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Quantum quenches in 2D via arrays of coupled chains 

•  Introduction 
–   many body states with MPS 

–   entanglement and dimension 

• MPS for arrays of coupled chains 

• Time evolution for arrays of coupled 
chains 
– Perturbative limit 

–  ‘Dynamical phase transitions’ 



Representing Many-Body Quantum States!

| i =
X

{�}

c�1···�N |�1 · · ·�N i

dN� = dim(�)N

General many-body state 

Need exponentially many c numbers 
to completely specify state 
 
But typical states we deal with need far fewer 
 
In particular for a simple product state only need 1 

| i = |�1 · · ·�N i



Representing Many-Body Quantum States!

What is an efficient representation between these 
extremes? 
How do we choose which contributions are ‘small’ 
and can be neglected? 
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General Product state 



A bipartite system!

Change basis for A and B using Schmidt (singular value) 
decomposition of state 
 
 
 
Less redundancy and ranks importance of contributions 
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A bipartite system!
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Distribution of singular values gives a measure of entanglement 
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Zero for product state, maximum log(N) for N states 



Matrix Product States!
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Carry out iterative SVD on a 1D system with N sites….. 



Matrix Product States!
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•  Restrict to largest D singular values at each bond 
•  Max independent coefficients for matrix dimension D?  

•  Max entanglement entropy at a bond is given by flat 
distribution of singular values   

(d� � 1)ND2 vs. dN�

logD



Density matrix renormalisation group!

•  Iterative construction and optimisation of MPS with 
energy minimisation for 1D problems 

•  High accuracy, controlled by bond dimension D, (even 
near critical points, e.g. Pollmann et al. PRL 2009) 

 



Density matrix renormalisation group!
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Why does it work?!

Success of MPS methods in 1D relies on, at worst, log 
growth of entanglement 

Bipartite 1D system 

� ���

Holzhey, Larsen & Wilczek 1994, Calabrese & Cardy 2004 
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How do we extend MPS to higher 
dimensions? 

 



How does entanglement entropy behave for D>1?!

Generally an ‘area law’ is expected 

 
 

An exception: massless free fermions in D dimensional cube 
(Gioev and Klich 2006) 
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DMRG in 2D!

MPS methods less efficient in 2D than in 1D 
due to area law growth of entanglement 
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Effective long range interactions 
General problem for tensor methods 
 



Truncated Spectrum Approach DMRG 

 



Bending the area law!

Chain, length R, periodic b.c.s, with 
continuum Hamiltonian that is either 
conformal or integrable 
•  Continuum limit: finite size corrections 

exponential, keep R small 
•  Integrable or conformal: exact spectrum 

and matrix elements known 
•  Use chains as sites in normal 1D DMRG? 
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Bending the area law!
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Bending the area law!

The spectrum of each chain is infinite… 

When can we expect/hope 
to get away with this? 
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However for finite R it is 
discrete, so we can order by 
energy and truncate 



Inspiration from TCSA!

Truncated Conformal Space Approach 
V. P. Yurov and Al. B. Zamolodchikov Int. J. Mod. Phys. A 6, 
4557 (1991)  
 
 
 

Relevant perturbing operator, most important effect 
is mixing of low energy states 
Critical Ising chain in magnetic field well described 
(error ~ 1%) by keeping only 39 states 

 

H = HCFT + �0

Z
d2x�0(x)



Truncated spectrum approach to DMRG!

•  Control area law with small R 
•  Requires re-truncation in energy after each 

DMRG step to keep consistent cutoff 
•  In general don’t need to keep too many reduced 

density matrix eigenvalues, ~30 in gapped 
phase to 100’s nearer criticality for 10-5 
truncation error 
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Example: Quantum Ising chain!

•  Continuum limit of lattice Ising chain in transverse 
field 

•  Can study negative mass, Δ, (disordered) or 
positive Δ (ordered) chains 
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Example: Quantum Ising chain!

•  Chain eigenstates organised into two ‘sectors’  
Ramond and Neveu-Schwarz with integer and 
half-integer momenta 

 
•  Permissible states depend on sign of mass 

•  Fermion energies 

� > 0, NS states when Nf even, R states when Nf even.

