Polaroid jetography

an album of jet physics measurements and searches at the ATLAS experiment

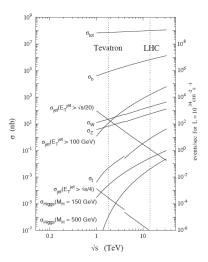
Caterina Doglioni¹

¹University of Geneva

Geneva, the Jet d'eau HEP Seminar, University of Virginia - 17/09/13

Why jets? Large Hadron Collider: quark and gluon $(\rightarrow jet)$ factory

 Use jets for measurements: understand QCD (backgrounds), test reconstruction and calibration performance

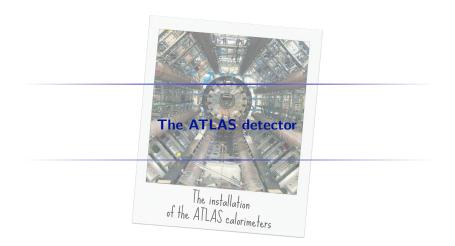

Use jets for searches: probes for new physics

Why jetography?

Main message of the day: there's **many ways** to make a jet (see G. Salam's primer)

Why polaroid?

I only have limited time... This talk: **quick snapshots** of large ATLAS jet physics program

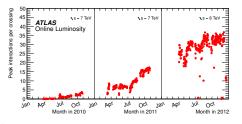


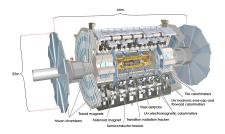
Overview of **jet reconstruction**: jet finding, calibration, performance **Selected** ATLAS results on **jet physics**: measurements and exotics searches

- **1** Overview of the ATLAS detector
 - Introduction to jets Introduction to jet algorithms Jet Algorithms in ATLAS
- 3
- Jet substructure Introduction Jet substructure performance
- 4
- Jet performance Jet calibration

- Jet energy scale uncertainty Jet resolution
- Standard Model jet results Jet triggers Measurement of jet properties Jets, dijets and multijets
- 6
- Searches with jets Dijet analysis
- Photon+jet analysis Mono-X analyses for dark matter

Overview of the ATLAS detector



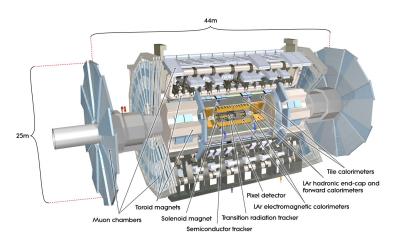

The ATLAS Detector in 2012

Excellent performance of the LHC and of the ATLAS experiment: **5** and **21** fb⁻¹ of pp data recorded in the **7** and **8** TeV runs + heavy ion / p - Pb data (not covered here) **263** papers published, **530** public notes and counting

ATLAS p-p run: April-December 2012										
Inner Tracker		Calorimeters		Muon Spectrometer				Magnets		
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
99.9	99.1	99.8	99.1	99.6	99.6	99.8	100.	99.6	99.8	99.5
All good for physics: 95.5%										
Luminosity weighted relative detector uptime and good quality data delivery during 2012 stable beams in pp collisions at										

vs=8 TeV between April 4th and December 6th (in %) - corresponding to 21.3 fb⁻¹ of recorded data.

2012 challenge: high luminosity


 Multiple interactions per bunch crossing
 → optimize trigger, object reconstruction

C. Doglioni - 17/09/2013 - UVa Seminar

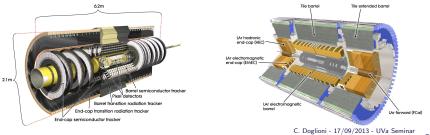
Overview of the ATLAS detector

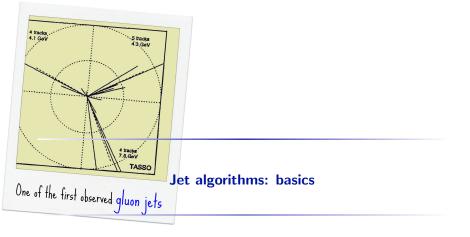
The ATLAS Detector

For the measurements described in this talk: inner detector, calorimeter system

Overview of the ATLAS detector

The ATLAS inner detector and calorimeters

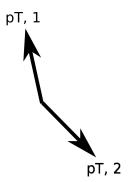

Inner detector


- Pixel detectors, semiconductor tracker (SCT), transition radiation tracker
 - $\,\approx$ 87M readout channels, coverage up to $|\eta|<\!\!2.5$
 - Immersed in 2T magnetic field from solenoid

Electromagnetic and hadronic calorimeters

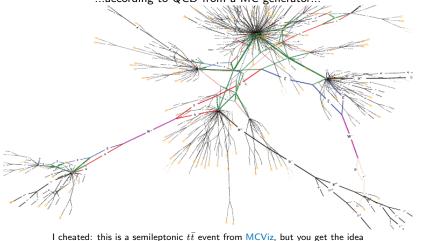
• Subsystem technology and granularity \leftrightarrow shower characteristics

- transverse and longitudinal sampling
- very fine granularity: pprox 200 000 readout cells up to $|\eta|$ <4.9
- Energy deposits grouped in noise-suppressed 3D topological clusters noise definition includes pile-up and electronic noise



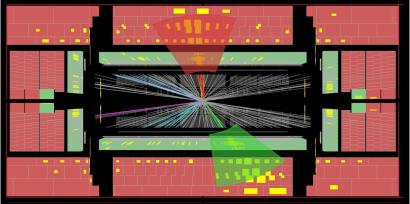
Chaos from order, order from chaos?

