Brout-Englert-Higgs Mechanism and Beyond

Ajinkya Shrish Kamat

ajinkya@virginia.edu

http://people.virginia.edu/~ask4db/

University of Virginia

GPSA (Graduate Physics Students Association) Talk

11th November, 2013

Ajinkya S. Kamat, ajinkya@virginia.edu

Brout-Englert-Higgs Mechanism and Beyond

 The framework that combines principles of the Quantum Mechanics and the Special Relativity is the Quantum Field Theory (QFT)

イロト イヨト イヨト

- The framework that combines principles of the Quantum Mechanics and the Special Relativity is the Quantum Field Theory (QFT)
- Lagrangian (\mathcal{L}) is used instead of Hamiltonian (\mathcal{H})

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The framework that combines principles of the Quantum Mechanics and the Special Relativity is the Quantum Field Theory (QFT)
- Lagrangian (\mathcal{L}) is used instead of Hamiltonian (\mathcal{H})
- Physicists knew the Quantum Electrodynamics (QED) and tried to build a theory to explain the β-decay based on similar ideas

- The framework that combines principles of the Quantum Mechanics and the Special Relativity is the Quantum Field Theory (QFT)
- Lagrangian (\mathcal{L}) is used instead of Hamiltonian (\mathcal{H})
- Physicists knew the Quantum Electrodynamics (QED) and tried to build a theory to explain the β-decay based on similar ideas
- This theory agreed with experiments AT LOW ENERGY, but had BAD HIGH ENERGY BEHAVIOR

 \blacktriangleright To solve this a theory of 'weak interactions' was put forward adding W^\pm bosons as the force carriers of the weak force

- \blacktriangleright To solve this a theory of 'weak interactions' was put forward adding W^\pm bosons as the force carriers of the weak force
- ► To cancel certain 'badly behaving interactions' a third neutral W⁰ boson was added

イロト イヨト イヨト

- ► To solve this a theory of 'weak interactions' was put forward adding W[±] bosons as the force carriers of the weak force
- ► To cancel certain 'badly behaving interactions' a third neutral W⁰ boson was added
- Three matrices (T^{1,2,3}) were required for this cancellation with a condition

$$[T^a, T^b] = T^a T^b - T^b T^a = i \sum_c \epsilon^{abc} T^c$$

 \Rightarrow SU(2) group symmetry !

э

イロト 不得 トイヨト イヨト

► Construct Lagrangian of (Weak + QED) → ELECTROWEAK THEORY (SU(2) × U(1) symmetry)

 W^{μ} and A^{μ} combine to give $W\pm$, Z^{0} and photon γ

э

► Construct Lagrangian of (Weak + QED) → ELECTROWEAK THEORY (SU(2) × U(1) symmetry)

 W^{μ} and A^{μ} combine to give W^{\pm} , Z^{0} and photon γ

► Meaning of having a symmetry: If the 'Fields' associated with all particles undergo transformation under the symmetry group (something like multiplication by Exp(i ∑_a T^aα^a)), the Lagrangian of the theory remains invariant

э

If we want a freedom of performing such transformations at a point in space-time without affecting fields at other space-time points (LOCAL SYMMETRY: α → α(x)),

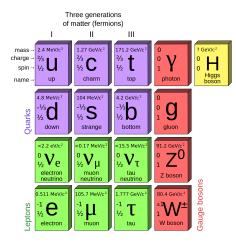
 If we want a freedom of performing such transformations at a point in space-time without affecting fields at other space-time points (LOCAL SYMMETRY: α → α(x)), then the W^{±,0} mass terms
 M²_WW[†]_µW^µ cannot be added to the Lagrangian by hand

- If we want a freedom of performing such transformations at a point in space-time without affecting fields at other space-time points (LOCAL SYMMETRY: α → α(x)), then the W^{±,0} mass terms
 M²_WW[†]_µW^µ cannot be added to the Lagrangian by hand
- Same for mass terms like $m_f \bar{\Psi}_f \Psi_f$ of fermions (electron, neutrinos, muon etc.)

