Analysis of α_s from the realization of quark-hadron duality

Aurore Courtoy ULg (Belgium)

Seminar at UVa March 21st, 2013

Outline

Hadron Phenomenology

- PDFs at large-x
- Parton-Hadron Duality
 - How to explain it?
 - Rôle of perturbative QCD
 - New data analysis: JLab
 - Intersection of pQCD and nonperturbative QCD
- Strong coupling constant at low energy

Hadron Phenomenology

Hadron ⇔ Constituent quarks ⇔ Current quarks

Energy scale

Hadron ⇔ Constituent quarks ⇔ Current quarks

Nonperturbative vs. Perturbative QCD

Nonperturbative vs. Perturbative QCD

Energy scale

Nonperturbative vs. Perturbative QCD

Energy scale

Nonperturbative vs. Perturbative QCD

Energy scale

Hard Probes and Factorization

Small size configuration \Rightarrow Hard Probes \Rightarrow Hard processes

Deep Inelastic Scattering

Hadronic tensor \Rightarrow

Parton Model High energy photon Q² Fast-moving proton Bjorken scaling

Hard Probes and Factorization

Small size configuration \Rightarrow Hard Probes \Rightarrow Hard processes

Deep Inelastic Scattering

Bjorken scaling

Structure Functions and DIS

Parton Model Bjorken scaling

$$F_2(x,Q^2) = \sum_{q\bar{q}} \int_0^1 d\xi \, f_1(\xi,Q^2) \, x e_q^2 \, \delta(x-\xi)$$

$$F_2(x) \equiv F_2(x, Q^2)$$

Scaling violations lead to Q²-dependence of the Structure Functions

- → DGLAP equations [Dokshitzer-Gribov-Lipatov Altarelli-Parisi]
- \rightarrow Jargon: "Q² or QCD evolution"

$$F_2(x,Q^2) = x \sum_{q,\bar{q}} e_q^2 \left[q_0(x) + \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} q_0(\xi) \right]$$
$$\left\{ P\left(\frac{x}{\xi}\right) \ln \frac{Q^2}{\kappa^2} + C\left(\frac{x}{\xi}\right) + \dots \right\}$$

$$q(x,\mu^2) = q_0(x) + \frac{\alpha_S}{2\pi} \int_x^1 \frac{d\xi}{\xi} q_0(\xi) \left\{ P\left(\frac{x}{\xi}\right) \ln \frac{\mu^2}{\kappa^2} + C\left(\frac{x}{\xi}\right) \right\}$$

 $q_0 \rightarrow \text{ input PDFs}$ $P \rightarrow \text{ splitting functions}$ $C \rightarrow \text{ coefficient functions}$

$$F_2(x,Q^2) = x \sum_{q,\bar{q}} e_q^2 \left[q_0(x) + \frac{\alpha_S}{2\pi} \int_x^1 \frac{d\xi}{\xi} q_0(\xi) \right]$$
$$\left\{ P\left(\frac{x}{\xi}\right) \ln \frac{Q^2}{\kappa^2} + C\left(\frac{x}{\xi}\right) + \dots \right\}$$

$$q(x,\mu^2) = q_0(x) + \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} q_0(\xi) \left\{ P\left(\frac{x}{\xi}\right) \ln \frac{\mu^2}{\kappa^2} + C\left(\frac{x}{\xi}\right) \right\}$$

In practice:

1. DGLAP

2. convolution with coefficient functions

 $q_0 \rightarrow \text{ input PDFs}$ $P \rightarrow \text{ splitting functions}$ $C \rightarrow \text{ coefficient functions}$

$$F_2(x,Q^2) = x \sum_{q,\bar{q}} e_q^2 \left[q_0(x) + \frac{\alpha_S}{2\pi} \int_x^1 \frac{d\xi}{\xi} q_0(\xi) \right]$$
$$\left\{ P\left(\frac{x}{\xi}\right) \ln \frac{Q^2}{\kappa^2} + C\left(\frac{x}{\xi}\right) + \dots \right\}$$

$$q(x,\mu^2) = q_0(x) + \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} q_0(\xi) \left\{ P\left(\frac{x}{\xi}\right) \ln \frac{\mu^2}{\kappa^2} + C\left(\frac{x}{\xi}\right) \right\}$$