A high- p_T dijet event: how we see it


... from the back of an envelope...

Chaos from order, order from chaos?

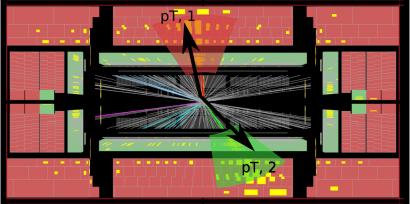
A high- p_T dijet event: how we see it ...according to QCD from a MC generator...



Chaos from order, order from chaos?

A high- p_T dijet event: how we see it

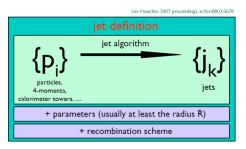
... in the ATLAS calorimeter...


Note: some 'cleaning' already performed: ATLAS topological clustering algorithm

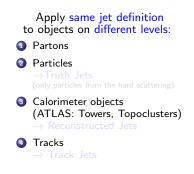
Chaos from order, order from chaos?

A high- p_T dijet event: how we see it

...after applying a jet algorithm.

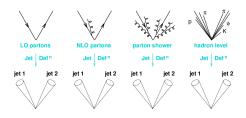


Need **algorithms** to define **jets** out of underlying constituents C. Doglioni - 17/09/2013 - UVa Seminar



Jet algorithms: basics

Goal: kinematics of jet \leftrightarrow kinematics of underlying physics objects Use a **jet algorithm** to cluster objects into a jet


From M. Cacciari, MPI@LHC08

Jet algorithms: basics

Goal: kinematics of jet \leftrightarrow kinematics of underlying physics objects Use a **jet algorithm** to cluster objects into a jet

From G. Salam, MCNet School 2008

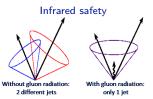
Apply same jet definition to objects on different levels:

Partons

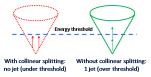
2 Particles

 \rightarrow Truth Jets (only particles from the hard scattering)

- Orally Calorimeter objects (ATLAS: Towers, Topoclusters) → Reconstructed Jets



Wishlist for jet finding algorithms


No right jet algorithm

Requirements:

1. Theoretically well behaved \rightarrow no α_s dependence of jet configuration:

Collinear safety

2. Computationally feasible \rightarrow fast 3. Detector independent

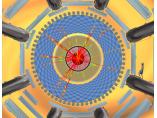
More safety warnings

Crucial to analyse data with **infrared** / **collinear safe** jet algorithm!

Theory matters:

Among consequences of IR unsafety:

	Last i							
	JetClu, ATLAS	MidPoint	CMS it. cone	Known at				
	cone [IC-SM]	[ICmp-SM]	[IC-PR]					
Inclusive jets	LO	NLO	NLO	NLO (\rightarrow NNLO)				
W/Z + 1 jet	LO	NLO	NLO	NLO				
3 jets	none	LO	LO	NLO [nlojet++]				
W/Z + 2 jets	none	LO	LO	NLO [MCFM]				
$m_{\rm jet}$ in $2j + X$	none	none	none	LO				
NB: \$30 – 50M investment in NLO								


From G. Salam, MCNet School 08

Implementation of jet algorithms

Goal: kinematics of jet \leftrightarrow kinematics of underlying physics objects Use a **jet algorithm** to cluster objects into a jet

Basic algorithm: event display + physicist

"Everyone knows a jet when they see it" Note: don't try this at home when the LHC is running

...but what is really needed for communicating results:

- () full specification of algorithm and parameters \rightarrow how to group objects
- 2 recombination scheme \rightarrow how to merge objects characteristics
- **(3)** treatment of overlapping jets (if any) \rightarrow how to avoid double counting

Introduction to jets - Jet Algorithms in ATLAS

Jet algorithms available in ATLAS

Cone-based algorithms

- Cone in $y \phi$ space around object momentum vector
- Jet = objects in cone

Available on the (ATLAS) market:

- ATLAS Cone unsafe!
- Seedless Infrared Safe Cone (SISCone)

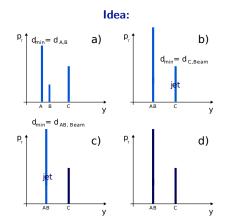
Sequential recombination algorithms

- Group objects based on minimum relative *distance*
- Jet = grouped objects

Available on the (ATLAS) market:

- K_t
- Cambridge-Aachen
- Anti- K_t

What algorithms for data?

