degenerate for t

1

= t
3

= 0, generally
split by an amount decaying only as a power law in the
system size.59)

Intuitively, one expects a 1D phase transition between
the gapped states sketched in Fig. 6 when t

1

and t
2

be-
come comparable. To be more quantitative, we invoke a‘Squeezed’ system will ‘point’ us toward  
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Outside of the highly anisotropic, weakly-coupled-
chain limit, the analytical methods used to establish the
preceding results break down entirely. Addressing the
broader phase diagram of the model—particularly the
extent of the Fibonacci phase—is the central goal of this
paper. For this we turn to density matrix renormaliza-
tion group (DMRG) calculations of the ground states of
Eq. (5), primarily on infinitely long cylinders using the
infinite DMRG algorithm proposed in Ref. 58. To imple-
ment the Hamiltonian in Eq. (5) we do not work directly
with parafermion operators [Eqs. (1)–(2)]. Instead, fol-
lowing Appendix B we map the parafermion degrees of
freedom to Z

3

clock variables, which provides a much
more convenient (but formally equivalent) representation
for numerics.

It is worth noting some technical features of the model
in Eq. (5) that facilitate our DMRG studies. Retain-
ing all possible first- and second-neighbor interchain cou-
plings in a square-lattice arrangement of the parafermion
sites would lead to a one-dimensional Hamiltonian (as
seen by the DMRG algorithm) with interactions up to
a range d

max

= 2N
y

, where N
y

is the circumference of
the quasi-2D cylinder used for the simulation. In con-
trast, the pattern of triangular lattice couplings we study
here (Fig. 1) gives a one-dimensional Hamiltonian with
a maximum range scaling only as d

max

= N
y

. Addition-
ally, as we discuss in the next section, the two-chain limit
(N

y

= 2) of the triangular model with open y-boundary
conditions is self-dual for a certain choice of parameters.
Appealing to self-duality allows us to exactly determine
the location of an important line of critical points that
roughly represents a remnant of the Fibonacci phase com-
pressed into a two-chain system. Finally, the properties
of the bona fide 2D Fibonacci phase enumerated above
provide sharp numerical fingerprints that we can use to
track the phase diagram in our multi-chain simulations
(N

y

> 2), which we describe in Sec. IV.
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Before considering the model Eq. (5) on multi-leg cylin-
ders, it is helpful to understand the limit of only two
coupled chains with open boundary conditions in the y
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FIG. 5. Two-chain limit of the Hamiltonian in Eq. (5), with
open boundary conditions along the y direction.
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FIG. 6. Pairing of sites in the ground state for the two-chain
ladder system in the limits of (a) dominant t1 > 0, which
produces a trivial gapped phase, and (b) dominant t2 > 0,
which produces a topological gapped phase with a three-fold
ground-state degeneracy.

direction (see Fig. 5). As we will see this limit already
contains precursors of the 2D Fibonacci phase that we
will uncover later on when studying wider geometries.
Throughout this section we assume t

3

� 0 for simplicity
but consider either sign of t

1,2

.
To understand the phase diagram of the two-chain sys-

tem, first consider the limit where t
1

> 0 greatly exceeds
both t

2

and t
3

. In the extreme case with t
2

= t
3

= 0,
the ground state is found by pairing each parafermion
site with the one directly above or below it, yielding the
trivial product state illustrated in Fig. 6(a). (Saying that
two parafermions ↵

i

and ↵
j

‘pair’ means that they form

an eigenstate of 1

2

(! ↵†
i

↵
j

+ H.c.) with maximal eigen-
value 1.) Because this limit supports a unique ground
state protected by a robust gap, this trivial phase per-
sists upon restoring su�ciently small t

2,3

couplings.
Consider next the limit with t

2

> 0 much larger than t
1

and t
3

. With t
1

= t
3

= 0 the ground state again arises by
pairing sites, but now in the skewed pattern depicted in
Fig. 6(b). Any finite ladder with open boundaries along
the horizontal direction thus contains one unpaired site
at each end—signifying a topologically nontrivial phase.
These two decoupled end sites, taken together, form a
degenerate three-level system. It follows that there are
three degenerate ground states distinguished by their ‘tri-
ality’, defined as
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↵
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, (6)

which admits eigenvalues 1, !, or !2. Restoring small,
finite t

1

and t
3

only splits the ground-state degeneracy by
an exponentially small amount in the system size, as the
processes mixing the end states require tunneling across
a macroscopic number of sites. (Note that this argument
applies only to the ground states. The excited states,
strictly three-fold degenerate for t

1

= t
3

= 0, generally
split by an amount decaying only as a power law in the
system size.59)

Intuitively, one expects a 1D phase transition between
the gapped states sketched in Fig. 6 when t

1

and t
2

be-
come comparable. To be more quantitative, we invoke a
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Outside of the highly anisotropic, weakly-coupled-
chain limit, the analytical methods used to establish the
preceding results break down entirely. Addressing the
broader phase diagram of the model—particularly the
extent of the Fibonacci phase—is the central goal of this
paper. For this we turn to density matrix renormaliza-
tion group (DMRG) calculations of the ground states of
Eq. (5), primarily on infinitely long cylinders using the
infinite DMRG algorithm proposed in Ref. 58. To imple-
ment the Hamiltonian in Eq. (5) we do not work directly
with parafermion operators [Eqs. (1)–(2)]. Instead, fol-
lowing Appendix B we map the parafermion degrees of
freedom to Z

3

clock variables, which provides a much
more convenient (but formally equivalent) representation
for numerics.