- If we want a freedom of performing such transformations at a point in space-time without affecting fields at other space-time points (LOCAL SYMMETRY: $\alpha \rightarrow \alpha(x)$), then the $W^{\pm,0}$ mass terms $\sim M_W^2 W_{\mu}^{\dagger} W^{\mu}$ cannot be added to the Lagrangian by hand
- Same for mass terms like $m_f \bar{\Psi}_f \Psi_f$ of fermions (electron, neutrinos, muon etc.)
- Because these particles MUST be massive some other mechanism is needed to give these particles their masses

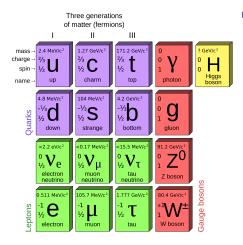
5

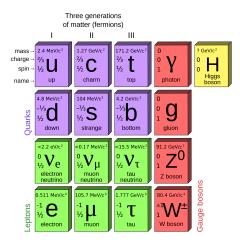
イロト イヨト イヨト


BROUT-ENGLERT-HIGGS MECHANISM

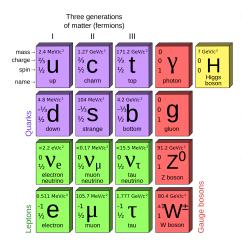
In 1964 by 3 groups: Robert Brout and François Englert; by Peter Higgs; and by Gerald Guralnik, C. R. Hagen, and Tom Kibble

Incorporated in the Standard Model by Steven Weinberg (1967) and Abdus Salam (1968)


4 1 1 4 1 1 1


7

< 個 → < Ξ


 Accounts for *almost* everything about Electroweak and Strong interactions of the fundamental particles in Nature (not gravitational)

- Accounts for almost everything about Electroweak and Strong interactions of the fundamental particles in Nature (not gravitational)
- ► SU(3) × SU(2) × U(1) LOCAL GAUGE SYMMETRY

- Accounts for *almost* everything about Electroweak and Strong interactions of the fundamental particles in Nature (not gravitational)
- ► SU(3) × SU(2) × U(1) LOCAL GAUGE SYMMETRY
- It is important to understand how all these elementary particles get their masses or massless-ness

► $SU(2) \times U(1)$ local gauge symmetry demands that W^{\pm} , Z^0 and fermions (spin-1/2) particles are massless

э

- ► $SU(2) \times U(1)$ local gauge symmetry demands that W^{\pm} , Z^0 and fermions (spin-1/2) particles are massless
- Observations show that these particles are massive

- ► $SU(2) \times U(1)$ local gauge symmetry demands that W^{\pm} , Z^0 and fermions (spin-1/2) particles are massless
- Observations show that these particles are massive
- ▶ This means that in the stable state of the universe that we are in, $SU(2) \times U(1)$ is broken

- ► $SU(2) \times U(1)$ local gauge symmetry demands that W^{\pm} , Z^0 and fermions (spin-1/2) particles are massless
- Observations show that these particles are massive
- ▶ This means that in the stable state of the universe that we are in, $SU(2) \times U(1)$ is broken
- Thus, SU(2) × U(1) symmetry must have existed right after the Big Bang and soon after that THE SYMMETRY WAS BROKEN SPONTANEOUSLY

SOME CONCEPTS

Ajinkya S. Kamat, ajinkya@virginia.edu

Brout-Englert-Higgs Mechanism and Beyond

GPSA talk, 11th November, 2013 9

э

イロト イヨト イヨト

 QFT is usually used with perturbation theory to study effects of 'relatively less probable' interactions

イロト イヨト イヨト

- QFT is usually used with perturbation theory to study effects of 'relatively less probable' interactions
- Imagine Taylor expansion: $\frac{1}{1-ax} \approx 1 + ax + O(a^2x^2)$ if ax << 1

э

- QFT is usually used with perturbation theory to study effects of 'relatively less probable' interactions
- Imagine Taylor expansion: $\frac{1}{1-ax} \approx 1 + ax + O(a^2x^2)$ if ax << 1
- Similarly in QFT perturbation theory

э

(日)

- QFT is usually used with perturbation theory to study effects of 'relatively less probable' interactions
- Imagine Taylor expansion: $\frac{1}{1-ax} \approx 1 + ax + O(a^2x^2)$ if ax << 1
- Similarly in QFT perturbation theory the fields need to have small values i.e. average value zero + quantum fluctuations

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ajinkya S. Kamat, ajinkya@virginia.edu

Brout-Englert-Higgs Mechanism and Beyond

GPSA talk, 11th November, 2013 11

2

▶ In Lagrangian the kinetic terms of fields have $(\partial_{\rho}\phi)$ i.e. $(\partial\phi/\partial x^{\rho})$

2

- ▶ In Lagrangian the kinetic terms of fields have $(\partial_{\rho}\phi)$ i.e. $(\partial\phi/\partial x^{\rho})$
- ▶ ∂_ρ assumes that the difference between fields at x and x + δx is due to different space-time points

イロト イヨト イヨト

- ▶ In Lagrangian the kinetic terms of fields have $(\partial_{\rho}\phi)$ i.e. $(\partial\phi/\partial x^{\rho})$
- → ∂_ρ assumes that the difference between fields at x and x + δx is due to different space-time points
- When there is LOCAL GAUGE SYMMETRY, actually their phases might be different too: α(x) ≠ α(x + δx)