In practice:

- 1. DGLAP
- 2. convolution with coefficient functions

 $q_0 \rightarrow \text{ input PDFs}$ $P \rightarrow \text{ splitting functions}$ $C \rightarrow \text{ coefficient functions}$

DIS scheme
$$\rightarrow$$

 $F_2(x,Q^2) = x \sum_{q,\bar{q}} e_q^2 \int_x^1 \frac{d\xi}{\xi} q(\xi,\mu^2)$
 $\times \left\{ \delta(1-\frac{x}{\xi}) + \frac{\alpha_S}{2\pi} P\left(\frac{x}{\xi}\right) \ln \frac{Q^2}{\mu^2} + \ldots \right\}$
 $\overline{\text{MS scheme}} \rightarrow$
 $F_2(x,Q^2) = x \sum_{q,\bar{q}} e_q^2 \int_x^1 \frac{d\xi}{\xi} q(\xi,Q^2) \left\{ \delta(1-\frac{x}{\xi}) + \frac{\alpha_S}{2\pi} C_{\overline{\text{MS}}}\left(\frac{x}{\xi}\right) + \ldots \right\}$

Large-x region

- When $x \rightarrow 1$, \rightarrow elastic scattering
- Exclusive scattering
- Intertwine with resonance region
- How to obtain clean PDFs?

Large-x region

- When $x \rightarrow 1$, \rightarrow elastic scattering
- Exclusive scattering
- Intertwine with resonance region
- How to obtain clean PDFs?

- Order in pQCD?
- Higher order in PDFs?
- Corrections due to target mass
- Tuning of pQCD?

Target Mass Corrections

- **Effects associated with the nonzero mass of the target**
- infinite vs. finite target mass \Rightarrow Bjorken vs. Nachtmann variable

$$x = \frac{Q^2}{2P.q} \Leftrightarrow \xi = \frac{2x}{1 + \sqrt{1 + 4x^2M^2/Q^2}}$$

$$F_2^{NS(TMC)}(x,Q^2) = \frac{x^2}{\xi^2 \gamma^3} F_2^{\infty}(\xi,Q^2) + 6\frac{x^3 M^2}{Q^2 \gamma^4} \int_{\xi}^{1} \frac{d\xi'}{{\xi'}^2} F_2^{\infty}(\xi',Q^2)$$

Georgi & Politzer (1976)

€ 0.5

0

0

0.2

0.4

x

$$F(x, Q^2, M^2) \propto \int_{\xi}^{\xi/x} \frac{dx}{x} H(\xi/x, Q^2) q(x, Q^2)$$

,, Accardi & Qiu (2008)

0.6

 $\widehat{Q^2}=1$ GeV²

0.8

Parton-Hadron Duality

Bloom-Gilman duality

PreQCD

- Inclusive electroproduction
 can be studied in both the resonance
 and the scaling region
- Connection in the data between structure function
 - in resonance region
 - in the scaling region

 $W^2 = Q^2(1/x-1) + M^2$

$$\xi = \frac{2x}{1 + \sqrt{1 + 4M^2 x^2/Q^2}}$$

Parton-Hadron Duality

[Poggio, Quinn & Weinberg, Phys Rev D13]

$$e^+ - e^- \rightarrow hadrons \equiv \sum_q (e^+e^- \rightarrow q\bar{q}) \Rightarrow \sigma_{hadrons} \equiv \sum_q \hat{\sigma}_q$$

averaged hadronic cross section ⇔ averaged quark cross section

Complementarity between Parton and Hadron descriptions of observable

Bloom-Gilman: what do we understand?

- The resonance region data oscillate around the scaling curve.
 - > The resonance data are on average equivalent to the scaling curve
 - > The resonance region data "slide" along the deep inelastic curve with increasing Q2.

