Problems in human motion planning

Brian Skinner
26 February 2015

Part 1: The interaction law between pedestrians

Applied Motion Lab

What is this?

People!

A. Seyfried, O. Passon, B. Steffen, M. Boltes, T. Rupprecht and W. Klingsch
New insights into pedestrian flow through bottlenecks
arXiv:physics/0702004

Human "particle systems" on a large scale

Human "particle systems" on a large scale

Emergent "particle" behaviors in crowds:

- compression waves
- vortices
- "fingering instability"
- jamming transitions

How seriously can these similarities be taken?

The "social force" model

Social force model for pedestrian dynamics

Dirk Helbing and Péter Molnár
II. Institute of Theoretical Physics, University of Stuttgart, 70550 Stuttgart, Germany
(Received 14 April 1994; revised manuscript received 5 January 1995)
An overdamped "goal force" that pulls pedestrians to their goal:

$$
\overrightarrow{F_{g}}=\frac{1}{\tau}\left(\overrightarrow{v_{g}}-\overrightarrow{v_{i}}\right)
$$

and a repulsive "social force" that keeps pedestrians from colliding:

$$
\vec{F}_{i j}=-\nabla_{r_{i j}} V\left(r_{i j}\right)
$$

What is the interaction law V ?

Helbing and Molnar's guess:

$$
V=V_{0} e^{-r / R}
$$

...the literature has many more "guesses"

Can we measure the pedestrian interaction law?

Start with data:

college campus, sparse unidirectional

college campus, sparse bidirectional

college campus, moderate multidirectional

D

controlled experiment, dense unidirectional

Correlating acceleration with relative position is too hard:

...try a probabilistic description

Pair distribution function

Look for statistical suppression of certain configurations:

$$
g(r)=\frac{\text { Prob. density of pair separation } r}{\text { Prob. density of } r \text { for non - interacting particles }}
$$

Result (from "natural" settings):

Anticipatory interaction

Interaction between people is influenced by anticipation effects:

noticeable acceleration when approaching head-on, even at large separation
no acceleration when walking side-by-side, even at small separation

Define $\tau=$ projected time to collision

Interaction is a function of τ only!

The interaction ${ }^{\prime \prime}$ energy

Define a Boltzmann factor:
$g(\tau) \propto \exp \left[-V(\tau) / " \mathrm{k}_{\mathrm{B}} T^{\prime \prime}\right]$

At small τ, pair interaction produce a strong suppression of $g(\tau)$

$$
V(\tau) \propto \ln [1 / g(\tau)]
$$

Simulating pedestrians

Natural choice for simulating dynamics:

$$
\vec{F}=-\vec{\nabla} U
$$

Simulation reproduces statistical distributions:
...other methods do not:

Simulating pedestrians

Reproduces known relationship between pedestrian density and speed:

Simulations:

Lane formation:

vortices:

arching:

Flocking

What if pedestrians have no "goal force", but only a preferred walking speed?

...Also represents a fast algorithm for large-scale crowd simulation

Part 2: The Price of Anarchy in congestible networks

How do we choose between discrete paths when the transit time depends on what other people are choosing?

How efficient are our choices?

Pigou's example

The "price of anarchy"

How do you optimize the performance of the network?
Look for the minimum of

$$
\langle C\rangle=\frac{x_{1} c_{1}\left(x_{1}\right)+x_{2} c_{2}\left(x_{2}\right)}{10}
$$

$$
\langle C\rangle_{o p t}=7.5
$$

Braess's Paradox

Nash Equilibrium:

$$
\langle C\rangle_{N E}=20
$$

True optimium:

$$
\langle C\rangle_{o p t}=15
$$

Traffic can improve when a road is closed

What if They Closed 42d Street and Nobody Noticed?

By GINA KOLATA
Published: December 25, 1990

ON Earth Day this year, New York City's Transportation Commissioner decided to close 42dEmail Street, which as every New Yorker knows is always congested. "Many predicted it would be PRINT doomsday," said the Commissioner, Lucius J. Riccio. "You didn't need to be a rocket scientist or have a sophisticated computer queuing model to see that this could have been a major problem."

