Leptogenesis

Yuval Grossman

Cornell

Leptogenesis

Three birds

Three open questions in physics

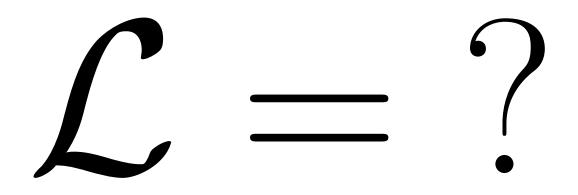
- Why is there only matter in the universe?
- How neutrinos acquire their tiny masses?
- Why all the elementary particles have integer electric charges?

It is plausible that one mechanism answers all three questions

Leptogenesis

Outline

- A short introduction to HEP
- Q1: Matter and anti-matter
- Q2: Neutrinos
- Q3: Electric charge quantization
- Conclude: The answer (?!)


Introduction to HEP

Leptogenesis

What is HEP

A very simple question

Leptogenesis

Building Lagrangians

- Choosing the generalized coordinates (fields)
- Imposing symmetries and choose the fields (input)
- The Lagrangian is the most general that obeys them
- We truncate it at some order, usually x^4

Leptogenesis

The Standard Model (SM)

- We keep terms up to $O(x^4)$
- The symmetry is $SU(3)_C \times SU(2)_L \times U(1)_Y$
- There are three generations of fermions (flavors)

 $Q_L(3,2)_{+1/6}$ $U_R(3,1)_{+2/3}$ $D_R(3,1)_{-1/3}$ $L_L(1,2)_{-1/2}$ $E_R(1,1)_{-1}$

• The vev of the Higgs $H(1,2)_{+1/2}$ breaks the symmetry

 $SU(2)_L \times U(1)_Y \to U(1)_{EM} \qquad m_W \approx 80 \text{ GeV}$

• The photon is massless due to a $U(1)_{EM}$ symmetry

Leptogenesis

Accidental symmetries

Two kinds of symmetries

- Input: symmetries we impose
- Output: symmetries due to the truncation (accidental)
- Example: The period of a pendulum is invariant under change of amplitude
- In the SM Baryon and Lepton numbers are accidental

1: Matter, anti-matter and CPV

Leptogenesis

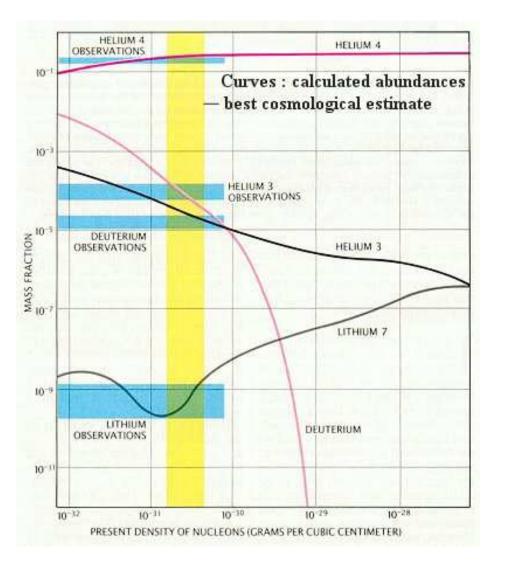
Matter, anti-matter and CPV

- We know anti-matter exists
- The positron seems to be an exact "mirror image" of the electron
- The formal transformation is called CP
- Matter and anti-matter cannot coexist. When they meet they annihilate

Baryogenesis

The question

Why is there only matter around us?


- The universe has a net positive baryon number
- We do not know the lepton number of the universe
- In the SM baryon number seems to be conserved, so we expect the same amount of matter and anti-matter, basically zero
- Can we explain the observed number of baryons

$$\eta = \frac{n_B - n_{\bar{B}}}{n_{\gamma}} = \frac{n_B}{n_{\gamma}} \sim 10^{-10}$$

Y. Grossman

Leptogenesis

Cosmology and particle physics

- Particle physics and cosmology are connected
- BBN and the CMB measurements imply

$$\eta \equiv \frac{n_B}{n_\gamma} = \text{few} \times 10^{-10}$$

Y. Grossman

Leptogenesis

Ways to baryogenesis

There are several logical possibilities

- Initial conditions are such that $n_B \neq 0$
- Separation: we are here, they are there
- Dynamical generation of baryons in the early universe

The third possibility looks much more attractive

The Sakharov conditions

The three Sakharov conditions for dynamically generated baryon asymmetry

Baryon number violating process

$$X \to p^+ e^-$$

C and CP violation

$$\Gamma(X \to p^+ e^-) \neq \Gamma(\overline{X} \to p^- e^+)$$

Deviation from equilibrium

$$\Gamma(X \to p^+ e^-) \neq \Gamma(p^+ e^- \to X)$$

Y. Grossman

Leptogenesis

SM baryogenesis

The three Sakharov conditions are satisfied in the SM

- Baryon number violating process: sphalerons
- The weak interaction violates C and CP
- Out of equilibrium from the electroweak phase transition

In principle, the SM can generate a world with matter

Leptogenesis

Baryogenesis: the problem

While the SM "makes" baryons, it is not efficient enough

 $\eta_{\rm SM} \sim 10^{-25} \ll 10^{-10}$

An open question is therefore:

What is the source of the baryons in the universe?