Global duality: $x_M \div x_m \Leftrightarrow W^2_m \div W^2_M \Rightarrow 1.2 \div 4 \text{ GeV}^2$

perturbative QCD

- Nonperturbative models analysis
- Perturbative analysis

Global duality: $x_M \div x_m \Leftrightarrow W^2_m \div W^2_M \Rightarrow 1.2 \div 4 \text{ GeV}^2$

Nonperturbative models analysis

Perturbative analysis

perturbative QCD

[Bianchi, Fantoni & Liuti, PRD69]

$$I^{res}(Q^2) = \int_{x_m}^{x_M} F_2^{\text{Res}}(x, Q^2) dx$$
$$I^{DIS}(Q^2) = \int_{x_m}^{x_M} F_2^{\text{DIS}}(x, Q^2) dx$$
experiment

Global duality: $x_M \div x_m \Leftrightarrow W^2_m \div W^2_M \Rightarrow 1.2 \div 4 \text{ GeV}^2$

perturbative QCD

Nonperturbative models analysis

Perturbative analysis

INFN Frascati [Bianchi, Fantoni & Liuti, PRD69]

Start with NLO PDF and then ...

- Target Mass Corrections (TMC)
- Higher-order in pQCD
- Higher-Twists
- Large-x Resummation (LxR)

Global duality: $x_M \div x_m \Leftrightarrow W^2_m \div W^2_M \Rightarrow 1.2 \div 4 \text{ GeV}^2$

perturbative QCD

Nonperturbative models analysis
 Perturbative analysis

INFN Frascati Ok

[Bianchi, Fantoni & Liuti, PRD69]

Start with NLO PDF and then ...

- Target Mass Corrections (TMC)
- Higher-order in pQCD
- Higher-Twists
- Large-x Resummation (LxR)

Global duality: $x_M \div x_m \Leftrightarrow W^2_m \div W^2_M \Rightarrow 1.2 \div 4 \text{ GeV}^2$

perturbative QCD

Nonperturbative models analysis
 Perturbative analysis

INFN Frascati Ok

?

[Bianchi, Fantoni & Liuti, PRD69]

Start with NLO PDF and then ...

- Target Mass Corrections (TMC)
- Higher-order in pQCD
- Higher-Twists
- Large-x Resummation (LxR)

Global duality: $x_M \div x_m \Leftrightarrow W^2_m \div W^2_M \Rightarrow 1.2 \div 4 \text{ GeV}^2$

perturbative QCD

Nonperturbative models analysis
Perturbative analysis

[Bianchi, Fantoni & Liuti, PRD69]

Start with NLO PDF and then ...

Target Mass Corrections (TMC)
Higher-order in pQCD
Higher-Twists
Large-x Resummation (LxR)
pQCD

Data analysis: F₂ at JLab

$$R^{\exp/th}(Q^2) = \frac{\int_{x_{\min}(W^2 = 4\text{GeV}^2)}^{x_{\max}(W^2 = 4\text{GeV}^2)} dx F_2^{\exp}(x, Q^2)}{\int_{x_{\min}(W^2 = 4\text{GeV}^2)}^{x_{\max}(W^2 = 4\text{GeV}^2)} dx F_2^{th}(x, Q^2)}$$

Hall C E94-110 reanalyzed by Monaghan [1209.4542]

=1 if duality fulfilled

Data analysis: F₂ at JLab

$$R^{\exp/th}(Q^2) = \frac{\int_{x_{\min}(W^2 = 4\text{GeV}^2)}^{x_{\max}(W^2 = 4\text{GeV}^2)} dx F_2^{\exp}(x, Q^2)}{\int_{x_{\min}(W^2 = 4\text{GeV}^2)}^{x_{\max}(W^2 = 4\text{GeV}^2)} dx F_2^{th}(x, Q^2)}$$

Hall C E94-110 reanalyzed by Monaghan [1209.4542]

=1 if duality fulfilled

Data analysis: F₂ at JLab

$$R^{\exp/\text{th}}(Q^2) = \frac{\int_{x_{\min}(W^2 = 4\text{GeV}^2)}^{x_{\max}(W^2 = 4\text{GeV}^2)} dx F_2^{\exp}(x, Q^2)}{\int_{x_{\min}(W^2 = 4\text{GeV}^2)}^{x_{\max}(W^2 = 4\text{GeV}^2)} dx F_2^{\text{th}}(x, Q^2)}$$

Hall C E94-110 reanalyzed by Monaghan [1209.4542]

=1 if duality fulfilled

Still missing something...