It is worth noting some technical features of the model
in Eq. (5) that facilitate our DMRG studies. Retain-
ing all possible first- and second-neighbor interchain cou-
plings in a square-lattice arrangement of the parafermion
sites would lead to a one-dimensional Hamiltonian (as
seen by the DMRG algorithm) with interactions up to
a range d

max

= 2N
y

, where N
y

is the circumference of
the quasi-2D cylinder used for the simulation. In con-
trast, the pattern of triangular lattice couplings we study
here (Fig. 1) gives a one-dimensional Hamiltonian with
a maximum range scaling only as d

max

= N
y

. Addition-
ally, as we discuss in the next section, the two-chain limit
(N

y

= 2) of the triangular model with open y-boundary
conditions is self-dual for a certain choice of parameters.
Appealing to self-duality allows us to exactly determine
the location of an important line of critical points that
roughly represents a remnant of the Fibonacci phase com-
pressed into a two-chain system. Finally, the properties
of the bona fide 2D Fibonacci phase enumerated above
provide sharp numerical fingerprints that we can use to
track the phase diagram in our multi-chain simulations
(N

y

> 2), which we describe in Sec. IV.
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Before considering the model Eq. (5) on multi-leg cylin-
ders, it is helpful to understand the limit of only two
coupled chains with open boundary conditions in the y
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FIG. 5. Two-chain limit of the Hamiltonian in Eq. (5), with
open boundary conditions along the y direction.
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FIG. 6. Pairing of sites in the ground state for the two-chain
ladder system in the limits of (a) dominant t1 > 0, which
produces a trivial gapped phase, and (b) dominant t2 > 0,
which produces a topological gapped phase with a three-fold
ground-state degeneracy.

direction (see Fig. 5). As we will see this limit already
contains precursors of the 2D Fibonacci phase that we
will uncover later on when studying wider geometries.
Throughout this section we assume t

3

� 0 for simplicity
but consider either sign of t

1,2

.
To understand the phase diagram of the two-chain sys-

tem, first consider the limit where t
1

> 0 greatly exceeds
both t

2

and t
3

. In the extreme case with t
2

= t
3

= 0,
the ground state is found by pairing each parafermion
site with the one directly above or below it, yielding the
trivial product state illustrated in Fig. 6(a). (Saying that
two parafermions ↵

i

and ↵
j

‘pair’ means that they form

an eigenstate of 1

2

(! ↵†
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↵
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+ H.c.) with maximal eigen-
value 1.) Because this limit supports a unique ground
state protected by a robust gap, this trivial phase per-
sists upon restoring su�ciently small t

2,3

couplings.
Consider next the limit with t

2

> 0 much larger than t
1

and t
3

. With t
1

= t
3

= 0 the ground state again arises by
pairing sites, but now in the skewed pattern depicted in
Fig. 6(b). Any finite ladder with open boundaries along
the horizontal direction thus contains one unpaired site
at each end—signifying a topologically nontrivial phase.
These two decoupled end sites, taken together, form a
degenerate three-level system. It follows that there are
three degenerate ground states distinguished by their ‘tri-
ality’, defined as
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, (6)

which admits eigenvalues 1, !, or !2. Restoring small,
finite t
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and t
3

only splits the ground-state degeneracy by
an exponentially small amount in the system size, as the
processes mixing the end states require tunneling across
a macroscopic number of sites. (Note that this argument
applies only to the ground states. The excited states,
strictly three-fold degenerate for t

1

= t
3

= 0, generally
split by an amount decaying only as a power law in the
system size.59)

Intuitively, one expects a 1D phase transition between
the gapped states sketched in Fig. 6 when t

1

and t
2

be-
come comparable. To be more quantitative, we invoke a
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Outside of the highly anisotropic, weakly-coupled-
chain limit, the analytical methods used to establish the
preceding results break down entirely. Addressing the
broader phase diagram of the model—particularly the
extent of the Fibonacci phase—is the central goal of this
paper. For this we turn to density matrix renormaliza-
tion group (DMRG) calculations of the ground states of
Eq. (5), primarily on infinitely long cylinders using the
infinite DMRG algorithm proposed in Ref. 58. To imple-
ment the Hamiltonian in Eq. (5) we do not work directly
with parafermion operators [Eqs. (1)–(2)]. Instead, fol-
lowing Appendix B we map the parafermion degrees of
freedom to Z

3

clock variables, which provides a much
more convenient (but formally equivalent) representation
for numerics.

It is worth noting some technical features of the model
in Eq. (5) that facilitate our DMRG studies. Retain-
ing all possible first- and second-neighbor interchain cou-
plings in a square-lattice arrangement of the parafermion
sites would lead to a one-dimensional Hamiltonian (as
seen by the DMRG algorithm) with interactions up to
a range d

max

= 2N
y

, where N
y

is the circumference of
the quasi-2D cylinder used for the simulation. In con-
trast, the pattern of triangular lattice couplings we study
here (Fig. 1) gives a one-dimensional Hamiltonian with
a maximum range scaling only as d

max

= N
y

. Addition-
ally, as we discuss in the next section, the two-chain limit
(N

y

= 2) of the triangular model with open y-boundary
conditions is self-dual for a certain choice of parameters.
Appealing to self-duality allows us to exactly determine
the location of an important line of critical points that
roughly represents a remnant of the Fibonacci phase com-
pressed into a two-chain system. Finally, the properties
of the bona fide 2D Fibonacci phase enumerated above
provide sharp numerical fingerprints that we can use to
track the phase diagram in our multi-chain simulations
(N

y

> 2), which we describe in Sec. IV.
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Before considering the model Eq. (5) on multi-leg cylin-
ders, it is helpful to understand the limit of only two
coupled chains with open boundary conditions in the y
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FIG. 5. Two-chain limit of the Hamiltonian in Eq. (5), with
open boundary conditions along the y direction.
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FIG. 6. Pairing of sites in the ground state for the two-chain
ladder system in the limits of (a) dominant t1 > 0, which
produces a trivial gapped phase, and (b) dominant t2 > 0,
which produces a topological gapped phase with a three-fold
ground-state degeneracy.