- ▶ In Lagrangian the kinetic terms of fields have $(\partial_{\rho}\phi)$ i.e. $(\partial\phi/\partial x^{\rho})$
- → ∂_ρ assumes that the difference between fields at x and x + δx is due to different space-time points
- When there is LOCAL GAUGE SYMMETRY, actually their phases might be different too: α(x) ≠ α(x + δx)
- Hence, a meaningful derivative has to account for this and find effect only due to space-time translation

- ▶ In Lagrangian the kinetic terms of fields have $(\partial_{\rho}\phi)$ i.e. $(\partial\phi/\partial x^{\rho})$
- → ∂_ρ assumes that the difference between fields at x and x + δx is due to different space-time points
- When there is LOCAL GAUGE SYMMETRY, actually their phases might be different too: α(x) ≠ α(x + δx)
- Hence, a meaningful derivative has to account for this and find effect only due to space-time translation : COVARIANT DERIVATIVE

- ▶ In Lagrangian the kinetic terms of fields have $(\partial_{\rho}\phi)$ i.e. $(\partial\phi/\partial x^{\rho})$
- → ∂_ρ assumes that the difference between fields at x and x + δx is due to different space-time points
- When there is LOCAL GAUGE SYMMETRY, actually their phases might be different too: α(x) ≠ α(x + δx)
- Hence, a meaningful derivative has to account for this and find effect only due to space-time translation : COVARIANT DERIVATIVE
- ► $D_{\rho}\phi = \partial_{\rho}\phi + ig A_{\rho} \phi$: $A_{\rho} \rightarrow$ Gauge Field (like the photon in QED)

- ▶ In Lagrangian the kinetic terms of fields have $(\partial_{\rho}\phi)$ i.e. $(\partial\phi/\partial x^{\rho})$
- → ∂_ρ assumes that the difference between fields at x and x + δx is due to different space-time points
- When there is LOCAL GAUGE SYMMETRY, actually their phases might be different too: α(x) ≠ α(x + δx)
- Hence, a meaningful derivative has to account for this and find effect only due to space-time translation : COVARIANT DERIVATIVE
- ► $D_{\rho}\phi = \partial_{\rho}\phi + ig A_{\rho} \phi$: $A_{\rho} \rightarrow$ Gauge Field (like the photon in QED)
- ▶ By defining requirement when $\phi(x) \rightarrow Exp[i\alpha(x)] \phi(x)$ $A_{\rho}(x) \rightarrow A_{\rho}(x) - (1/g) \partial_{\rho}\alpha(x)$

э

イロト 不得 トイヨト イヨト

Covariant Derivative

- ▶ In Lagrangian the kinetic terms of fields have $(\partial_{\rho}\phi)$ i.e. $(\partial\phi/\partial x^{\rho})$
- → ∂_ρ assumes that the difference between fields at x and x + δx is due to different space-time points
- When there is LOCAL GAUGE SYMMETRY, actually their phases might be different too: α(x) ≠ α(x + δx)
- Hence, a meaningful derivative has to account for this and find effect only due to space-time translation : COVARIANT DERIVATIVE
- ► $D_{\rho}\phi = \partial_{\rho}\phi + ig A_{\rho} \phi$: $A_{\rho} \rightarrow$ Gauge Field (like the photon in QED)
- ▶ By defining requirement when $\phi(x) \rightarrow Exp[i\alpha(x)] \phi(x)$ $A_{\rho}(x) \rightarrow A_{\rho}(x) - (1/g) \partial_{\rho}\alpha(x)$
- Hereafter, we'll use the covariant derivative in the kinetic terms

< ロ > < 同 > < 回 > < 回 >

2

Ajinkya S. Kamat, ajinkya@virginia.edu

Brout-Englert-Higgs Mechanism and Beyond

GPSA talk, 11th November, 2013 12

<ロ> <四> <ヨ> <ヨ>

• Consider a model with LOCAL U(1) symmetry

Ajinkya S. Kamat, ajinkya@virginia.edu

Brout-Englert-Higgs Mechanism and Beyond

2

イロト イロト イヨト イヨト

- Consider a model with LOCAL U(1) symmetry
- A real gauge field A_{ρ} (associated with force carrier spin-1 particle) and a complex scalar (associated with a spin-0 particle) field $\phi = \frac{1}{\sqrt{2}}(\phi_1 + i \phi_2)$

イロト イボト イヨト イヨト

- Consider a model with LOCAL U(1) symmetry
- A real gauge field A_{ρ} (associated with force carrier spin-1 particle) and a complex scalar (associated with a spin-0 particle) field $\phi = \frac{1}{\sqrt{2}}(\phi_1 + i \phi_2)$
- ► A_ρ needs to be massive but due to LOCAL U(1) GAUGE SYMMETRY mass term cannot be added by hand