But to everyone's surprise, Earth Day generated no historic traffic jam. Traffic flow actually improved when 42d Street was closed.

San Francisco:

Seoul:

On the road:

PRL 101, 128701 (2008)

Price of Anarchy in Transportation Networks: Efficiency and Optimality Control

Hyejin Youn, ${ }^{1}$ Michael T. Gastner, ${ }^{2,3}$ and Hawoong Jeong ${ }^{1, *}$
${ }^{1}$ Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
${ }^{2}$ Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA
${ }^{3}$ Department of Computer Science, University of New Mexico, Albuquerque, New Mexico 87131, USA (Received 3 January 2008; published 17 September 2008)

Uncoordinated individuals in human society pursuing their personally optimal strategies do not always achieve the social optimum, the most beneficial state to the society as a whole. Instead, strategies form Nash equilibria which are often socially suboptimal. Society, therefore, has to pay a price of anarchy for the lack of coordination among its members. Here we assess this price of anarchy by analyzing the travel times in road networks of several major cities. Our simulation shows that uncoordinated drivers possibly waste a considerable amount of their travel time. Counterintuitively, simply blocking certain streets can partially improve the traffic conditions. We analyze various complex networks and discuss the possibility of similar paradoxes in physics.

In computer networks:

Selfish Routing and the Price of Anarchy

Tim Roughgarden*

January 7, 2006

Figure 4: The second and third Braess graphs. Edges are labeled with their types.

In power transmission:

Braess's paradox in oscillator networks, desynchronization and power outage

Dirk Witthaut ${ }^{1,3}$ and Marc Timme ${ }^{1,2}$
${ }^{1}$ Network Dynamics Group, Max Planck Institute for Dynamics and
Self-Organization (MPIDS), D-37073 Göttingen, Germany
${ }^{2}$ Faculty of Physics, University of Göttingen, D-37077 Gö̈ttinoen Germanv
E-mail: witthaut@ nld.ds.mpg.de
New Journal of Physics 14 (2012) 083036 (16
Received 3 June 2012
Published 29 August 2012
Online at http://www.njp.org/
doi:10.1088/1367-2630/14/8/083036

In health care:

European Journal of Operational Research

Decision Support

Selfish routing in public services

Vincent A. Knight *, Paul R. Harper
School of Mathematics, Cardiff University, Cardiff, UK

ARTICLE INFO

Article history:

Received 8 March 2012
Accepted 2 April 2013
Available online 10 April 2013

Keywords:

Game theory
Queueing theory
Health care
OR in health services

ABSTRACT

It is well observed that individual behaviour can have an effe impact of this behaviour on the economic efficiency of publi we present results concerning the congestion related implica choosing between facilities. The work presented has importa level when considering the effect of allowing individuals to general the introduction of choice in an already inefficient s ducing choice in a system that copes with demand will hav

Fig. 8. Service nodes (coosses) and demand nodes (flags) in Wales.

In sports:

Journal of Quantitative Analysis in Sports

The Price of Anarchy in Basketball
Brian Skinner*

What happens when "congestible" and "incongestible" roads are combined into a lattice?

Pigou's example:

Model:

Every current path has the same number of steps.

What is the POA as a function of p ?

Traffic networks as electrical circuits

Finding the traffic pattern can be mapped onto a problem of electrical circuits:
traffic \rightarrow current, \quad commute time \rightarrow voltage drop

"Kirchoff's Laws":

current in = current out

$$
x_{i}+x_{j}=x_{m}+x_{n}
$$

All paths between A and B have the same voltage drop
$\mathrm{B} \quad c_{1}=c_{2}$

Optimum flow in the circuit model

Optimizing commute time across two paths:

Total commute time:

$$
C=x_{1} c_{1}\left(x_{1}\right)+x_{2} c_{2}\left(x_{2}\right)
$$

Optimize:
$\frac{\partial C}{\partial x_{1}}=\frac{\partial C}{\partial x_{2}} \Rightarrow a_{1}+2 b_{1} x_{1}=a_{2}+2 b_{2} x_{2}$
Circuit analog:

Optimum flow in the circuit model

Optimizing commute time across two paths:

Total commute time:

$$
C=x_{1} c_{1}\left(x_{1}\right)+x_{2} c_{2}\left(x_{2}\right)
$$

Optimize:
$\frac{\partial C}{\partial x_{1}}=\frac{\partial C}{\partial x_{2}} \Rightarrow a_{1}+2 b_{1} x_{1}=a_{2}+2 b_{2} x_{2}$
Circuit analog:

Optimal currents arise when "resistance" is doubled.

