Whither Quantum Computing?

Barry C. Sanders
Thanks to sponsor: Optical Society of America

4 April 2014

Computing

Programmable Machine to Perform Logical Operations

Solves computational problems (e.g., Decision or Sampling) by executing an algorithm (input, procedure, output) with available resources (e.g., memory, space, time).

Church-Turing Thesis

Calculable function (efficiently?) computed on a Turing machine.

Problem Size and Efficiency

Efficiency is polynomial scaling of resources with problem size (\# bits to specify input)

Decisions and Efficiency

Prime Factorization: exponential speedup

The prime factorization 72 is: $2 \times 2 \times 2 \times 3 \times 3=72$

Bob

Generating the Key

Security From \mathbb{Q} Key Distribution

Barry C. Sanders Thanks to sponsor: Optical Society of America Whither Quantum Computing?

What is the Matrix?

Feynman, Int. J. Th. Phys. 1982 §5

Can a \mathbb{Q} system be probabilistically simulated by a \mathbb{Q} (probabilistic, I'd assume) universal computer? In other words, a computer which will give the same probabilities as the \mathbb{Q} system does. If you take the computer to be the \mathbb{C} kind l've described so far (not the \mathbb{Q} kind described in the last section) and there're no changes in any laws, and there's no hocus-pocus, the answer is certainly, No! This is called the hidden-variable problem: it is impossible to represent the results of \mathbb{Q} mechanics with a \mathbb{C} universal device.

Q linear equation solver [Harrow Hassidim, Lloyd 2009]

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right)
$$

Building Blocks for a \mathbb{Q} Computer

\mathbb{Q} bits and \mathbb{Q} gates

- \mathbb{Q} bits: Superpositions of \mathbb{Q} logic states $|0\rangle$ and $|1\rangle$.
- Represent states as vectors: $|0\rangle=\binom{1}{0},|1\rangle=\binom{0}{1}$.
- \mathbb{Q} gates map states to states so, for one \mathbb{Q} bit, a gate is a 2×2 unitary matrix.
- Preparation: initial state is 'zero' $|00 \ldots 0\rangle$.
- Measurement in computational basis, e.g., $|0\rangle\langle 0| \otimes|1\rangle\langle 1| \otimes|1\rangle\langle 1|$.

Universal \mathbb{Q} Gate Set

2 1-Qbit and 1 entangling 2Q gate

- $H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$,
- $R=\frac{1}{\sqrt{2}}\left(\begin{array}{lc}1 & 0 \\ 0 & \exp \left(2 \pi \mathrm{i} \cos ^{-1}(3 / 5)\right)\end{array}\right)$,
- CNOT $=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$.

Circuit Representation of Universal \mathbb{Q} Gate Set

2 1-Qbit and 1 entangling 2Q gate

Entangling Gate

Schrödinger's cat schematic

Schrödinger's cat entanglement concept

$$
\begin{aligned}
&|\psi\rangle=\alpha|0\rangle+\beta|1\rangle 0 \\
&0\rangle 0 \\
&|0\rangle 0 \\
&=\alpha|000\rangle+\beta|111\rangle \\
&=\alpha|0\rangle_{\mathrm{L}}+\beta|1\rangle_{\mathrm{L}}=|\psi\rangle_{\mathrm{L}}
\end{aligned}
$$

Classical Switches

Barry C. Sanders Thanks to sponsor: Optical Society of America Whither Quantum Computing?

Quantum Computer Technologies: Nuclear Magnetic Resonance

Quantum Computer Technologies: Trapped Ions

Quantum Computer Technologies: Trapped Ions

Quantum Biology

Barry C. Sanders Thanks to sponsor: Optical Society of America Whither Quantum Computing?

SETHLLOY

PR O G R A M M | N G the Universe

A QUANTUM COMPUTER SCIENTIST Takes O_{n} THE COSMOS
(171)

Feynman

I [hypothesize] that ultimately physics will not require a mathematical statement, that in the end the machinery will be revealed, and the laws will turn out to be simple, like the checker board with all its apparent complexities.