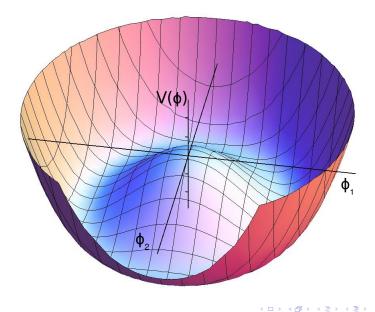
< ロ > < 同 > < 回 > < 回 >

- Consider a model with LOCAL U(1) symmetry
- A real gauge field A_{ρ} (associated with force carrier spin-1 particle) and a complex scalar (associated with a spin-0 particle) field $\phi = \frac{1}{\sqrt{2}}(\phi_1 + i \phi_2)$
- ► A_ρ needs to be massive but due to LOCAL U(1) GAUGE SYMMETRY mass term cannot be added by hand
- Lagrangian: $\mathcal{L} = (D_{\rho}\phi)^{\dagger}(D^{\rho}\phi) \frac{1}{4}F_{\rho\sigma}F^{\rho\sigma} V(\phi)$

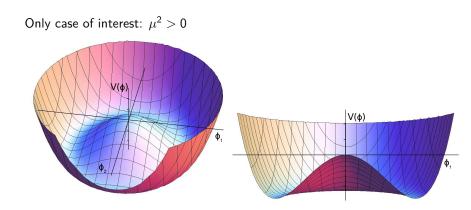
with potential $V(\phi)=-\mu^2 \ \phi^\dagger \phi \ + \ \lambda \ (\phi^\dagger \phi)^2$

< ロ > < 同 > < 回 > < 回 >

- Consider a model with LOCAL U(1) symmetry
- A real gauge field A_{ρ} (associated with force carrier spin-1 particle) and a complex scalar (associated with a spin-0 particle) field $\phi = \frac{1}{\sqrt{2}}(\phi_1 + i \phi_2)$
- ► A_ρ needs to be massive but due to LOCAL U(1) GAUGE SYMMETRY mass term cannot be added by hand
- Lagrangian: $\mathcal{L} = (D_{\rho}\phi)^{\dagger}(D^{\rho}\phi) \frac{1}{4}F_{\rho\sigma}F^{\rho\sigma} V(\phi)$


with potential $V(\phi)=-\mu^2 \ \phi^\dagger \phi \ + \ \lambda \ (\phi^\dagger \phi)^2$

No higher orders of \u03c6 to ensure that all infinite interactions/diagrams can be cancelled (*Renormalizability!*)


< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Only case of interest: $\mu^2 > 0$ ($\mu^2 < 0$ does not have the 'valley')

2

Ajinkya S. Kamat, ajinkya@virginia.edu

Brout-Englert-Higgs Mechanism and Beyond

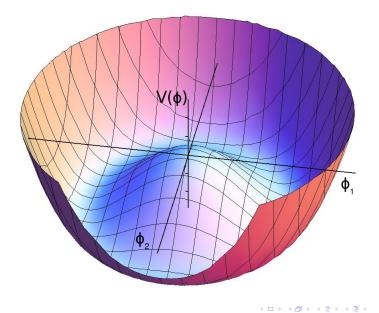
GPSA talk, 11th November, 2013 14

ъ

<ロ> <四> <ヨ> <ヨ>

► Stable state of the field ϕ is at $|\phi|^2 = \mu^2/\lambda = v^2/2$ i.e. $\phi_1^2 + \phi_2^2 = v^2 \rightarrow a$ circle

2


イロト イヨト イヨト イヨト

- ► Stable state of the field ϕ is at $|\phi|^2 = \mu^2/\lambda = v^2/2$ i.e. $\phi_1^2 + \phi_2^2 = v^2 \rightarrow a$ circle
- ► This is the state that all the 'Expectation (like average) values' (e.g. < φ >) are seen to be in

イロト イボト イヨト イヨト

Only case of interest: $\mu^2 > 0$

æ

▶ Stable state (ground state) of the field ϕ is at $|\phi|^2 = \mu^2/\lambda = v^2/2$ i.e. $\phi_1^2 + \phi_2^2 = v^2 \rightarrow a$ circle

э

イロト イヨト イヨト イヨト

- ► Stable state (ground state) of the field ϕ is at $|\phi|^2 = \mu^2/\lambda = v^2/2$ i.e. $\phi_1^2 + \phi_2^2 = v^2 \rightarrow a$ circle
- ► All states on this circle are *equally* stable ⇒ we can choose any point as the ground state.