� < 0, NS states when Nf even, R states when Nf odd.

Eki =
q

�2 + k2i

NS: |p1, p2, · · · , pNf i = ↵†
p1
↵†
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· · ·↵†
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|0iNS , pi 2 (Z+ 1/2)
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R

R: |k1, k2, · · · , kNf i = ↵†
k1
↵†
k2

· · ·↵†
kNf

|0iR, ki 2 Z2⇡

R



2D Quantum Ising model (2+1)!
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•  Should be an order/disorder transition (disordered 
chains will order with enough coupling) 

•  Start with disordered (negative mass) chains and 
sweep chain coupling, study the energy gap 

•  Test that the correct many-body behaviour is 
captured 



2D Quantum Ising model (2+1)!

���� ���� ���� ���� ���� ���	 ���

��

�

���

���

���

���

���

�
�
�
��

�
��
	

�
�

��



�
�
��

�������

��	�	
��	�


��	�	����� In 3D classical Ising 
universality class, 

⌫ = 0.630

�
��� ����

�

N = 60, R� = 10, Ec = 7.8�

R. M. Konik and Y. Adamov, PRL 102, 097203 (2009) 

�2DQI ⇠ |Jc � J?|⌫



2D Quantum Ising model (2+1)!

Finite size scaling ⌫ = 0.630
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Other things to look at!

•  Entanglement (James, Konik PRB 87, 2013) 
•  Generalise to other chain Hamiltonians 

•  Coupled XXZ 
•  Coupled Hubbard chains 

•  Infinite DMRG for thermodynamic limit 
•  Take advantage of other MPS/MPO algorithms 

•  Time evolution and iTEBD 
•  Finite temperature 



Time evolution and out-of-equilibrium 

 



Quantum quenches!

•  Take an eigenstate of some ‘initial’ Hamiltonian and time 
evolve it with respect to a new Hamiltonian 

•  How do we approach stationary state and thermalise? 
•  What is the return probability (Loschmidt echo) 

•  In 1D, can use MPS based time evolution and analytic 
methods 

| (t)i = e�iHt| (0)i

L(t) = |h (0)|eiH0te�iHt| (0)i|2



Quantum quenches in cold atoms!

| (t)i = e�iHt| (0)i



Time evolving block decimation!

e�iHt
n ⇡ e�iH
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•  Trotter decomposition of time steps into odd and even 
bond operations 



Time evolving block decimation!

•  Trotter decomposition of time steps into odd and even 
bond operations 

•  Compress MPS after time step 
•  Time step error can be controlled with smaller steps or 

higher order decompositions 
•  Error due to truncation is more problematic 



Entanglement grows (at worst) linearly with time (Lieb 
Robinson bounds), P. Calabrese and J. Cardy (2006) 
MPS dimensions grow (at worst) exponentially 
	



Time evolving block decimation!

•  Trotter decomposition of time steps into odd and even 
bond operations 

•  Compress MPS after time step 
•  Time step error can be controlled with smaller steps or 

higher order decompositions 
•  Error due to truncation is more problematic 

SE(t)  SE(0) + ct

D . #S ) D . #t



Infinite MPS in 1D: iTEBD!

Infinite time evolving block 
decimation 
•  Impose translational 

invariance 
•  Work with two site fragment 
•  Fast compared to finite 

chains (only 2 matrices 
instead of N) 

•  Better numerical stability 
than for large finite N 

odd	



even	



SVD	





Infinite MPS in 1D: iTEBD!

For a finite system we can do the full contraction over MPS 
indices 

h ̃| i
For the infinite case we must work with the transfer operator 

T(ãlal),(ãl+2al+2)

= {Ã�l+1⇤
ãl+2,ãl+1

Ã�l⇤
ãl+1,ãl

}{A�l
al,al+1

A�l+1
al+1,al+2

}

Overlap/site is given by (square root of) the dominant 
eigenvalue 



Quantum quenches for coupled chains 



Global quench setup!