$\overline{\text{MS}}$ scheme \rightarrow

$$F_2(x,Q^2) = x \sum_{q,\bar{q}} e_q^2 \int_x^1 \frac{d\xi}{\xi} q(\xi,Q^2) \left\{ \delta(1-\frac{x}{\xi}) + \frac{\alpha_s}{2\pi} C_{\overline{\mathrm{MS}}}\left(\frac{x}{\xi}\right) + \ldots \right\}$$

In practice:

- 1. DGLAP
- 2. convolution with coefficient functions

- 1. q₀→ leading-twist PDFs here MSTW08NLO
- 2. $q_0 \rightarrow$ evolved to $q(x, Q^2)$ via DGLAP with $P \rightarrow$ splitting functions, to NLO
- 3. $C \rightarrow coefficient functions, to NLO$

$\overline{\text{MS}}$ scheme \rightarrow

$$F_2(x,Q^2) = x \sum_{q,\bar{q}} e_q^2 \int_x^1 \frac{d\xi}{\xi} q(\xi,Q^2) \left\{ \delta(1-\frac{x}{\xi}) + \frac{\alpha_s}{2\pi} C_{\overline{\mathrm{MS}}}\left(\frac{x}{\xi}\right) + \dots \right\}$$

In practice:

1. DGLAP

2. convolution with coefficient functions

1. q₀→ leading-twist PDFs here MSTW08NLO

2. $q_0 \rightarrow$ evolved to $q(x, Q^2)$ via DGLAP with $P \rightarrow$ splitting functions, to NLO

3. $C \rightarrow coefficient functions, to NLO$

Is it still true at large-x?

Amati et al., Nucl.Phys. B173 (1980) 429

- Large invariants: $\Lambda^2 \ll W^2 \sim Q^2$
- Argument for α_s is ω^2 , mass square of final state of γ^* parton collision

Without LxR, upper limit =Q²

$$q(x,Q^{2}) = \int_{x}^{1} \frac{dz}{z} \int_{\mu^{2}}^{Q^{2}\frac{1-z}{4z}} dk_{T}^{2} \alpha_{S}(k_{T}^{2}) P_{qq}(z) q\left(\frac{x}{z}, k_{T}^{2}\right)$$

$$rac{Q^2)}{Q^2} = rac{lpha_S(Q^2)}{2\pi} \int\limits_x^1 rac{dz}{z} \, P_{qq}(z) \, q\left(rac{x}{z}, Q^2
ight) \, .$$

Amati et al., Nucl.Phys. B173 (1980) 429

- Large invariants: $\Lambda^2 \ll W^2 \sim Q^2$
- Argument for α_s is ω^2 , mass square of final state of γ^* parton collision

Without LxR, upper limit =Q²

$$q(x,Q^{2}) = \int_{x}^{1} \frac{dz}{z} \int_{\mu^{2}}^{Q^{2}\frac{1-z}{4z}} dk_{T}^{2} \alpha_{S}(k_{T}^{2}) P_{qq}(z) q\left(\frac{x}{z}, k_{T}^{2}\right)$$

The structure functions become

$$F_2^{NS}(x,Q^2) = \sum_q \int_x^1 dz \, \frac{\alpha_s \left(\frac{Q^2(1-z)}{4z}\right)}{2\pi} C_{NS}(z) \, q_{NS}\left(\frac{x}{z},Q^2\right)$$

$$rac{Q^2)}{Q^2} = rac{lpha_S(Q^2)}{2\pi} \int\limits_x^1 rac{dz}{z} \, P_{qq}(z) \, q\left(rac{x}{z},Q^2
ight)$$