direction (see Fig. 5). As we will see this limit already
contains precursors of the 2D Fibonacci phase that we
will uncover later on when studying wider geometries.
Throughout this section we assume t

3

� 0 for simplicity
but consider either sign of t

1,2

.
To understand the phase diagram of the two-chain sys-

tem, first consider the limit where t
1

> 0 greatly exceeds
both t

2

and t
3

. In the extreme case with t
2

= t
3

= 0,
the ground state is found by pairing each parafermion
site with the one directly above or below it, yielding the
trivial product state illustrated in Fig. 6(a). (Saying that
two parafermions ↵

i

and ↵
j

‘pair’ means that they form

an eigenstate of 1

2

(! ↵†
i

↵
j

+ H.c.) with maximal eigen-
value 1.) Because this limit supports a unique ground
state protected by a robust gap, this trivial phase per-
sists upon restoring su�ciently small t

2,3

couplings.
Consider next the limit with t

2

> 0 much larger than t
1

and t
3

. With t
1

= t
3

= 0 the ground state again arises by
pairing sites, but now in the skewed pattern depicted in
Fig. 6(b). Any finite ladder with open boundaries along
the horizontal direction thus contains one unpaired site
at each end—signifying a topologically nontrivial phase.
These two decoupled end sites, taken together, form a
degenerate three-level system. It follows that there are
three degenerate ground states distinguished by their ‘tri-
ality’, defined as

Q =
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n
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2n

↵
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, (6)

which admits eigenvalues 1, !, or !2. Restoring small,
finite t

1

and t
3

only splits the ground-state degeneracy by
an exponentially small amount in the system size, as the
processes mixing the end states require tunneling across
a macroscopic number of sites. (Note that this argument
applies only to the ground states. The excited states,
strictly three-fold degenerate for t

1

= t
3

= 0, generally
split by an amount decaying only as a power law in the
system size.59)

Intuitively, one expects a 1D phase transition between
the gapped states sketched in Fig. 6 when t
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2

be-
come comparable. To be more quantitative, we invoke aPhases compete for          
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states appears in Fig. 11.

Outside of the highly anisotropic, weakly-coupled-
chain limit, the analytical methods used to establish the
preceding results break down entirely. Addressing the
broader phase diagram of the model—particularly the
extent of the Fibonacci phase—is the central goal of this
paper. For this we turn to density matrix renormaliza-
tion group (DMRG) calculations of the ground states of
Eq. (5), primarily on infinitely long cylinders using the
infinite DMRG algorithm proposed in Ref. 58. To imple-
ment the Hamiltonian in Eq. (5) we do not work directly
with parafermion operators [Eqs. (1)–(2)]. Instead, fol-
lowing Appendix B we map the parafermion degrees of
freedom to Z

3

clock variables, which provides a much
more convenient (but formally equivalent) representation
for numerics.

It is worth noting some technical features of the model
in Eq. (5) that facilitate our DMRG studies. Retain-
ing all possible first- and second-neighbor interchain cou-
plings in a square-lattice arrangement of the parafermion
sites would lead to a one-dimensional Hamiltonian (as
seen by the DMRG algorithm) with interactions up to
a range d

max

= 2N
y

, where N
y

is the circumference of
the quasi-2D cylinder used for the simulation. In con-
trast, the pattern of triangular lattice couplings we study
here (Fig. 1) gives a one-dimensional Hamiltonian with
a maximum range scaling only as d

max

= N
y

. Addition-
ally, as we discuss in the next section, the two-chain limit
(N

y

= 2) of the triangular model with open y-boundary
conditions is self-dual for a certain choice of parameters.
Appealing to self-duality allows us to exactly determine
the location of an important line of critical points that
roughly represents a remnant of the Fibonacci phase com-
pressed into a two-chain system. Finally, the properties
of the bona fide 2D Fibonacci phase enumerated above
provide sharp numerical fingerprints that we can use to
track the phase diagram in our multi-chain simulations
(N

y

> 2), which we describe in Sec. IV.

III. TWO-CHAIN LIMIT

Before considering the model Eq. (5) on multi-leg cylin-
ders, it is helpful to understand the limit of only two
coupled chains with open boundary conditions in the y
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FIG. 5. Two-chain limit of the Hamiltonian in Eq. (5), with
open boundary conditions along the y direction.
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(b)

FIG. 6. Pairing of sites in the ground state for the two-chain
ladder system in the limits of (a) dominant t1 > 0, which
produces a trivial gapped phase, and (b) dominant t2 > 0,
which produces a topological gapped phase with a three-fold
ground-state degeneracy.

direction (see Fig. 5). As we will see this limit already
contains precursors of the 2D Fibonacci phase that we
will uncover later on when studying wider geometries.
Throughout this section we assume t

3

� 0 for simplicity
but consider either sign of t

1,2

.
To understand the phase diagram of the two-chain sys-

tem, first consider the limit where t
1

> 0 greatly exceeds
both t

2

and t
3

. In the extreme case with t
2

= t
3

= 0,
the ground state is found by pairing each parafermion
site with the one directly above or below it, yielding the
trivial product state illustrated in Fig. 6(a). (Saying that
two parafermions ↵

i

and ↵
j

‘pair’ means that they form

an eigenstate of 1

2

(! ↵†
i

↵
j

+ H.c.) with maximal eigen-
value 1.) Because this limit supports a unique ground
state protected by a robust gap, this trivial phase per-
sists upon restoring su�ciently small t