イロト イヨト イヨト

- Stable state (ground state) of the field φ is at |φ|² = μ²/λ = v²/2
 i.e. φ₁² + φ₂² = v² → a circle
- ► All states on this circle are *equally* stable ⇒ we can choose any point as the ground state.
- Choose, (say) $< \phi_1 >= v$ and $< \phi_2 >= 0$

イロト イヨト イヨト

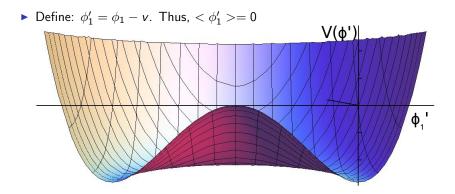
- Stable state (ground state) of the field φ is at |φ|² = μ²/λ = v²/2
 i.e. φ₁² + φ₂² = v² → a circle
- ► All states on this circle are *equally* stable ⇒ we can choose any point as the ground state.
- Choose, (say) $< \phi_1 >= v$ and $< \phi_2 >= 0$
- ► All classical, NOTHING QUANTUM YET

< ロ > < 同 > < 回 > < 回 >

- ► Stable state (ground state) of the field ϕ is at $|\phi|^2 = \mu^2/\lambda = v^2/2$ i.e. $\phi_1^2 + \phi_2^2 = v^2 \rightarrow a$ circle
- ► All states on this circle are *equally* stable ⇒ we can choose any point as the ground state.
- Choose, (say) $< \phi_1 >= v$ and $< \phi_2 >= 0$
- All classical, NOTHING QUANTUM YET
- One problem in working with these fields: We want to use perturbation theory

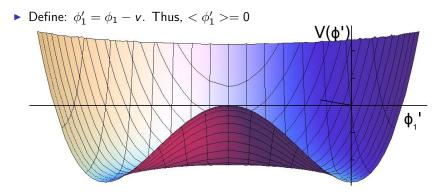
And perturbation theory requires smallness of the terms in the expansion (much like Taylor expansion)

イロト イボト イヨト イヨト


- ► Stable state (ground state) of the field ϕ is at $|\phi|^2 = \mu^2/\lambda = v^2/2$ i.e. $\phi_1^2 + \phi_2^2 = v^2 \rightarrow a$ circle
- ► All states on this circle are *equally* stable ⇒ we can choose any point as the ground state.
- Choose, (say) $< \phi_1 >= v$ and $< \phi_2 >= 0$
- All classical, NOTHING QUANTUM YET
- One problem in working with these fields: We want to use perturbation theory

And perturbation theory requires smallness of the terms in the expansion (much like Taylor expansion)

► So the fields must have average value zero in the ground state



イロト イボト イヨト イヨト

GPSA talk, 11th November, 2013 18

The symmetry OF THE GROUND STATE is broken SPONTANEOUSLY

Ajinkya S. Kamat, ajinkya@virginia.edu

2

イロト イヨト イヨト イヨト

 $(D_
ho \phi)^\dagger (D^
ho \phi) = (\text{some 'ok' terms})$

Ajinkya S. Kamat, ajinkya@virginia.edu

Brout-Englert-Higgs Mechanism and Beyond

GPSA talk, 11th November, 2013 19

イロト イヨト イヨト イヨト 二日

$$(D_{
ho}\phi)^{\dagger}(D^{
ho}\phi) = (\text{some 'ok' terms}) + \frac{g^2 v^2}{2}A_{
ho}A^{
ho} (\text{hurray!})$$

æ

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ →

$$(D_{
ho}\phi)^{\dagger}(D^{
ho}\phi) = (\text{some 'ok' terms}) + \frac{g^2 v^2}{2} A_{
ho} A^{
ho} (\text{hurray!})$$

 $- g v \ A_{
ho} \ (\partial^{
ho} \phi_2 + g \ A^{
ho} \phi_1')$ (problem again!!)

2

Ajinkya S. Kamat, ajinkya@virginia.edu

Brout-Englert-Higgs Mechanism and Beyond

GPSA talk, 11th November, 2013 19

ヘロト ヘロト ヘヨト ヘヨト

$$(D_{\rho}\phi)^{\dagger}(D^{\rho}\phi) = (\text{some 'ok' terms}) + \frac{g^2 v^2}{2}A_{\rho}A^{\rho} (\text{hurray!})$$

 $-gv A_{\rho} (\partial^{\rho}\phi_2 + g A^{\rho}\phi'_1) (\text{problem again!!})$

Don't worry, we're very close to the solution

2

イロト イヨト イヨト イヨト

$$(D_{
ho}\phi)^{\dagger}(D^{
ho}\phi) = (\text{some 'ok' terms}) + \frac{g^2 v^2}{2}A_{
ho}A^{
ho} (\text{hurray!})$$