Amati et al., Nucl.Phys. B173 (1980) 429

- Large invariants: $\Lambda^2 \ll W^2 \sim Q^2$
- Argument for α_s is ω^2 , mass square of final state of γ^* parton collision

The structure functions become

$$F_2^{NS}(x,Q^2) = \sum_q \int_x^1 dz \, \frac{\alpha_s \left(\frac{Q^2(1-z)}{4z}\right)}{2\pi} C_{NS}(z) \, q_{NS}\left(\frac{x}{z},Q^2\right)$$

$$rac{Q^2)}{Q^2} = rac{lpha_S(Q^2)}{2\pi} \int\limits_x^1 rac{dz}{z} \, P_{qq}(z) \, q\left(rac{x}{z},Q^2
ight) \, .$$

4

Amati et al., Nucl.Phys. B173 (1980) 429

- Large invariants: $\Lambda^2 \ll W^2 \sim Q^2$
- Argument for α_s is ω^2 , mass square of final state of γ^* parton collision

The structure functions become

$$F_2^{NS}(x,Q^2) = \sum_q \int_x^1 dz \, \frac{\alpha_s \left(\frac{Q^2(1-z)}{4z}\right)}{2\pi} \, C_{NS}(z) \, q_{NS}\left(\frac{x}{z},Q^2\right)$$

$$rac{Q^2)}{Q^2} = rac{lpha_S(Q^2)}{2\pi} \int\limits_x^1 rac{dz}{z} \, P_{qq}(z) \, q\left(rac{x}{z}, Q^2
ight) \, .$$

Amati et al., Nucl.Phys. B173 (1980) 429

- Large invariants: Λ²«W²~Q²
- Argument for α_s is ω^2 , mass square of final state of γ^* parton collision

The structure functions become

 $rac{Q^2)}{Q^2} = rac{lpha_S(Q^2)}{2\pi} \int rac{dz}{z} \, P_{qq}(z) \, q\left(rac{x}{z},Q^2
ight) \, dz$

$$F_2^{NS}(x,Q^2) = \sum_q \int_x^1 dz \, \frac{\alpha_s \left(\frac{Q^2(1-z)}{4z}\right)}{2\pi} \, C_{NS}(z) \, q_{NS}\left(\frac{x}{z},Q^2\right)$$

restricted phase space for real gluon emission

- We don't touch the DGLAP part
- **Resummation at the coefficient function level :**

$$F_2^{NS}(x,Q^2) = xq(x,Q^2) + \frac{\alpha_s}{4\pi} \sum_q \int_x^1 dz \, B_{\rm NS}^q(z) \, \frac{x}{z} \, q\left(\frac{x}{z},Q^2\right)$$

• Divergent term at $x \rightarrow 1$,

$$B_{\rm NS}^q(z) = \left[\hat{P}_{qq}^{(0)}(z) \left\{ \ln\left(\frac{1-z}{z}\right) - \frac{3}{2} \right\} + \text{E.P.} \right]_+$$

[Courtoy & Liuti, 1302.4439]

- We don't touch the DGLAP part
- Resummation at the coefficient function level :

• Divergent term at
$$x \rightarrow 1$$
,

$$B_{\rm NS}^q(z) = \left[\hat{P}_{qq}^{(0)}(z) \left\{ \ln\left(\frac{1-z}{z}\right) - \frac{3}{2} \right\} + \text{E.P.} \right]_+$$

 $\blacktriangleright \qquad \text{Need to be resummed to all order in } \alpha_s$

defining the correct kinematics

$$\alpha_s(Q^2) \to \alpha_s \left(Q^2 \frac{(1-z)}{z}\right)$$

[Courtoy & Liuti, 1302.4439]

 $F_2^{NS}(x,Q^2) = xq(x,Q^2) + \frac{\alpha_s}{4\pi} \sum_{x} \int_x^1 dz \, B_{NS}^q(z) \, \frac{x}{z} \, q\left(\frac{x}{z},Q^2\right)$

- We don't touch the DGLAP part
- Resummation at the coefficient function level :