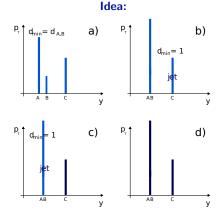

From G. Salam, MCNet School 2008

Algorithm specification: k_t

- $d_{i,j} = min(p_{T,i}^2, p_{T,i}^2) \frac{\Delta R^2}{D^2}$; $d_{i,Beam} = p_{T,i}^2$
- D : algorithm parameter (≈ weight for angular distance ΔR)
- Iterate:
- For every pair of objects i, j calculate $d_{min} = min(d_{i,j}, d_{i,beam})$
- If d_{min} = d_{i,j} recombine objects Else i is a jet, remove it from list ^a
 - Recombination starts from soft objects

^aATLAS default: inclusive algorithm

Cambridge-

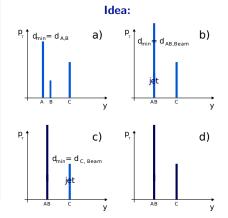

Sequential recombination algorithms (k_t-like)

Algorithm specification: Aachen

•
$$d_{i,j} = \frac{\Delta R^2}{D^2}$$
; $d_{i,Beam} = 1$

- D : algorithm parameter
- Iterate:
- For every pair of objects i, j calculate $d_{min} = min(d_{i,j}, d_{i,beam})$
- If d_{min} = d_{i,j} recombine objects Else i is a jet, remove it from list ^a
 - Distance-based recombination

^aATLAS default: inclusive algorithm



Algorithm specification: Anti- k_t • $d_{i,j} = min(\frac{1}{p_{T,i}^2}, \frac{1}{p_{T,i}^2})\frac{\Delta R^2}{D^2}$; $d_{i,Beam} = \frac{1}{p_{T,i}^2}$ • D : algorithm parameter • Iterate: • For every pair of objects i, j calculate $d_{min} = min(d_{i,j}, d_{i,beam})$

- 2 If $d_{min} = d_{i,j}$ recombine objects Else *i* is a jet, remove it from list ^a
- Recombination starts from hard objects

^aATLAS default: inclusive algorithm

Algorithm specification: Anti- k_t

•
$$d_{i,j} = min(\frac{1}{p_{T,i}^2}, \frac{1}{p_{T,i}^2})\frac{\Delta R^2}{D^2}$$
;
 $d_{i,Beam} = \frac{1}{p_{T,i}^2}$

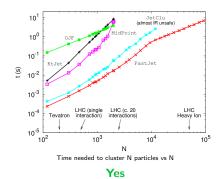
- D : algorithm parameter
- Iterate:
- For every pair of objects i, j calculate d_{min} = min(d_{i,j}, d_{i,beam})
- If d_{min} = d_{i,j} recombine objects Else i is a jet, remove it from list ^a
- Recombination starts from hard objects

^aATLAS default: inclusive algorithm

Is it safe?

Yes, by construction:

• Collinear, infrared safe soft particles recombined


Algorithm specification: Anti- k_t

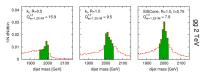
•
$$d_{i,j} = min(\frac{1}{p_{T,i}^2}, \frac{1}{p_{T,i}^2})\frac{\Delta R^2}{D^2}$$
;
 $d_{i,Beam} = \frac{1}{p_{T,i}^2}$

- D : algorithm parameter
- Iterate:
- For every pair of objects i, j calculate dmin = min(d_{i,j}, d_{i,beam})
- If d_{min} = d_{i,j} recombine objects Else i is a jet, remove it from list ^a
- Recombination starts from hard objects

^aATLAS default: inclusive algorithm

Is it fast enough?

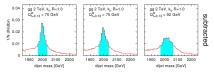
Introduction to jets - Jet Algorithms in ATLAS


What jet algorithm and parameters?

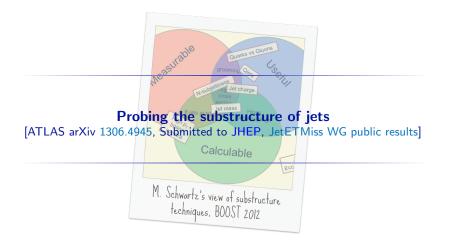
Decision: choice of jet algorithm distance parameter (R) "It's all fun and games until someone loses a hard constituent"

Example figures from original jetography paper arXiv 0810.1304: Quantifying the performance of jets, G. Salam, J. Rojo, M. Cacciari

Advantages of wider distance parameters (large-R):


- Captures more QCD radiation:
 - \rightarrow Smaller non-perturbative corrections when comparing data to theory
 - \rightarrow Better mass resolution for dijet resonances

Dijet mass for resonance decaying into two gluons: improvement in resolution when increasing radius


Disdvantages of wider distance parameters (wider jets):

• Captures more of anything else: \rightarrow extra energy not from hard scattering (calorimeter noise, other pp collisions)

Dijet mass for resonance decaying into two gluons, large-radius: deterioration in resolution when increasing pile-up as in left to right plot

• with large kinematic boost, decay products of heavy objects more collimated ...can we use this to our advantage?