 $-gv A_{
ho} (\partial^{
ho}\phi_2 + g A^{
ho}\phi_1') (\text{problem again!!})$

- Don't worry, we're very close to the solution
- ► Try polar coordinates: $\phi(x) = \operatorname{radial}(x) \operatorname{Exp}[i \ \theta(x)] = \frac{1}{\sqrt{2}}(v + \eta(x)) \operatorname{Exp}[i \ \theta(x)/v]$

э

イロト イボト イヨト イヨト

$$(D_{\rho}\phi)^{\dagger}(D^{\rho}\phi) = (\text{some 'ok' terms}) + \frac{g^2 v^2}{2}A_{\rho}A^{\rho} (\text{hurray!})$$

 $-gv A_{\rho} (\partial^{\rho}\phi_2 + g A^{\rho}\phi'_1) (\text{problem again!!})$

Don't worry, we're very close to the solution

Try polar coordinates:
$$\phi(x) = \operatorname{radial}(x) \ \operatorname{Exp}[i \ \theta(x)] = \frac{1}{\sqrt{2}}(v + \eta(x)) \ \operatorname{Exp}[i \ \theta(x)/v]$$

$$\phi(x) \approx \frac{1}{\sqrt{2}} (v + \eta(x) + i \ \theta(x)) \text{ and}$$

$$= \frac{1}{\sqrt{2}}(v + \phi_1'(x) + i \ \phi_2(x))$$

2

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Use symmetry and transform:

$$\phi(x) \rightarrow \phi'(x) = Exp[-i \theta(x)/v] \phi(x)$$

2

イロン イロン イヨン イヨン

▶ Use symmetry and transform:

$$\phi(x) \rightarrow \phi'(x) = Exp[-i \theta(x)/v] \phi(x)$$

$$\blacktriangleright \hspace{0.1cm} \text{So} \hspace{0.1cm} A_{\rho}(x) \hspace{0.1cm} \rightarrow \hspace{0.1cm} A'_{\rho}(x) \hspace{0.1cm} = \hspace{0.1cm} A_{\rho}(x) - (1/\hspace{0.1cm} g) \hspace{0.1cm} \partial_{\rho}\theta(x)$$

2

イロン イロン イヨン イヨン

• Use symmetry and transform: $\phi(x) \rightarrow \phi'(x) = Exp[-i \theta(x)/v] \phi(x)$

$$\blacktriangleright \ {\sf So} \ {\sf A}_\rho(x) \ \rightarrow \ {\sf A}'_\rho(x) \ = \ {\sf A}_\rho(x) - (1/\ g) \ \partial_\rho \theta(x)$$

Now when L is expanded there's no θ(x) i.e. no φ₂ and A_ρ has a mass (g v). φ₂ "absorbed" by A_ρ

3

イロト 不得 トイヨト イヨト

• Use symmetry and transform: $\phi(x) \rightarrow \phi'(x) = Exp[-i\theta(x)/v]\phi(x)$

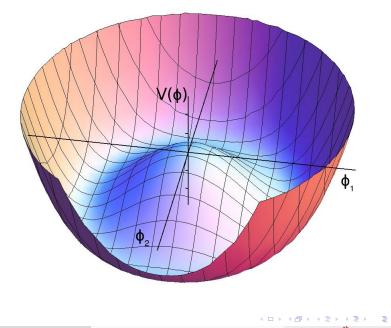
$$\blacktriangleright \text{ So } A_{\rho}(x) \rightarrow A_{\rho}'(x) = A_{\rho}(x) - (1/g) \partial_{\rho}\theta(x)$$

- Now when L is expanded there's no θ(x) i.e. no φ₂ and A_ρ has a mass (g v). φ₂ "absorbed" by A_ρ
- AND

3

イロン イ団 とく ヨン イヨン

• Use symmetry and transform:


 $\phi(x) \rightarrow \phi'(x) = Exp[-i \ \theta(x)/v] \ \phi(x)$

- $\blacktriangleright \ {\sf So} \ {\sf A}_\rho(x) \ \rightarrow \ {\sf A}'_\rho(x) \ = \ {\sf A}_\rho(x) (1/\ g) \ \partial_\rho \theta(x)$
- Now when L is expanded there's no θ(x) i.e. no φ₂ and A_ρ has a mass (g v). φ₂ "absorbed" by A_ρ
- \blacktriangleright AND a scalar particle associated with ϕ_1' has appeared having mass $(\sqrt{2}~\mu)$
 - \rightarrow BROUT-ENGLERT-HIGGS BOSON :-)

э

イロト 不得 トイヨト イヨト

マンシン シックへで In the Standard Model, the electroweak symmetry is SU(2) × U(1). So scalar φ is a (2 × 1) matrix instead of a number, but the calculations proceed in the same way