• Divergent term at
$$x \rightarrow 1$$
,

Resummed as :

$$B_{\rm NS}^q(z) = \left[\hat{P}_{qq}^{(0)}(z) \left\{ \ln\left(\frac{1-z}{z}\right) - \frac{3}{2} \right\} + \text{E.P.} \right]_+$$

• Need to be resummed to all order in α_s

defining the correct kinematics
$$\alpha_s(Q^2) \to \alpha_s\left(Q^2\frac{(1-z)}{z}\right)$$

[Courtoy & Liuti, 1302.4439]

 $F_2^{NS}(x,Q^2) = xq(x,Q^2) + \frac{\alpha_s}{4\pi} \sum_{x} \int_x^1 dz \, B_{NS}^q(z) \, \frac{x}{z} \, q\left(\frac{x}{z},Q^2\right)$

 $\ln(1-z) = \frac{1}{\alpha_{s,\text{LO}}(Q^2)} \int^{Q^2} d\ln Q^2 \left[\alpha_{s,\text{LO}}(Q^2(1-z)) - \alpha_{s,\text{LO}}(Q^2)\right] \equiv \ln_{\text{LxR}}$

Rôle of the coupling constant

Example

► LO exact solution, Λ =174MeV \rightarrow reaches Landau pole at Q=174MeV

Rôle of the coupling constant

Example

► LO exact solution, Λ =174MeV \rightarrow reaches Landau pole at Q=174MeV

Large-x Resummation: α_s as (hidden) free parameter

[Courtoy & Liuti, 1208.5636]

• the complete z dependence of $\alpha_s(\tilde{W}^2)$

Large-x Resummation: α_s as (hidden) free parameter

[Courtoy & Liuti, 1208.5636]

• the complete z dependence of $\alpha_s(\tilde{W}^2)$ Cut

Large-x Resummation: α_s as (hidden) free parameter

[Courtoy & Liuti, 1208.5636]

• the complete z dependence of $\alpha_s(\tilde{W}^2)$ Cut

What does a cut in α_s means?

Running Coupling Constant

QCD Coupling Constant in pQCD

QCD Running Coupling Constant

$$\frac{d a(Q^2)}{d(\ln Q^2)} = \beta_{N^m LO}(\alpha) = \sum_{k=0}^m a^{k+2} \beta_k \qquad \qquad \overline{\text{MS scheme}} \\ a = \alpha_s / 4\pi$$

LO exact perturbative solution Λ =250 MeV

NLO exact perturbative solution ∧=250 MeV

NNLO exact perturbative solution Λ =250 MeV

QCD predicts the shape of the running coupling constant, not its value

QCD Running Coupling Constant

$$\frac{d \, a(Q^2)}{d(\ln Q^2)} = \beta_{N^m LO}(\alpha) = \sum_{k=0}^m a^{k+2} \beta_k \qquad \qquad \overline{\text{MS scheme}} \\ a = \alpha_s / 4\pi$$

 $\begin{bmatrix} 0.25 \\ 0.20 \\ 0.15 \\ 0.10 \\ 0.05 \\ 0.00 \\ 0.00 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.6 \\ 0.8 \\ 0.8 \\ 0.0 \\ 0.8 \\ 0.8 \\ 0.0 \\ 0.8 \\ 0.8 \\ 0.0 \\ 0.8 \\ 0$

LO exact perturbative solution Λ =250 MeV

NLO exact perturbative solution ∧=250 MeV

NNLO exact perturbative solution Λ =250 MeV

QCD predicts the shape of the running coupling constant, not its value

Intermediate energy? Perturbative to non-perturbative transition?