Jet substructure - Introduction

Jet substructure

When to make fat jets:

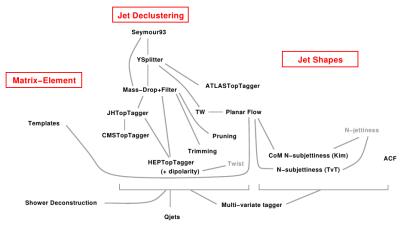
When more objects (e.g. from a decay) are collimated due to kinematic boost:

- collect everything in a large-R (fat) jet
- probe substructure of this large-R jet (e.g. sub-jets)

How to use fat jets:

- exploit jet grooming techniques to:
 - separate QCD jets from jets from boosted objects decays (background rejection)
 - make jets more resilient to radiation/pile-up
- use jet mass as a handle for mass of heavy object (e.g. W, or top)

Example: boosted top candidate leptonic top candidate Electror dronic top candidate

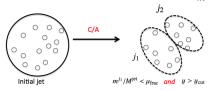

[ATLAS-CONF-2011-073]

Jet substructure - Introduction

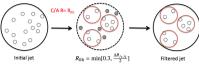
Jet substructure is an active field...

From G. Salam's closing talk at BOOST2012

apologies for omitted taggers, arguable links, etc.



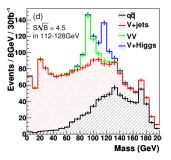
A famous substructure technique: mass-drop filtering [arXiv 0802.2470]


- Find Cambridge/Aachen R=1.2 jets
- ② Undo last step of jet algorithm and obtain two proto-jets (j1, j2)
- Only keep C/A jets where:

 $\bullet~$ significant difference between original jet and $j1:~m^{j1}/m^{C/A~jet} < \mu_{frac}$

• symmetric splitting between j1, j2: $y = \frac{min[(p_T^{j1})^2, p_T^{j2})^2]^2}{m^{C/Ajet}} \Delta R_{j1,j2}^2 > y_{cut}$

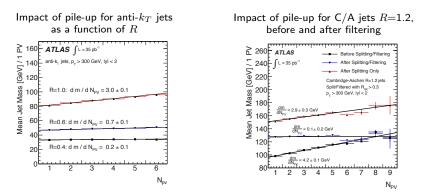
Recluster constituents of the jet using C/A with distance parameter=R_{filt}, only keep three hardest subjets



It could be useful for Higgs decay in $b\bar{b}$ (overwhelming background):

Frequently Asked Questions

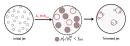
- Is it really useful for boosted Higgs?
 We'll know at the LHC @ 14 TeV
- Is it useful for ATLAS analyses? Yes, we'll see this later

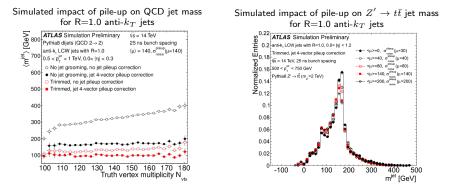


Jet substructure – Jet substructure performance

Substructure techniques in presence of pile-up

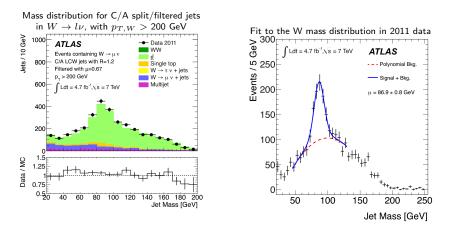
Original aim of **jet filtering** algorithms [arXiv 0802.2470]: "filter away UE contamination while retaining hard perturbative radiation from the Higgs decay products"

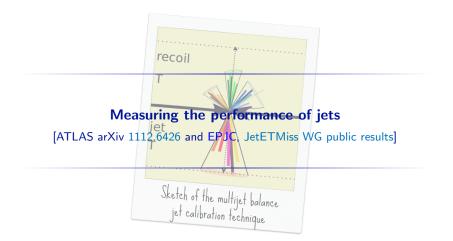



Technique can be employed to reduce impact of pile-up

Substructure techniques in presence of more pile-up

High-luminosity LHC (14 TeV, after Run-II): number of additional interactions (μ) could go up to 140 and more \Rightarrow will jet substructure techniques still work?

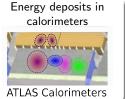

Need both trimming and pile-up correction, but it will work!



Jet mass measurements

UNIVERSITÉ DE GENÈVE

Mass of single fat, groomed jet: handle on mass of heavy boosted objects \Rightarrow a well known standard candle can be used to set mass scale in data



Jet performance

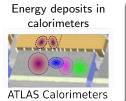
Recap: jet reconstruction in ATLAS - jet finding

jets

particles 4-momenta Topoclusters

Many alternative jet finders can

be found (e.g. k_T family/Cambridge, SISCone, ...)