2,3

couplings.
Consider next the limit with t

2

> 0 much larger than t
1

and t
3

. With t
1

= t
3

= 0 the ground state again arises by
pairing sites, but now in the skewed pattern depicted in
Fig. 6(b). Any finite ladder with open boundaries along
the horizontal direction thus contains one unpaired site
at each end—signifying a topologically nontrivial phase.
These two decoupled end sites, taken together, form a
degenerate three-level system. It follows that there are
three degenerate ground states distinguished by their ‘tri-
ality’, defined as

Q =
Y

n

!↵†
2n

↵
2n�1

, (6)

which admits eigenvalues 1, !, or !2. Restoring small,
finite t

1

and t
3

only splits the ground-state degeneracy by
an exponentially small amount in the system size, as the
processes mixing the end states require tunneling across
a macroscopic number of sites. (Note that this argument
applies only to the ground states. The excited states,
strictly three-fold degenerate for t

1

= t
3

= 0, generally
split by an amount decaying only as a power law in the
system size.59)

Intuitively, one expects a 1D phase transition between
the gapped states sketched in Fig. 6 when t

1

and t
2

be-
come comparable. To be more quantitative, we invoke aDuality argument shows transition exactly at             !t1 = t2

t1 = t2 = 0 t3 > 0

1) Zamolodchikov, Fateev Phys. Lett. A 92, 37 (1982). 
2) Fendley J. Stat. Mech. (2012) P11020.
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Outside of the highly anisotropic, weakly-coupled-
chain limit, the analytical methods used to establish the
preceding results break down entirely. Addressing the
broader phase diagram of the model—particularly the
extent of the Fibonacci phase—is the central goal of this
paper. For this we turn to density matrix renormaliza-
tion group (DMRG) calculations of the ground states of
Eq. (5), primarily on infinitely long cylinders using the
infinite DMRG algorithm proposed in Ref. 58. To imple-
ment the Hamiltonian in Eq. (5) we do not work directly
with parafermion operators [Eqs. (1)–(2)]. Instead, fol-
lowing Appendix B we map the parafermion degrees of
freedom to Z
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clock variables, which provides a much
more convenient (but formally equivalent) representation
for numerics.

It is worth noting some technical features of the model
in Eq. (5) that facilitate our DMRG studies. Retain-
ing all possible first- and second-neighbor interchain cou-
plings in a square-lattice arrangement of the parafermion
sites would lead to a one-dimensional Hamiltonian (as
seen by the DMRG algorithm) with interactions up to
a range d
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, where N
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is the circumference of
the quasi-2D cylinder used for the simulation. In con-
trast, the pattern of triangular lattice couplings we study
here (Fig. 1) gives a one-dimensional Hamiltonian with
a maximum range scaling only as d

max
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. Addition-
ally, as we discuss in the next section, the two-chain limit
(N

y

= 2) of the triangular model with open y-boundary
conditions is self-dual for a certain choice of parameters.
Appealing to self-duality allows us to exactly determine
the location of an important line of critical points that
roughly represents a remnant of the Fibonacci phase com-
pressed into a two-chain system. Finally, the properties
of the bona fide 2D Fibonacci phase enumerated above
provide sharp numerical fingerprints that we can use to
track the phase diagram in our multi-chain simulations
(N
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> 2), which we describe in Sec. IV.

III. TWO-CHAIN LIMIT

Before considering the model Eq. (5) on multi-leg cylin-
ders, it is helpful to understand the limit of only two
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FIG. 6. Pairing of sites in the ground state for the two-chain
ladder system in the limits of (a) dominant t1 > 0, which
produces a trivial gapped phase, and (b) dominant t2 > 0,
which produces a topological gapped phase with a three-fold
ground-state degeneracy.

direction (see Fig. 5). As we will see this limit already
contains precursors of the 2D Fibonacci phase that we
will uncover later on when studying wider geometries.
Throughout this section we assume t
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� 0 for simplicity
but consider either sign of t
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.
To understand the phase diagram of the two-chain sys-

tem, first consider the limit where t
1

> 0 greatly exceeds
both t
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and t
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. In the extreme case with t
2

= t
3

= 0,
the ground state is found by pairing each parafermion
site with the one directly above or below it, yielding the
trivial product state illustrated in Fig. 6(a). (Saying that
two parafermions ↵

i

and ↵
j

‘pair’ means that they form

an eigenstate of 1

2

(! ↵†
i

↵
j

+ H.c.) with maximal eigen-
value 1.) Because this limit supports a unique ground
state protected by a robust gap, this trivial phase per-
sists upon restoring su�ciently small t

2,3

couplings.
Consider next the limit with t

2

> 0 much larger than t
1

and t
3

. With t
1

= t
3

= 0 the ground state again arises by
pairing sites, but now in the skewed pattern depicted in
Fig. 6(b). Any finite ladder with open boundaries along
the horizontal direction thus contains one unpaired site
at each end—signifying a topologically nontrivial phase.
These two decoupled end sites, taken together, form a
degenerate three-level system. It follows that there are
three degenerate ground states distinguished by their ‘tri-
ality’, defined as

Q =
Y

n

!↵†
2n

↵
2n�1

, (6)

which admits eigenvalues 1, !, or !2. Restoring small,
finite t

1

and t
3

only splits the ground-state degeneracy by
an exponentially small amount in the system size, as the
processes mixing the end states require tunneling across
a macroscopic number of sites. (Note that this argument
applies only to the ground states. The excited states,
strictly three-fold degenerate for t

1

= t
3

= 0, generally
split by an amount decaying only as a power law in the
system size.59)

Intuitively, one expects a 1D phase transition between
the gapped states sketched in Fig. 6 when t

1

and t
2

be-
come comparable. To be more quantitative, we invoke aDuality argument shows transition exactly at             !t1 = t2

t1 = t2 = 0 t3 > 0

1) Zamolodchikov, Fateev Phys. Lett. A 92, 37 (1982). 
2) Fendley J. Stat. Mech. (2012) P11020.
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consists of descendents of {", �, �†} (with scaling dimen-
sions { 2

5

, 1

15

, 1

15

} respectively). The specific counting57 of
states appears in Fig. 11.