イロト イヨト イヨト

- In the Standard Model, the electroweak symmetry is SU(2) × U(1). So scalar φ is a (2 × 1) matrix instead of a number, but the calculations proceed in the same way
- ► This mechanism gives mass term for W[±] and Z⁰ bosons, but not for the photon. So the photon is massless

イロト イヨト イヨト

- In the Standard Model, the electroweak symmetry is SU(2) × U(1). So scalar φ is a (2 × 1) matrix instead of a number, but the calculations proceed in the same way
- ► This mechanism gives mass term for W[±] and Z⁰ bosons, but not for the photon. So the photon is massless
- ▶ Higgs field interacts with the fermions through Yukawa interaction

$$\sim g_f \phi \bar{\psi}_f \psi_f = \frac{g_f v}{\sqrt{2}} \bar{\psi}_f \psi_f + (\text{interaction with } \phi')$$

 \rightarrow masses of fermions (Neutrinos are still massless)

< ロ > < 同 > < 回 > < 回 >

Clarifying Some Concepts

 Symmetry of the Lagrangian IS NOT BROKEN but that of the GROUND STATE is broken

イロト イヨト イヨト

- Symmetry of the Lagrangian IS NOT BROKEN but that of the GROUND STATE is broken
- Higgs boson (particle) DOES NOT give mass to the particles but the interaction with the HIGGS FIELD is responsible for that

- Symmetry of the Lagrangian IS NOT BROKEN but that of the GROUND STATE is broken
- Higgs boson (particle) DOES NOT give mass to the particles but the interaction with the HIGGS FIELD is responsible for that
- Mass of the Higgs boson cannot be predicted theoretically even if g and v are known (this is where LHC discovery comes in)

- Symmetry of the Lagrangian IS NOT BROKEN but that of the GROUND STATE is broken
- Higgs boson (particle) DOES NOT give mass to the particles but the interaction with the HIGGS FIELD is responsible for that
- Mass of the Higgs boson cannot be predicted theoretically even if g and v are known (this is where LHC discovery comes in)
- IT IS NOT RESPONSIBLE FOR MASS OF ALL THE MATTER IN THE UNIVERSE

- Symmetry of the Lagrangian IS NOT BROKEN but that of the GROUND STATE is broken
- Higgs boson (particle) DOES NOT give mass to the particles but the interaction with the HIGGS FIELD is responsible for that
- Mass of the Higgs boson cannot be predicted theoretically even if g and v are known (this is where LHC discovery comes in)
- IT IS NOT RESPONSIBLE FOR MASS OF ALL THE MATTER IN THE UNIVERSE
- $\blacktriangleright \sim 99.9\%$ mass of the visible universe comes from the strong force between quarks!

- Symmetry of the Lagrangian IS NOT BROKEN but that of the GROUND STATE is broken
- Higgs boson (particle) DOES NOT give mass to the particles but the interaction with the HIGGS FIELD is responsible for that
- Mass of the Higgs boson cannot be predicted theoretically even if g and v are known (this is where LHC discovery comes in)
- IT IS NOT RESPONSIBLE FOR MASS OF ALL THE MATTER IN THE UNIVERSE
- $\blacktriangleright \sim 99.9\%$ mass of the visible universe comes from the strong force between quarks!
- NOT THE GOD PARTICLE!!

 \blacktriangleright The Higgs boson associated with 2 \times 1 matrix ϕ is the SIMPLEST case that fits in the Standard Model

イロト イヨト イヨト

- ▶ The Higgs boson associated with 2×1 matrix ϕ is the SIMPLEST case that fits in the Standard Model
- > This is what the experiments at LHC were primarily looking for

イロト イヨト イヨト

- ▶ The Higgs boson associated with 2×1 matrix ϕ is the SIMPLEST case that fits in the Standard Model
- ▶ This is what the experiments at LHC were primarily looking for
- There can be MORE as well as MORE COMPLICATED Higgs bosons (like charged Higgs, doubly charged Higgs, etc)

- ▶ The Higgs boson associated with 2×1 matrix ϕ is the SIMPLEST case that fits in the Standard Model
- ▶ This is what the experiments at LHC were primarily looking for
- There can be MORE as well as MORE COMPLICATED Higgs bosons (like charged Higgs, doubly charged Higgs, etc)
- The particle discovered at LHC on July 4th, 2012 with mass
 ~ 126 GeV is looking more and more like the Standard Model Higgs boson, although it can be an impostor