Group objects in jet with jet algorithm \rightarrow ATLAS default: Anti- k_T

- Aggregative algorithm, combines pairs of constituents sequentially
- Combination depends on jet $\mathbf{p}_T,$ angular distance in (η,ϕ)
- Algorithm clusters highest energy constituents first
- High p_T Anti-k_T jets have regular shapes, stable under pile-up

Jet performance - Jet calibration

Jet reconstruction: calibration

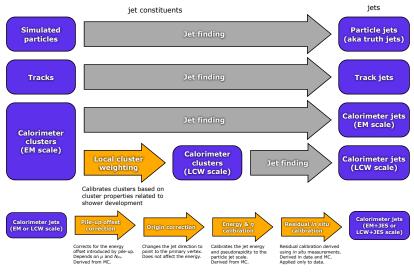
Measure energy from readout signal $\rightarrow EM / hadronic calibration$ toelectromagneticscale $EM calibration {E^M}$ $<math>E^{EM}$ } E^{EM}

Calorimeter jet response corrected for:

- Non-compensating calorimeters
- Inactive material
- Out-of-cone effects

Further calibration steps:

- pile-up correction to remove extra energy from multiple interactions
- correction based on in-situ balance techniques (e.g. γ+jet)

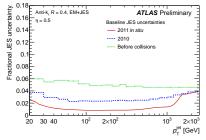

29 / 48

▲

Jet performance - Jet calibration

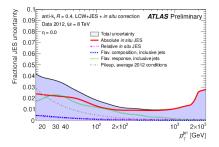
Jet finding and calibration in ATLAS

Note: origin correction not applied in 2012


Jet energy scale uncertainty in ATLAS

Estimate JES uncertainties using:

- In-situ techniques ($\gamma jet, Z jet$, multijet balance, track vs calorimeter jets)
- single particle uncertainties from test beam convoluted to jets (high-p_T)
- p_T balance in dijet events (forward JES uncertainty)
- Different MC generators (jet flavor and topology uncertainty)


 $\begin{array}{l} \mbox{Comparison: before collisions} \\ \rightarrow \mbox{2011 (with in-situ correction)} \end{array}$

<6.5 ightarrow 1% for central jets, $p_T=$ 200 GeV <10 ightarrow 9% for more forward jets

Overall JES uncertainty for 2012

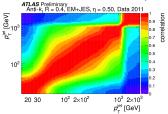
As low as
$$1\%$$
 for central jets, $p_T=$ 250 GeV

C. Doglioni - 17/09/2013 - UVa Seminar

Jet performance – Jet energy scale uncertainty

Jet energy scale uncertainty correlations

Treatment of correlated experimental uncertainties:


- ATLAS has o(60) jet energy scale nuisance parameters: set of uncertainty sources, each correlated bin-to-bin, uncorrelated among themselves
- Propagation through analysis allows quantitative theory comparisons, meaningful inclusion in PDF fits, combinations with other experiments

Components:

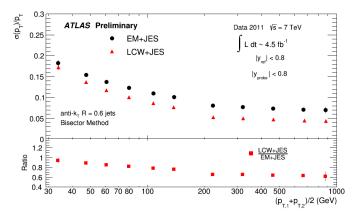
UNIVERSITÉ DE GENÈVE

- pile-up uncertainties
- uncertainty sources from in-situ techniques: systematic and statistical
- high-p_T (single particle) uncertainties
- flavor and topology uncertainties
- b-jet uncertainties

In-situ correlation matrix (2011):

How can an analysis propagate 60 uncertainty sources separately? (they could, it just takes a long time...) \Rightarrow Nuisance parameter reduction technique:

Fewer nuisance parameters, still retaining information on correlations and category for combination with other experiments (e.g. uncertainty from detector effects, MC modeling effects...)


Jet performance - Jet resolution

Jet energy resolution

Jet energy resolution: reflects intrinsic fluctuations of reconstructed jet energy from true jet energy

Two independent in-situ techniques to estimate JER and compare to MC

Up to 30% improvement if using the more refined calibration technique

C. Doglioni - 17/09/2013 - UVa Seminar

C. Doglioni - 17/09/2013 - UVa Seminar

Standard Model jet results - Jet triggers

Jet triggers

The ATLAS trigger system

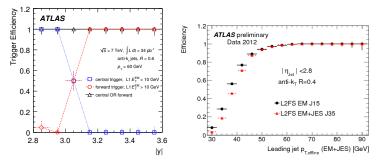
- 3-tier system (Level-1, Level-2, Event Filter)
- Reduces data intake from pprox o(10) MHz to pprox 300 Hz
- Jet triggers: allow for rejection of fakes at L2, anti- k_T jets at the event filter

ATLAS jet triggers (Summer 2011):

- Minimum Bias Scintillators (MBTS)
- Single-jet triggers (central and forward)
- Multijet triggers
- Topology based triggers
- Combination triggers