Y. Grossman

Leptogenesis

2: Neutrino masses

Leptogenesis

What are neutrinos

- Neutral fermions
- They appear massless to a very good approximation
- They come with three flavors: ν_e , ν_μ and ν_τ
- Think of flavor as a new QN

Probing neutrino masses

- Direct searches are not sensitive to very small masses
- In general, flavor eigenstates \neq mass eigenstates \Rightarrow Flavor is not conserved during propagation

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 2\theta \sin^2 x \qquad x = \frac{\Delta m^2 L}{2E}$$

- Sensitive to Δm^2 and θ
- Many difference experiments found clear evidences for neutrino oscillations that gives

$$m_{\nu} \sim \text{few} \times 10^{-2} \text{ eV}$$

Y. Grossman

Leptogenesis

Neutrino masses in the SM

The SM implies that neutrinos are exactly massless

- Massive particles must be both LH and RH \Rightarrow We need RH neutrinos
- Two options:
 - RH neutrino (Dirac mass). [Not there in the SM]
 - RH anti–neutrino (Majorana Mass). [Violates L]

Unlike the $m_{\gamma} = 0$ prediction, the $m_{\nu} = 0$ prediction is accidental; *L* is an accidental symmetry of the SM

$$m_{\nu} \neq 0$$
: A 2nd look at 2nd order PT

- We get sensitivity to high energy states!
- Consider x and y with $E_y \gg E_x$

$$V = \frac{Kx^2}{2} + V_y(y) \qquad V_1 = x^2 f(y)$$

 \checkmark The second order correction due to y

$$\Delta E_{gs} \propto \frac{\left| \langle 0_x, 0_y | x^2 f(y) | n_x, n_y \rangle \right|^2}{E_{gs} - E_{n_x, n_y}} \sim \frac{x^4}{E_y}$$

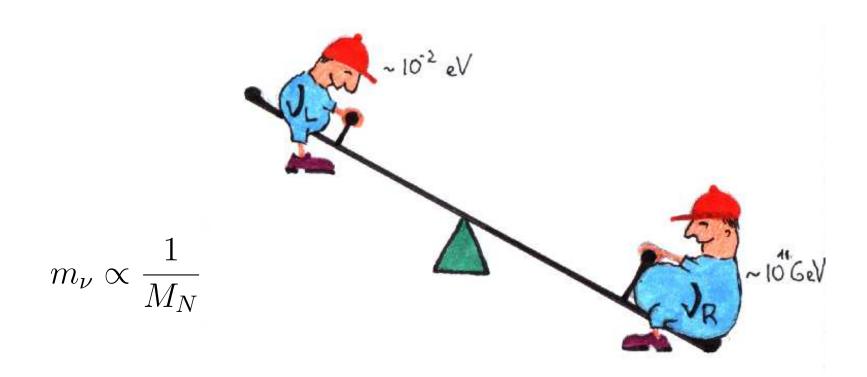
• An x^4 term was "generated" and it is suppressed by $1/E_y$

Y. Grossman

Leptogenesis

Neutrino masses

- There are many ways to extend the SM such that neutrinos are massive
- One idea: add "sterile" fermions to the SM, N


$$m_N \sim M \gg m_W \Rightarrow m_\nu \sim \frac{m_W^2}{M}$$

Similar to 2nd order perturbation theory

$$m_{\nu_L} = \frac{\left| \langle \nu | V_1 | N \rangle \right|^2}{M}$$

- Lepton number is broken by these new particles
- The scale of the new particle is $M_N \sim 10^{14} \text{ GeV}$

The see-saw mechanism

The see-saw mechanism predicts very light neutrinos and that Lepton number is broken

Y. Grossman

Leptogenesis

Neutrino masses: the problem

What is the mechanism that give neutrino their masses?

Leptogenesis

Q3: Why Integer charges?

Leptogenesis

The symmetries of the SM

- $SU(3) \times SU(2) \times U(1)$
- Each symmetry comes with its own "force"
- The force is proportional to a "coupling constant"
- SU(2) is non-Abelian, while U(1) is Abelian
- What is charge?
 - For EM it is a number
 - For SU(2) it is the "size" of the spin: singlet, doublet, etc.