Outside of the highly anisotropic, weakly-coupled-
chain limit, the analytical methods used to establish the
preceding results break down entirely. Addressing the
broader phase diagram of the model—particularly the
extent of the Fibonacci phase—is the central goal of this
paper. For this we turn to density matrix renormaliza-
tion group (DMRG) calculations of the ground states of
Eq. (5), primarily on infinitely long cylinders using the
infinite DMRG algorithm proposed in Ref. 58. To imple-
ment the Hamiltonian in Eq. (5) we do not work directly
with parafermion operators [Eqs. (1)–(2)]. Instead, fol-
lowing Appendix B we map the parafermion degrees of
freedom to Z

3

clock variables, which provides a much
more convenient (but formally equivalent) representation
for numerics.

It is worth noting some technical features of the model
in Eq. (5) that facilitate our DMRG studies. Retain-
ing all possible first- and second-neighbor interchain cou-
plings in a square-lattice arrangement of the parafermion
sites would lead to a one-dimensional Hamiltonian (as
seen by the DMRG algorithm) with interactions up to
a range d

max

= 2N
y

, where N
y

is the circumference of
the quasi-2D cylinder used for the simulation. In con-
trast, the pattern of triangular lattice couplings we study
here (Fig. 1) gives a one-dimensional Hamiltonian with
a maximum range scaling only as d

max

= N
y

. Addition-
ally, as we discuss in the next section, the two-chain limit
(N

y

= 2) of the triangular model with open y-boundary
conditions is self-dual for a certain choice of parameters.
Appealing to self-duality allows us to exactly determine
the location of an important line of critical points that
roughly represents a remnant of the Fibonacci phase com-
pressed into a two-chain system. Finally, the properties
of the bona fide 2D Fibonacci phase enumerated above
provide sharp numerical fingerprints that we can use to
track the phase diagram in our multi-chain simulations
(N

y

> 2), which we describe in Sec. IV.

III. TWO-CHAIN LIMIT

Before considering the model Eq. (5) on multi-leg cylin-
ders, it is helpful to understand the limit of only two
coupled chains with open boundary conditions in the y

t
1

t
2

t
3

FIG. 5. Two-chain limit of the Hamiltonian in Eq. (5), with
open boundary conditions along the y direction.

(a)

(b)

FIG. 6. Pairing of sites in the ground state for the two-chain
ladder system in the limits of (a) dominant t1 > 0, which
produces a trivial gapped phase, and (b) dominant t2 > 0,
which produces a topological gapped phase with a three-fold
ground-state degeneracy.

direction (see Fig. 5). As we will see this limit already
contains precursors of the 2D Fibonacci phase that we
will uncover later on when studying wider geometries.
Throughout this section we assume t

3

� 0 for simplicity
but consider either sign of t

1,2

.
To understand the phase diagram of the two-chain sys-

tem, first consider the limit where t
1

> 0 greatly exceeds
both t

2

and t
3

. In the extreme case with t
2

= t
3

= 0,
the ground state is found by pairing each parafermion
site with the one directly above or below it, yielding the
trivial product state illustrated in Fig. 6(a). (Saying that
two parafermions ↵

i

and ↵
j

‘pair’ means that they form

an eigenstate of 1

2

(! ↵†
i

↵
j

+ H.c.) with maximal eigen-
value 1.) Because this limit supports a unique ground
state protected by a robust gap, this trivial phase per-
sists upon restoring su�ciently small t

2,3

couplings.
Consider next the limit with t

2

> 0 much larger than t
1

and t
3

. With t
1

= t
3

= 0 the ground state again arises by
pairing sites, but now in the skewed pattern depicted in
Fig. 6(b). Any finite ladder with open boundaries along
the horizontal direction thus contains one unpaired site
at each end—signifying a topologically nontrivial phase.
These two decoupled end sites, taken together, form a
degenerate three-level system. It follows that there are
three degenerate ground states distinguished by their ‘tri-
ality’, defined as

Q =
Y

n

!↵†
2n

↵
2n�1

, (6)

which admits eigenvalues 1, !, or !2. Restoring small,
finite t

1

and t
3

only splits the ground-state degeneracy by
an exponentially small amount in the system size, as the
processes mixing the end states require tunneling across
a macroscopic number of sites. (Note that this argument
applies only to the ground states. The excited states,
strictly three-fold degenerate for t

1

= t
3

= 0, generally
split by an amount decaying only as a power law in the
system size.59)

Intuitively, one expects a 1D phase transition between
the gapped states sketched in Fig. 6 when t

1

and t
2

be-
come comparable. To be more quantitative, we invoke a

Fine tuning                              couples only left mover 
of bottom chain to right mover of top chain

0 < t1 = t2 << 1
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which produces a topological gapped phase with a three-fold
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direction (see Fig. 5). As we will see this limit already
contains precursors of the 2D Fibonacci phase that we
will uncover later on when studying wider geometries.
Throughout this section we assume t