Trigger chains currently			Rates for 1×10^{33} (cm ⁻² s ⁻¹		
running unprescaled	L1 (GeV)	L2 (GeV)	EF (GeV)	L1 (Hz)	L2 (Hz)	EF (Hz)	
Inclusive single-jet chains							
1 central jet	75	95	240	275	160	2.8	
1 forward jet	75	95	100	3.9	1.1	0.6	
Inclusive multi-jet chains							
3 central jets	3×50	3×70	3×75	12	4.9	4.2	
5 central jets	5×10	5×25	5×30	60	7.9	3.0	
Topological and combination chains							
1 central "fat" jet, anti-k_T $R = 1.0$	75	95	240	275	160	2.7	
2 forward jets with $\Delta \eta > 5$	2×30	2×50	2×55	2.2	< 0.5	< 0.5	
1 central jet $+ E_T^{miss}$	50 + 20	70 + 20	75 + 45	711	338	20	
1 central jet with $H_T > 350$	75	95	100	275	160	11	

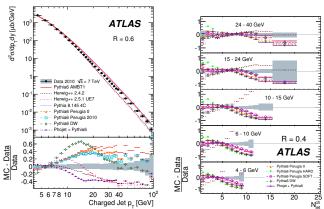
[ATL-DAQ-PROC-2011-034]


Standard Model jet results - Jet triggers

Jet triggers

The ATLAS trigger system

- 3-tier system (Level-1, Level-2, Event Filter)
- Reduces data intake from pprox o(10) MHz to pprox 300 Hz
- Jet triggers: allow for rejection of fakes at L2, anti- k_T jets at the event filter



(a) Trigger combination for 2010 inclu- (b) Example of jet trigger efficiency curves for sive jet cross-section in the transition re- Level-2 in 2012 gion between two trigger systems

Low-momentum jets and non-perturbative QCD

Measure properties of low-momentum jets using jets reconstructed from tracks : probe non-perturbative QCD from minimum bias to jet structure at higher p_T

[ATLAS arXiv 1107.3311, PRD]

Track-jet cross-section and charged particle multiplicity, anti- k_T R=0.6 C. Doglioni - 17/09/2013 - UVa Seminar

Jet fragmentation and shape

Probe **internal jet structure** with measurements of **charged particles** inside the jet: jet fragmentation function and transverse jet profile

[ATLAS arXiv 1109.5816, EPJC]

Measurement of jet fragmentation function:

probability of charged particle carrying momentum fraction z

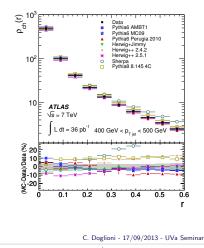
$$z = \frac{\mathbf{p_{jet}} \cdot \mathbf{p_{ch}}}{\mathbf{p_{jet}}}$$

Sensitivity to:

- Fragmentation models: benchmarks for simulation
- Non perturbative hadronisation effects

Probe **internal jet structure** with measurements of **charged particles** inside the jet: jet fragmentation function and transverse jet profile

[ATLAS arXiv 1109.5816, EPJC]

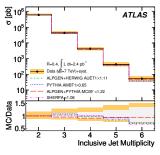

UNIVERSITÉ DE GENÈVE

Measurement of integrated jet shape: density of ch. particles around jet axis

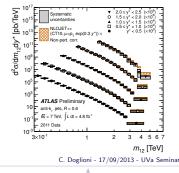
Sensitivity to:

- Fragmentation models: benchmarks for simulation
- Non perturbative hadronisation effects
- No MC model describes both jet fragmentation and jet profile

Standard Model jet results - Jets, dijets and multijets

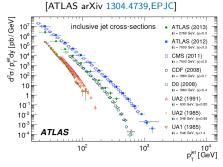


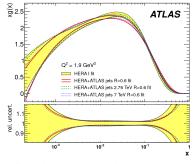
Inclusive jet, dijet and multijet cross section


Jet production: dominant high p_T process at LHC

- Probe perturbative QCD at small distances
- Understand dominant background for many analyses
- Early testing ground for jet calibration and performance very first measurements: 17 nb⁻¹ [ATLAS arXiv 1012.4389, EPJC] [ATLAS-CONF-2010-084]

Dijet double-differential cross section, [ATLAS CONF-2012-021]



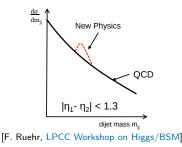


Jet cross sections: 7 TeV and 2.76 TeV

Measure jet cross sections at two center of mass energies (7 and 2.76 TeV): exploit uncertainty correlations, use **both** datasets as input for PDF fits

Qualitative comparison of jet cross sections for various experiments

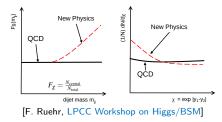
Effect of 7 and 2.76 TeV fits on gluon PDF (ATLAS+HERA data only)



Overview of dijet searches

Searches in the dijet mass spectrum

- Select high m_{jj} events ($m_{jj} > 1000 \text{ GeV}$)
- Fit QCD background from data using smooth function: $f(x) = p_1(1-x)^{p_2} \cdot x^{p_3+p_4\log x}, x = m_{jj}/\sqrt{s}$
- Look for discrepancies using BumpHunter [1101.0390]
- $\bullet~$ If no surprises, test models $\rightarrow~$ set limits:
 - Benchmark: excited quark (q*) production [PRD]
 - Color octet model [JHEP]