A voltage-resistor-diode circuit

All currents must be positive

Circuit elements have diodes:

Must find the configuration of each diode that gives a valid solution of Kirchoff's equations.

Solution is guaranteed to be unique:
There is only one equilibrium, and one optimum.

Numerical procedure

- For a given p, randomly assign the network links
- Map the network onto a battery-resistor-diode circuit

equilibrium:

$=-\sim_{n}^{2} \rightarrow+$
- Search numerically for the correct configuration of diodes and the currents $\left\{x_{i}\right\}$
- Calculate the total commute time:

$$
C=\sum_{\text {roads } i} x_{i} c\left(x_{i}\right)
$$

- Define the "price of anarchy":

$$
P O A=C_{e q} / C_{o p t}
$$

Results: the price of anarchy

network is uniform
$\rightarrow \mathrm{POA}$ is 1

Results: the price of anarchy

At $p=p_{c}$, a single pathway exists connecting system edges

The POA is maximized at the percolation threshold

POA for a 3D lattice

instead of:

Current paths

$p=1$: uniform lattice

same current in every link:

$$
x=1 / 2 L
$$

Commute time:
$C=x \cdot 2 L=1$

Current paths at $p>p_{c}$

percolating network of fast,

$$
x^{\prime} \sim 1 \times\left(\xi_{\perp} / L\right)
$$

$C \sim x^{\prime} L$
Commute time

$$
C \sim \xi_{\perp} \sim\left|p-p_{c}\right|^{-\nu_{\perp}}
$$

is constant at

$$
L \rightarrow \infty
$$

Current paths at $p<p_{c}$

"Holes" in the current path

$p_{\mathrm{c}}<p<1$: small concentration of slow incongestible roads

Showing
all roads with $x>0$

small holes start to open in the current paths

"Holes" in the current path

$p \sim p_{\mathrm{c}}$, equilibrium

Showing
all roads with $x>0$

"Holes" in the current path

 $p \sim p_{\mathrm{c}}$, optimumShowing
all roads
with $x>0$

Current paths

Equilibrium, $p \sim p_{\mathrm{c}}$:
$x / x_{\text {avg }}$

Current paths

Optimum, $p \sim p_{\mathrm{c}}$:
$x / x_{\text {avg }}$

Critical Scaling

In the presence of large "percolation clusters"

$$
\xi \sim\left(p-p_{c}\right)^{-v}
$$

system properties can be written as

$$
P=f(L / \xi)=f\left(\left(p-p_{c}\right) L^{1 / v}\right)
$$

$$
v=v_{\perp}+v_{\|} \approx 2.8
$$

Some open questions:

- Is there a more general connection between percolation and network inefficiency? Can we exploit it to improve networks?
- What happens when the cost functions become nonlinear?
e.g.

- Is user ignorance a good thing or a bad thing?

Conclusions

- Part 1: The interaction "energy" between pedestrians in a crowd is $V \sim 1 /\left(\right.$ time to collision) ${ }^{2}$

- Part 2: The price of anarchy in a model network is maximized at the percolation threshold for congestible links

Thank you.

Reserve Slides

Truncation of the interaction

$V(\tau) \propto\left(1 / \tau^{2}\right) \exp \left[-\tau / \tau_{0}\right]$

velocity-resolved pair distribution

pair distribution for $\tau=\infty$

More videos

Scaling

Scaling

$\xi \sim\left(p-p_{c}\right)^{-v}$

$C / L^{\gamma} \sim f(L / \xi)$
$C / L^{\gamma} \sim f\left(\left(p-p_{c}\right) L^{1 / v}\right)$

Critical exponents in DP