3

� 0 for simplicity
but consider either sign of t

1,2

.
To understand the phase diagram of the two-chain sys-

tem, first consider the limit where t
1

> 0 greatly exceeds
both t

2

and t
3

. In the extreme case with t
2

= t
3

= 0,
the ground state is found by pairing each parafermion
site with the one directly above or below it, yielding the
trivial product state illustrated in Fig. 6(a). (Saying that
two parafermions ↵

i

and ↵
j

‘pair’ means that they form

an eigenstate of 1
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(! ↵†
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↵
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+ H.c.) with maximal eigen-
value 1.) Because this limit supports a unique ground
state protected by a robust gap, this trivial phase per-
sists upon restoring su�ciently small t

2,3

couplings.
Consider next the limit with t

2

> 0 much larger than t
1

and t
3

. With t
1

= t
3

= 0 the ground state again arises by
pairing sites, but now in the skewed pattern depicted in
Fig. 6(b). Any finite ladder with open boundaries along
the horizontal direction thus contains one unpaired site
at each end—signifying a topologically nontrivial phase.
These two decoupled end sites, taken together, form a
degenerate three-level system. It follows that there are
three degenerate ground states distinguished by their ‘tri-
ality’, defined as

Q =
Y

n

!↵†
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↵
2n�1

, (6)

which admits eigenvalues 1, !, or !2. Restoring small,
finite t

1

and t
3

only splits the ground-state degeneracy by
an exponentially small amount in the system size, as the
processes mixing the end states require tunneling across
a macroscopic number of sites. (Note that this argument
applies only to the ground states. The excited states,
strictly three-fold degenerate for t

1

= t
3

= 0, generally
split by an amount decaying only as a power law in the
system size.59)

Intuitively, one expects a 1D phase transition between
the gapped states sketched in Fig. 6 when t

1

and t
2

be-
come comparable. To be more quantitative, we invoke a

Fine tuning                              couples only left mover 
of bottom chain to right mover of top chain

Other fields remain gapless,  
critical ladder described by single Z3 pfn. field theory

0 < t1 = t2 << 1



Z3 parafermion CFT has central charge c=4/5 (=0.8)  
Confirmed by DMRG on critical ladder
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Critical              line will serve as a precursor of 
Fibonacci phase in 2d
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Towards Two Dimensions
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Upon adding more legs,  
critical line could become stable 2d phase
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Why expect this?

Iterating field theory argument for weak  
edge modes get separated by macroscopic distance

t1 = t2 > 0
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Why expect this?

Iterating field theory argument for weak  
edge modes get separated by macroscopic distance

t1 = t2 > 0



Coupled chain picture thus ‘points’ in interesting 
direction in parameter space to explore

t1 t2

t1 = t2 > 0



Presence of chiral gapless edge modes suggests we will 
reach a topological phase

Which one?



Edge theory has six primary fields

This implies 
             
            two degenerate ground states  

            one non-trivial quasiparticle (Fibonacci anyon) 
     
            counting of low ‘energy’ entanglement spectra 

=)

{1, , †,�,�†, ✏}

     and      are continuum limit of lattice parafermions   †

Treating      and      as local leaves two sectors:  †

{1, , †} (= {1, , †}⇥ ✏){✏,�,�†}

=)

=)

This phase called the Fibonacci phase



Prior reasoning based on weakly-coupled chains

Approach isotropic                       limit non-perturbatively 
with DMRG on cylinders

t1 = t2 = t3

Do subleading interactions eventually couple edge modes?

Stable to finite            ?t1, t2

Does Fibonacci phase persist to isotropic point                      ?t1 = t2 = t3

Stability for                 ?t1 6= t2



Two-dimensional results: Fibonacci



Line of attack
t1

t2

t3

•Gradually increase  
  and number of legs  

t1 = t2
def
= t?

•Apply DMRG to infinitely long cylinders (iDMRG)

(t3 ⌘ 1)

Ny = 4, 6, 8, 10
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For small                , y- correlation length apparently 
less than circumference of               cylinder
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Ny = 4

Seeing two-dimensional topological states?



Q: 

How to observe physics with no local order parameter?

How to distinguish degenerate ground states?

A: 

Entanglement entropy and entanglement ‘spectrum’ 
by ‘cutting’ the wavefunction

|1i | i"



“Entanglement spectrum” is set of probabilities for  
system to be in different states near the cut

| i =

=
X

n

|ni ⇥ pn ( pn
def
= e�Ẽn)

“Entanglement entropy” measures log(# states) 
system fluctuates through

S = �
X

n

pn log pn



Entanglement spectra of ground states show 
sharp degeneracies

Spectrum of “virtual edge” has precise agreement with 
field theory (Z3 parafermion CFT) of edge spectrum
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From finite-size scaling, can measure topological 
entanglement entropy

S1 = aNy � �1

Prediction for these topological states1,2,3

S" = aNy � �" �" = log(D/�) ' 0.1617

�1 = log(D) ' 0.6430

D =
p
1 + �2

� = (1 +
p
5)/2

1) Levin, Wen PRL 96, 110405 (2006) 
2) Kitaev, Preskill PRL 96, 110404 (2006) 
3) Zhang, Grover, Turner, Oshikawa, Vishwanath, 
    PRB 85, 235151 (2012)

Constrained quantum  
fluctuations
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FIG. 12. Entanglement entropy fits for Ny = 4, 6, 8 cylinders
with two di↵erent interchain couplings t? (with t3 = 1). All
entanglement-entropy values are shifted downward by log

p
3

as explained in the text. The y-intercepts closely match the
topological entanglement entropies �n predicted for the Fi-
bonacci phase.