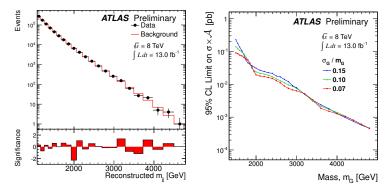

Overview of dijet searches

Searches in dijet angular distributions

- Select high m_{jj} events ($m_{jj} > 850 \text{ GeV}$)
- Look for excesses above QCD at high scattering angles

• Use $F_{\chi}(m_{jj})=\frac{N_{central}}{N_{total}}$ to resolve evolution of angular shape in fine mass bins

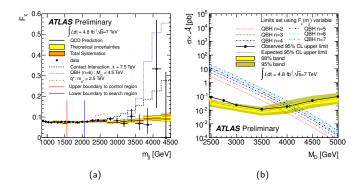
- Use normalised $\chi = e^{|y_1 y_2|}$ distribution for angular shape in wide mass bins
 - Benchmark: Contact Interactions
 - Quantum Black Holes [JHEP]



Searches in the dijet mass distribution

[Search for dijet mass resonances: ATLAS-CONF-2012-148]

- Look for resonances above smooth background in central dijet mass spectrum: none found
- Set 95% C.L. limit on σ × A for excited quark model (m(q*) < 3.84 TeV)
- Include model-independent limits on Gaussian resonances of varying width

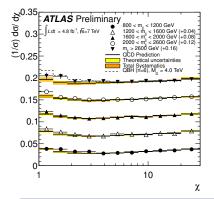

No evidence of new phenomena with more than half of the 8 TeV dataset Consistence with good agreement of SM measurement of m_{jj} with QCD at 7 TeV

Searches in dijet angular distributions

[ATLAS-CONF-2010-056]

 $F_{\chi}(m_{jj}) = \frac{N(|y*| < 0.6)}{N(|y*| < 1.7)}$ distribution, with QCD prediction superimposed with 95% C.L. limit on Quantum Black Holes model as a function of Planck mass

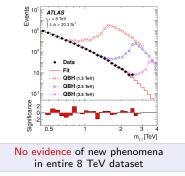
No evidence of new phenomena with 7 TeV dataset Consistent with good agreement of SM jet measurements with QCD


C. Doglioni - 17/09/2013 - UVa Seminar

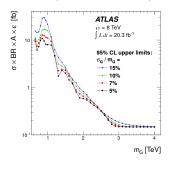
Searches in dijet angular distributions

[ATLAS-CONF-2010-056]

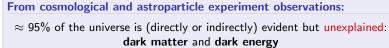
The $\chi = \exp\left(|y_1 - y_2|\right)$ distribution, with QCD prediction superimposed with summary table for 95% C.L. limits

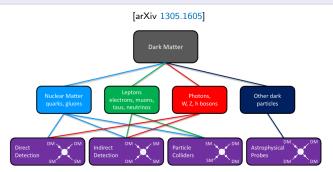

Model, and Analysis Strategy	95% C.L. I	95% C.L. Limits (TeV)		
	Expected	Observed		
Excited quark,	mass of q^*			
Resonance in m _{jj}	3.09	3.35		
Resonance in $F_{\chi}(m_{jj})$	2.97	2.58		
Colour octet scal	ar, mass of s8			
Resonance in m _{jj}	1.94	1.94		
Quantum Black Ho	le for $n = 6, M_1$	D		
$F_{\chi}(m_{jj})$	4.14	4.11		
11-bin χ , $m_{jj} > 2.6$ TeV	4.23	3.96		
Contact interaction, A, de	estructive interf	erence		
$F_{\chi}(m_{jj})$	8.2	7.6		
11-bin χ , $m_{ii} > 2.6 \text{ TeV}$	8.7	7.8		

No evidence of new phenomena with 7 TeV dataset Consistent with good agreement of SM jet measurements with QCD Searches with jets - Photon+jet analysis

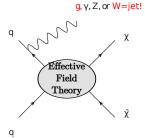

Searches in the $\gamma {+} {\rm jet}$ invariant mass spectrum

- Select central high $p_T \gamma$ -jet events ($p_{T,\gamma}, p_{T,jet} > 125 \text{ GeV}$)
- Build γjet invariant mass Reject background using calorimeter isolation/topology
- Fit background from data using smooth function, look for discrepancies using BumpHunter [1101.0390]


[ATLAS arXiv 1309.3230, sub. to PRD]


- No surprises \rightarrow set limits on benchmark models:
 - Excited quarks (q*)
 - Quantum Black Holes
 - Hypothetical Gaussian γ -jet decay signal (mass m_G , width σ_G)

Searches for dark matter in mono-X+MET


Synergy needed with other experiments for dark matter detection in space and in labs

Searches for dark matter in mono-X+MET

From cosmological and astroparticle experiment observations:

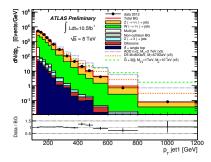
 \approx 95% of the universe is (directly or indirectly) evident but unexplained: dark matter and dark energy

LHC experiments have a shot at finding a particle candidate for **dark matter**: dark matter interacts gravitationally \Rightarrow could it interact **weakly**?