•  Start with product state (interchain coupling zero), 
for disordered (negative mass) chains 

•  Know ground state exactly, D=1, SE=0, MPS is 
easy to form 

•  Turn on small interchain coupling 

•  Evolve in time 



•  As a check, consider very shallow quenches that can be 
treated perturbatively (in particular, do not cross critical 
coupling) 

•  Need unitary perturbation theory to avoid terms that 
grow in time without bound   

 

 
 

Perturbative treatment of a quench 

H = H0 + gH1, g ⌧ 1

|�(t)i = e�iHt|�(0)i = e�Se�iHdiagteS |�(0)i
Moeckel and Kehrein, PRL 100, 175702 (2008) 
Kollar, Wolf and Eckstein, PRB 84, 054304 (2011) 



•  Expectation of an operator on chain i at time t 

•  States of system are tensor products of states on 
individual chains 

Perturbative treatment for coupled Ising chains 

|�i = |�1i ⌦ |�2i ⌦ · · ·⌦ |�N i
|�(0)i = |0i ⌦ |0i ⌦ · · ·⌦ |0i
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2
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⌘



Perturbative treatment for coupled Ising chains 

Key features at 2nd order: 
•  No dependence on number of chains or boundary 

(except trivial factor of 2 at edges if O.B.C.) 
•  Sum of terms periodic in t, overlap with initial 

state is trivial to this order: 
 

•  Expectation of an operator on chain i at time t 
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Chain momentum occupation number 

Consider number operator for excitations on chain i 
with chain momentum k 
 
•  Chain excitations are fermions, maximum value is 1 for 

each (k,i) pair 

•  Gives a measure of how far each chain is from its 
(uncoupled) groundstate 

nk,i



Small quench 
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Small quench 
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Momentum modes versus R 
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Higher k modes take longer… 



Half integer chain momentum modes 
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Deeper quenches for coupled chains 



Moving away from the perturbative limit 

Departure from simple oscillatory behaviour 
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Moving away from the perturbative limit 
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Moving away from the perturbative limit 
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Dynamical Phase Transitions? 

Heyl, Polkovnikov and Kehrein, PRL 110, 135704 (2013) 

For TFIM, nonanalytic ‘rate’ if quench is through critical point 

Karrasch and Schuricht 
PRB 87, 195104 (2013) 
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Dynamical Phase Transitions? 

Heyl, Polkovnikov and Kehrein, PRL 110, 135704 (2013) 

For TFIM, nonanalytic ‘rate’ if quench is through critical point 

Karrasch and Schuricht 
PRB 87, 195104 (2013) 
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N!1
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log|G(t)|2

More generally not periodic, nor uniquely 
associated with equilibrium critical points 
 
Andraschko and Sirker, PRB 89 (2014) 
 
Fagotti, arXiv:1308.0277 
 
 

Andraschko and Sirker, PRB 89, 125120 (2014) 



Deep quenches for coupled chains 

As a check, start with small R 

Chain fermion energies diverge for all but the lowest 
excited state 
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Deep quenches for coupled chains 

u As a check, start with small R  

u Only ground state and first excited state on each 
chain survive, recover 1D TFIM 
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Quench of coupling in TFIM limit 
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Boundary conditions and finite systems 

Even for large 
finite systems, 
b.c.s make a  
difference 
 
Important if 
looking for this 
behaviour in 
e.g. cold atoms 
 



Boundary conditions 
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Deeper quenches for coupled chains 
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Conclusions!

•  Coupling integrable chains together allows straightforward 
extension of 1D MPS methods to 2D systems 
•  Extra control parameters are chain length, R, and 

energy cutoff 
•  Can work with infinitely many chains 

•  Uses 
•  Low lying spectrum and phase transitions 
•  Investigating entanglement entropy 
•  Time evolution, great for shallow quantum quenches, 

deeper quenches possible for short times 



Future work!

•  Other integrable chains 
•  XXZ with J.S. Caux (Amsterdam) 

•  iDMRG for studying phase transitions 
•  Better understanding of energy cutoff 
•  Finite temperature 
•  Supercomputing 