�1 �" e

�2�1 + e

�2�"

Exact logD ⇡ 0.6430 log(D/') ⇡ 0.1617 1

t? = 0.4a 0.6235 0.1393 1.0442

t? = 0.4b 0.6306 0.1538 1.0186

t? = 0.6 0.6498 0.1562 1.0043

TABLE I. Intercept values extracted from the fits in Fig. 12
for t? = 0.4, 0.6 and t3 = 1. Both agree with the theoretically
predicted topological entanglement entropy shown in the ta-
ble’s first row, and demonstrate that the set of ground states
is complete. (The latter conclusion follows from the fact that
the data in the right column are very close to unity.) For
the t? = 0.4 system we give both (a) the intercepts shown
in Fig. 12 obtained from fitting all three Ny = 4, 6, 8 points
and (b) intercepts obtained from only fitting the Ny = 4, 6
entropies that could be computed more accurately.

��
(2/3)

= � log
p

3. (The unshifted �
n

values turn out
to be negative.) Table I shows that after applying the
shift, the observed �

n

’s for two di↵erent magnitudes of
t? agree very well with the theoretical prediction for the
Fibonacci phase quoted in Sec. II: d

1

= 1, d
"

= ' and
D =

p
1 + '2, where ' = (1 +

p
5)/2 is the golden ratio.

Furthermore, (e�2�1 + e�2�") is very close to unity for
both t? values, allowing us to deduce that the system
admits no further ground states beyond |1i and |"i.

The di↵erence S
"

� S
1

of entanglement entropies for
the ground states has been found to converge more
rapidly as a function of N

y

than linear fits of each in-
dividual S

n

.62 Within the Fibonacci phase, we expect

S
"

� S
1

= ��
"

+ �
1

= log ' ⇡ 0.481 (9)

provided the cylinder size exceeds the correlation length.

FIG. 13. Entanglement entropy di↵erence between the quasi-
degenerate ground states of Ny = 4, 6, 8, 10 cylinders as a
function of interchain coupling t? (with t3 = 1). The hori-
zontal dashed line denotes the thermodynamic-limit predic-
tion log' ⇡ 0.481. Our Ny = 8 and 10 data further indicate
that the Fibonacci phase survives even beyond the isotropic
triangular lattice point in the 2D limit, corroborating the ev-
idence presented in Fig. 10.

The numerical results for S
"

� S
1

in Fig. 13 show good
agreement with this value, especially for larger and/or
more anistropic cylinders which are expected to have the
weakest finite-size e↵ects.

Our numerical evidence regarding the entanglement
entropy, entanglement spectra, and ground-state degen-
eracy together strongly indicate the onset of a Fibonacci
phase over a wide range of parameters.66 These results
not only corroborate analytical findings for the strongly
anisotropic limit with t?/t

3

⌧ 1; quite remarkably,
Figs. 10 and 13 also reveal that the Fibonacci phase per-
sists into the isotropic-triangular-lattice case t?/t

3

= 1
and beyond!

B. Extent of the Fibonacci Phase

The previous subsection reported substantial evidence
that the model in Eq. (5) realizes the Fibonacci phase
along the line t

1

= t
2

⌘ t?, for a wide range of t?/t
3

. In
light of this finding it is interesting to now explore the
extent of the Fibonacci phase for general t

1

, t
2

, t
3

� 0.
To address this question we fix the ratio t

1

/t
3

and then
vary t

2

from 0 to t
1

, thus scanning a ray in parameter
space. Along this line we compute the bipartite entangle-
ment entropy of infinite cylinders, observing clear peaks
in the entropy as a function of t

2

(Fig. 14) that indi-
cate a transition out of the Fibonacci phase (smoothed
into a crossover due to finite-size e↵ects; we provide sup-
porting evidence for this interpretation below). These
peaks are quite broad for systems with t

1

/t
3

⇡ 1 but

Topological entanglement entropy shows 
completeness of ground states

Ny=4,6,8 fitted 
Only Ny=4,6, fitted

a
b

All ground states accounted for
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Strong evidence that isotropic triangular lattice of  
Z3 parafermions lies deep within Fibonacci phase

Weakly-coupled wires approach  
safely guided us deep into gapped, 
topological phase



Initial results for anisotropic square lattice  
yield no evidence of Fibonacci phase 

Different phase?
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Observe peaks in entanglement entropy
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Combining results for Ny = 4, 6, 8
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Square lattice in different phase,  
but direct attack not useful

~t = (t1, t2, t3)
Isotropic triangular point

Isotropic square point
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finds topological phase but no Fibonacci anyon
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Figure 2. (a) Local (rank-5) PEPS tensor. (b) Tensors are placed on a square
lattice wrapped on a cylinder of perimeter Nv and (quasi-) infinite length
Nh ≫ Nv. BL and BR boundary conditions are realized by fixing the virtual
variables going out of the cylinder ends. A bipartition of the cylinder generates
two L and R edges along the cut.

one takes Rs
α,α′;β,β′ = 1 whenever three virtual indices equal 2 and the fourth one equals s

and Rs
α,α′;β,β′ = 0 otherwise. The spinon tensor has only one non-zero element, S1

2,2;2,2 = 1.
The wave function amplitudes are then obtained by contracting all virtual indices (except
the ones at the boundary of the system). Note that the above PEPS ansatz for the Néel
state bears similarities to the one used to describe the honeycomb RVB spin liquid under
an applied magnetic field [19]. However, a crutial difference is that this new ansatz is, by
construction, fully U(1)-invariant in contrast to the spinon-doped RVB state of [19].