Quantization

• Think of p_i and L_i

$$[P_i, P_j] = 0 \qquad [L_i, L_j] = i\epsilon_{ijk}L_k$$

While not exactly the same, we know that a non-vanishing commutator implies quantization

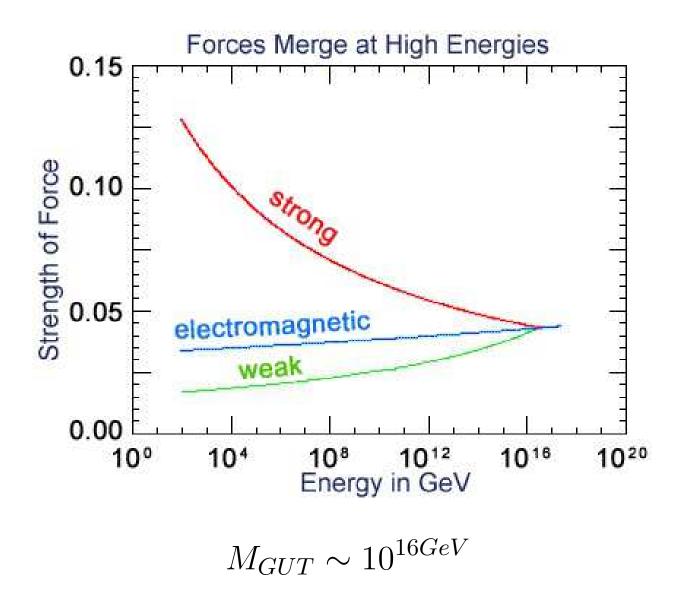
Non-Abelian symmetries implies charge quantization

Leptogenesis

SSB: Hydrogen atom

- The symmetry is rotation in 3d
- Consider an L = 1 state
- Magnetic field in an arbitrary direction break the symmetry to rotation in 2d
- The symmetry breaking pattern: $SO(3) \rightarrow SO(2)$
- The magnetic field breaks the m_z degeneracy
- It comes with scale: $E \sim muB$

SSB: the SM


- The EM symmetry is part of the bigger $SU(2) \times U(1)$ one
- The electron and the neutrinos are degenerate due to the SU(2) symmetry
- The Higgs "chooses" a direction so we can tell them apart
- The breaking comes with scale, m_W
- EM is part of $SU(2) \times U(1)$ in that $Q = S_Z + Y$
- $SU(2) \times U(1)$ is "little unified theory"

Leptogenesis

GUT

- The SM symmetry maybe the unbroken part of a bigger symmetry
- In that case the SM particles are part of a bigger multiplet (like e and ν in the weak interaction)
- It work best for 10d rotation: SO(10)
- In the SM we have 15 DoFs, and in SO(10) we need 16
- The one more field that we need is not charged under the SM
- What is the scale associated with the breaking?

GUT scale

Y. Grossman

Leptogenesis

Some tests of GUTs

- Proton decay
- That one extra particle

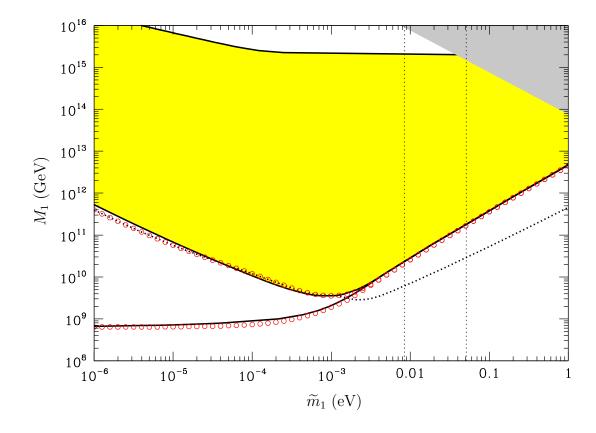
Can we test for GUT?

Leptogenesis

Leptogenesis

Leptogenesis

All together


- How was matter created?
- Why are neutrinos massive?
- Do we have GUT?

It all point to that new particle ${\cal N}$

Leptogenesis

Numerical prediction

A GUT scale N can generate the observed neutrino masses and matter in the universe!

Y. Grossman

Leptogenesis

Tests of this idea

- \checkmark It is not easy to look for N since it is too heavy
- Observing proton decay will be amazing
- Leptogenesis predicts very small lepton asymmetry in the universe. Very hard to check
- Since leptogenesis requires CP violation, we would like to find CP violation also in neutrino oscillation
- Majorana mass for the neutrinos can be probed with neutrinoless double beta decay
- The neutrino mass provided a non trivial test
 - Leptogenesis \Rightarrow $m_3 \lesssim 0.15 \text{ eV}$

Atmospheric neutrinos \Rightarrow $m_3 \sim 0.05 \text{ eV}$

Leptogenesis

Conclusions

Leptogenesis

Conclusions

- It smells like we must have this extra particle
- Yet, can we get better to prove it?

Y. Grossman

Leptogenesis