- Specific, UV-complete theories:
 e.g. SUSY, with Lightest
 Supersymmetric Particle as DM
 candidate → optimise sensitivity
 for certain models
- Simplified models: e.g. effective theory encompassing interaction between SM and DM particles → less sensitive but more generic

Searches in the monojet final state

[Search for new physics in monojet: ATLAS CONF-2012-147]


• Select events with large jet p_T and missing transverse momentum

- Background estimation: use transfer factors from control regions in data
- Counting experiment: hope to observe excess of events above jet p_T and missing transverse momentum thresholds
- Set model-independent limits ($\sigma \times A$), limits on Large Extra Dimensions, WIMPs, Gravitinos

No significant excess over background in 10 fb $^{-1}$

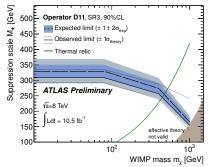
 Data, background and example signals in one of the signal regions

Errors on plot are statistical only

 8 TeV analysis limited by modelling uncertainties

Searches in the monojet final state

[Search for new physics in monojet: ATLAS CONF-2012-147]


• Select events with large jet p_T and missing transverse momentum

- Background estimation: use transfer factors from control regions in data
- Counting experiment: hope to observe excess of events above jet p_T and missing transverse momentum thresholds
- Set model-independent limits ($\sigma \times A$), limits on Large Extra Dimensions, WIMPs, Gravitinos

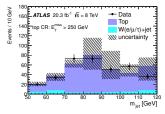
No significant excess over background in 10 fb $^{-1}$

Limits on WIMP scalar operator D11

Caveat: validity of effective theories at colliders

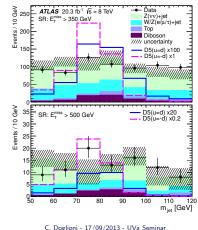
- \rightarrow Theory/experiment collaborations to ensure complementarity of DM searches
 - Higgs entering searches: reinterpretation in terms of H→ invisible BR (and vice-versa: H→ inv. reinterpreted as limits on WIMPs)

Searches with jets - Mono-X analyses for dark matter


Searches in mono-W final state

If dark matter has opposite-sign couplings to up and down quarks \rightarrow preferential radiation of W boson

[Search for dark matter in mono-W: ATLAS arXiv-1309.4017, Submitted (yesterday) to PRL]

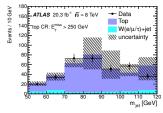

 Select events with C/A split/filtered jet, with mass around W peak (hadronic W) + missing transverse momentum

UNIVERSITÉ DE GENÈVE

- Main background estimation technique: similar to monojet (transfer factors)
- Look for excess over number of estimated events: no excess found in whole 8 TeV dataset

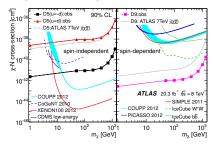
Data, background and hypothetical signal

Searches with jets - Mono-X analyses for dark matter



Searches in mono-W final state

If dark matter has opposite-sign couplings to up and down quarks \rightarrow preferential radiation of W boson


[Search for dark matter in mono-W: ATLAS arXiv-1309.4017, Submitted (yesterday) to PRL]

 Select events with C/A split/filtered jet, with mass around W peak (hadronic W) + missing transverse momentum

- Main background estimation technique: similar to monojet (transfer factors)
- Look for excess over number of estimated events: no excess found in whole 8 TeV dataset

• Limit on dark matter-nucleon cross section, compared to other experiments

 Also available: limit on Higgs to invisible branching ratio (σ_{inv}/σ_{tot SM} ≤ 1.6) Conclusions

UNIVERSITÉ

Conclusions and outlook

A wealth of jet results produced by ATLAS in 2011 7 and 8 TeV dataset: more precision measurements and searches in the pipeline

Jet algorithms and performance:

- No one fits all jet algorithm: complexity of jets can be exploited (e.g. jet substructure)
- Good understanding of the jet energy scale and resolution in ATLAS data throughout the LHC Run-I

Standard Model jet measurements:

- Good agreement of data and pQCD
- Effort ongoing to deliver ATLAS data for constraining PDFs/theory/MC models

Searches with jets:

- No evidence of new phenomena in jet final states
- Exclusion limits set on exotic models

Conclusions

Conclusions and outlook

A wealth of jet results produced by ATLAS in 2011 7 and 8 TeV dataset: Expect much more with the 13 TeV data: let's prepare for the excitement of dijet searches in 2015!

Evidence of absence

From Wikipedia, the free encyclopedia

Not to be confused with Absence of evidence.

Thanks for your attention!