Following the usual procedure, I now place the square lattice of tensors on infinite
cylinders with Nv sites in the periodic (vertical) direction as shown in figure 2(b) and use
standard techniques (involving exact tensor contractions and iterations of the transfer
operator) to compute relevant observables. In the PEPS formulation the boundary
conditions BL and BR can be simply set by fixing the virtual states on the bonds ‘sticking
out’ at each cylinder end. For example, open boundary conditions are obtained by setting
the boundary virtual indices to ‘2’. Generalized boundary conditions can be realized as
in figure 2(b) by setting some of the virtual indices on the ends to ‘0’ or ‘1’.

I have computed the (staggered) magnetization mstag and the expectation values of
the spin-1/2 Heisenberg exchange interactions Si · Sj between NN and next-NN sites,
varying γ from zero to large values (to approach the classical Néel state). The data
(normalized as the energy per site of the corresponding Heisenberg model) are displayed
as a function of mstag in figures 3(a) and (b). The NN energy shows a broad minimum
around mstag ∼ 0.35, a value a bit larger than the QMC extrapolation ∼0.307 [2] for the
pure NN quantum AFM. However, (i) the variational energy curve is rather flat around
the minimum and (ii) the minimum energy is within ∼1.5% of the QMC estimate, a
remarkable result considering the simplicity of the 1D family of D = 3 PEPS. Note also
that the minimum energy agrees very well with optimized D = 3 iPEPS [20] and finite
PEPS up to D = 6 [21].

For completeness, I also show the next-NN energy in figure 3(b). In fact, the pure
(critical) RVB state provides the lowest next-NN exchange energy, suggesting the existence
of a transition, upon increasing the next-NN coupling, from the Néel state to a gapless

doi:10.1088/1742-5468/2014/10/P10026 5



In this talk, showed that an isotropic, 
next-neighbor model of  coupled parafermions 
realizes a highly non-trivial 2D phase (Fibonacci phase)

Could guide search for ‘smeared out’ limit of such 
a model, for example 
•uniform superconductor coupled to 2/3 fractional QHE 
•coupled fractional QHE bilayers

2/3 FQHE

superconductor

" ?

1/3 FQHE bilayer

uniform tunneling

" ?



More generally,  
  weakly-coupled chain analytics 
+ DMRG style numerics 
= fruitful approach for discovering simple  
   lattice models deep in interesting phases

Other short-range lattice models for topological phases?

Useful for finding 2D phases without  
gapless edges?

t1

t2

t3



“Beyond DMRG” methods are coming

Efficient schemes for contracting / optimizing 
infinite 2D variational wavefunctions  
(so called Tensor Product States / PEPS)1,2

Known how to write topological states as simple tensor 
product states...

Study proximate phases by adding small number of 
variational parameters
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Figure 2. (a) Local (rank-5) PEPS tensor. (b) Tensors are placed on a square
lattice wrapped on a cylinder of perimeter Nv and (quasi-) infinite length
Nh ≫ Nv. BL and BR boundary conditions are realized by fixing the virtual
variables going out of the cylinder ends. A bipartition of the cylinder generates
two L and R edges along the cut.

one takes Rs
α,α′;β,β′ = 1 whenever three virtual indices equal 2 and the fourth one equals s

and Rs
α,α′;β,β′ = 0 otherwise. The spinon tensor has only one non-zero element, S1

2,2;2,2 = 1.
The wave function amplitudes are then obtained by contracting all virtual indices (except
the ones at the boundary of the system). Note that the above PEPS ansatz for the Néel
state bears similarities to the one used to describe the honeycomb RVB spin liquid under
an applied magnetic field [19]. However, a crutial difference is that this new ansatz is, by
construction, fully U(1)-invariant in contrast to the spinon-doped RVB state of [19].

Following the usual procedure, I now place the square lattice of tensors on infinite
cylinders with Nv sites in the periodic (vertical) direction as shown in figure 2(b) and use
standard techniques (involving exact tensor contractions and iterations of the transfer
operator) to compute relevant observables. In the PEPS formulation the boundary
conditions BL and BR can be simply set by fixing the virtual states on the bonds ‘sticking
out’ at each cylinder end. For example, open boundary conditions are obtained by setting
the boundary virtual indices to ‘2’. Generalized boundary conditions can be realized as
in figure 2(b) by setting some of the virtual indices on the ends to ‘0’ or ‘1’.

I have computed the (staggered) magnetization mstag and the expectation values of
the spin-1/2 Heisenberg exchange interactions Si · Sj between NN and next-NN sites,
varying γ from zero to large values (to approach the classical Néel state). The data
(normalized as the energy per site of the corresponding Heisenberg model) are displayed
as a function of mstag in figures 3(a) and (b). The NN energy shows a broad minimum
around mstag ∼ 0.35, a value a bit larger than the QMC extrapolation ∼0.307 [2] for the
pure NN quantum AFM. However, (i) the variational energy curve is rather flat around
the minimum and (ii) the minimum energy is within ∼1.5% of the QMC estimate, a
remarkable result considering the simplicity of the 1D family of D = 3 PEPS. Note also
that the minimum energy agrees very well with optimized D = 3 iPEPS [20] and finite
PEPS up to D = 6 [21].

For completeness, I also show the next-NN energy in figure 3(b). In fact, the pure
(critical) RVB state provides the lowest next-NN exchange energy, suggesting the existence
of a transition, upon increasing the next-NN coupling, from the Néel state to a gapless
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Summary

•Isotropic triangular lattice of (Z3) parafermions           
lies deep within Fibonacci phase

•Isotropic square lattice likely hosts a different 
(Abelian) topological phase

•Powerful combination of coupled-chain analytics       
+ DMRG numerics