Effective Charges

The non-perturbative approach:

- Importance of finite couplings
- Taming the Landau pole

The non-perturbative extraction:

- Effective couplings from phenomenology
- Dimensional transmutation (RG-improved)
 - from RS dependence to Observable dependence (à la Grunberg)

[Brodsky et al., Phys.Rev.D81]
[Deur et al., Phys.Lett.B60]

Non-perturbative analysis

Qualitative analysis

- Implications of IR finite α_s in hadronic physics

e.g. Dokshitzer et al., Nucl.Phys.B469 (1996) 93

Plot by Arlene C. Aguilar

Back to duality

Parametrize the realization of duality

Freeze α_s by imposing a z_{max} :

$$\widetilde{W}^2(z_{\max}) = Q^2(1-z_{\max})/z_{\max}$$

• Changes the behavior of the coefficient function $x \rightarrow 1$

Back to duality

Parametrize the realization of duality

Freeze α_s by imposing a z_{max} :

$$\widetilde{W}^2(z_{\max}) = Q^2(1 - z_{\max})/z_{\max}$$

$$R^{\exp/th}(z_{\max}, Q^2) = \frac{\int_{x_{\min}}^{x_{\max}} dx F_2^{\exp}(x, Q^2)}{\int_{x_{\min}}^{x_{\max}} dx F_2^{NS, \text{Resum}}(x, z_{\max}, Q^2)} = \frac{I^{\exp}}{I^{\text{Resum}}} = 1$$

Back to duality

Parametrize the realization of duality

Freeze α_s by imposing a z_{max} :

$$\widetilde{W}^2(z_{\max}) = Q^2(1 - z_{\max})/z_{\max}$$

Realization of duality depends on z_{max} **:**

$$R^{\exp/th}(z_{\max}, Q^2) = \frac{\int_{x_{\min}}^{x_{\max}} dx F_2^{\exp}(x, Q^2)}{\int_{x_{\min}}^{x_{\max}} dx F_2^{NS, \text{Resum}}(x, z_{\max}, Q^2)} = \frac{I^{\exp}}{I^{\text{Resum}}} = 1$$

Adjust z_{max} according to the data

Results

$Q^2 \; [{ m GeV^2}]$	$I^{ m exp}(Q^2)$	$I^{(0),\mathrm{DIS}}(Q^2)$	$I^{(0),\mathrm{DIS+TMC}}(Q^2)$	$I^{\rm Resum}(z_{\rm max},Q^2)$	$z_{ m max}$
1.75	6.994×10^{-2}	5.316×10^{-2}	5.345×10^{-2}	7.025×10^{-2}	0.63
2.5	4.881×10^{-2}	2.765×10^{-2}	3.393×10^{-2}	4.872×10^{-2}	0.745
3.75	2.356×10^{-2}	1.201×10^{-2}	1.756×10^{-2}	2.359×10^{-2}	0.76
5.	1.267×10^{-2}	0.553×10^{-2}	0.942×10^{-2}	1.270×10^{-2}	0.79
6.5	0.685×10^{-2}	0.170×10^{-2}	0.372×10^{-2}	0.683×10^{-2}	0.9
4.	2.045×10^{-2}	1.017×10^{-2}	1.487×10^{-2}	2.041×10^{-2}	0.79
5.	1.255×10^{-2}	0.550×10^{-2}	0.909×10^{-2}	1.255×10^{-2}	0.811
6.	0.802×10^{-2}	0.317×10^{-2}	0.581×10^{-2}	0.803×10^{-2}	0.825
7.	0.531×10^{-2}	0.191×10^{-2}	0.383×10^{-2}	0.532×10^{-2}	0.837
8.	0.363×10^{-2}	0.122×10^{-2}	0.262×10^{-2}	0.363×10^{-2}	0.845