- ▶ The Higgs boson associated with 2×1 matrix ϕ is the SIMPLEST case that fits in the Standard Model
- ▶ This is what the experiments at LHC were primarily looking for
- There can be MORE as well as MORE COMPLICATED Higgs bosons (like charged Higgs, doubly charged Higgs, etc)
- The particle discovered at LHC on July 4th, 2012 with mass ~ 126 GeV is looking more and more like the Standard Model Higgs boson, although it can be an impostor and/or there can be (pleeeeaaase be there) something else BEYOND

イロト イポト イモト イモト

 Many questions still unanswered: it has been proved again and again that the neutrinos DO HAVE masses

э

< □ > < □ > < □ > < □ > < □ >

- Many questions still unanswered: it has been proved again and again that the neutrinos DO HAVE masses
- Clear evidence that something remains beyond the Standard Model

イロト イヨト イヨト

- Many questions still unanswered: it has been proved again and again that the neutrinos DO HAVE masses
- ► Clear evidence that something remains beyond the Standard Model
- If neutrinos are massive then they should come in two types:
 - left-handed (travels opposite to spin)
 - right-handed (travels in direction of spin)

イロト イヨト イヨト

- Many questions still unanswered: it has been proved again and again that the neutrinos DO HAVE masses
- Clear evidence that something remains beyond the Standard Model
- If neutrinos are massive then they should come in two types:
 - left-handed (travels opposite to spin)
 - right-handed (travels in direction of spin)
- Only left-handed have been observed

- Many questions still unanswered: it has been proved again and again that the neutrinos DO HAVE masses
- Clear evidence that something remains beyond the Standard Model
- If neutrinos are massive then they should come in two types:
 - left-handed (travels opposite to spin)
 - right-handed (travels in direction of spin)
- Only left-handed have been observed
- Many Grand Unified Theories (GUT) postulate right-handed neutrinos at mass ~ 10¹⁶⁻¹⁷ GeV!!
 Cannot be detected at LHC or near future colliders

Is it possible to have mass of the right-handed neutrino in the mass range $% \ensuremath{\mathsf{ACCESSIBLE}}$ TO LHC

< □ > < □ > < □ > < □ > < □ >

Is it possible to have mass of the right-handed neutrino in the mass range ACCESSIBLE TO LHC WITH NO NEW FUNDAMENTAL FORCES added to the Standard Model ?

Ajinkya S. Kamat, ajinkya@virginia.edu

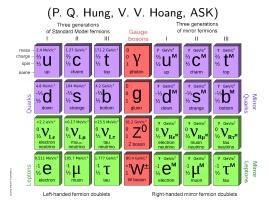
Brout-Englert-Higgs Mechanism and Beyond

GPSA talk, 11th November, 2013 26

イロト イポト イヨト イヨト

YES, the Electroweak-scale Right-handed Neutrino (EW ν_{R}) Model (P. Q. Hung, V. V. Hoang, ASK)

Ajinkya S. Kamat, ajinkya@virginia.edu


Brout-Englert-Higgs Mechanism and Beyond

GPSA talk, 11th November, 2013 27

2

イロト イヨト イヨト イヨト

YES, the Electroweak-scale Right-handed Neutrino (EW ν_R) Model

Ajinkya S. Kamat, ajinkya@virginia.edu

Brout-Englert-Higgs Mechanism and Beyond

• • • • • • • • • • • •

YES, the Electroweak-scale Right-handed Neutrino (EW ν_R) Model

Ajinkya S. Kamat, ajinkya@virginia.edu

Brout-Englert-Higgs Mechanism and Beyond

GPSA talk, 11th November, 2013

er, 2013 27

Can be tested at LHC as well as neutrino experiments

2

イロン イロン イヨン イヨン

- Can be tested at LHC as well as neutrino experiments
- ▶ We have showed that it fits well within the precision constraints on the electroweak new Physics (Nucl. Phys. B, Volume 877, Issue 2)

イロト イポト イヨト イヨト

- Can be tested at LHC as well as neutrino experiments
- We have showed that it fits well within the precision constraints on the electroweak new Physics (Nucl. Phys. B, Volume 877, Issue 2)
- Our calculations also show that the a Higgs boson in this model can show properties of the Standard Model Higgs boson as seen at LHC experiments (paper under preparation)

- Can be tested at LHC as well as neutrino experiments
- We have showed that it fits well within the precision constraints on the electroweak new Physics (Nucl. Phys. B, Volume 877, Issue 2)
- Our calculations also show that the a Higgs boson in this model can show properties of the Standard Model Higgs boson as seen at LHC experiments (paper under preparation)
- Many exciting possibilities in this model as well as others. Stay tuned!

イロト イヨト イヨト イヨト

Thank You :-)

Ajinkya S. Kamat, ajinkya@virginia.edu

Brout-Englert-Higgs Mechanism and Beyond

GPSA talk, 11th November, 2013 29

2

イロン イロン イヨン イヨン