JLab data

SLAC data

Phys.Lett. B282

Results

$Q^2 \; [{ m GeV}^2]$	$I^{ m exp}(Q^2)$	$I^{(0),\mathrm{DIS}}(Q^2)$	$I^{(0),\mathrm{DIS+TMC}}(Q^2)$	$I^{ m Resum}(z_{ m max},Q^2)$	$z_{ m max}$
1.75	6.994×10^{-2}	5.316×10^{-2}	5.345×10^{-2}	7.025×10^{-2}	0.63
2.5	4.881×10^{-2}	2.765×10^{-2}	3.393×10^{-2}	4.872×10^{-2}	0.745
3.75	2.356×10^{-2}	1.201×10^{-2}	1.756×10^{-2}	2.359×10^{-2}	0.76
5.	1.267×10^{-2}	0.553×10^{-2}	0.942×10^{-2}	1.270×10^{-2}	0.79
6.5	0.685×10^{-2}	0.170×10^{-2}	0.372×10^{-2}	0.683×10^{-2}	0.9
4.	2.045×10^{-2}	1.017×10^{-2}	1.487×10^{-2}	2.041×10^{-2}	0.79
5.	1.255×10^{-2}	0.550×10^{-2}	0.909×10^{-2}	1.255×10^{-2}	0.811
6.	0.802×10^{-2}	0.317×10^{-2}	0.581×10^{-2}	0.803×10^{-2}	0.825
7.	0.531×10^{-2}	0.191×10^{-2}	0.383×10^{-2}	0.532×10^{-2}	0.837
8.	0.363×10^{-2}	0.122×10^{-2}	0.262×10^{-2}	0.363×10^{-2}	0.845

JLab data

SLAC data

Phys.Lett. B282

$\left[O^{2} \left[C_{a} V^{2} \right] \right]$	$I_{exp}(\Omega^2)$	$I(0)$, DIS (O^2)	$\tau(0)$, DIS+TMC (Ω^2)	I Besum $(\tau = O^2)$	
$Q^{-}[\text{GeV}^{-}]$	$I^{onp}(Q^2)$	$I^{(\circ), \mathbb{D} \mathbb{D}}(Q^{-})$	$T^{(0),210+1110}(Q^2)$	$T^{\text{resum}}(z_{\text{max}}, Q^2)$	$z_{\rm max}$
1.75	6.994×10^{-2}	5.316×10^{-2}	5.345×10^{-2}	7.025×10^{-2}	0.63
2.5	4.881×10^{-2}	2.765×10^{-2}	3.393×10^{-2}	4.872×10^{-2}	0.745
3.75	2.356×10^{-2}	1.201×10^{-2}	1.756×10^{-2}	2.359×10^{-2}	0.76
5.	1.267×10^{-2}	0.553×10^{-2}	0.942×10^{-2}	1.270×10^{-2}	0.79
6.5	0.685×10^{-2}	0.170×10^{-2}	0.372×10^{-2}	0.683×10^{-2}	0.9
4.	2.045×10^{-2}	1.017×10^{-2}	1.487×10^{-2}	2.041×10^{-2}	0.79
5.	1.255×10^{-2}	0.550×10^{-2}	0.909×10^{-2}	1.255×10^{-2}	0.811
6.	0.802×10^{-2}	0.317×10^{-2}	0.581×10^{-2}	0.803×10^{-2}	0.825
7.	$0.531 imes 10^{-2}$	0.191×10^{-2}	0.383×10^{-2}	0.532×10^{-2}	0.837
8.	0.363×10^{-2}	0.122×10^{-2}	0.262×10^{-2}	0.363×10^{-2}	0.845

-z)

 α_s

JLab data

SLAC data

Phys.Lett. B282

Effective behavior of α_s

Effective behavior of α_s

Possible twist-3 effects

- Higher twist effects are expect to dominate at $x \rightarrow 1$
- de Rújula et al: Duality means suppression of higher-twist
- Intricate rôle of higher-twist at the frontier with NP QCD
 - → compatibility with confinement?
- Here: all the nonperturbative effects into α_s

→ smooth transition from perturbative to nonperturbative physics

Conclusions and more

- Analyzis of the Bloom-Gilman duality in perturbative QCD
- Parametrized by the freezing of the running coupling constant

Conclusions and more

- > Analyzis of the Bloom-Gilman duality in perturbative QCD
- Parametrized by the freezing of the running coupling constant
- α_s (Q²<1GeV²)/π=0.1588

Go deeper into the Qualitative analysis

- from pQCD: systematic study of all input PDF sets
 - Self Organizing Map analysis of PDF with/without Large-x physics
 - UVa: S. Liuti and E. Askanazi and D. Day
- from NP QCD: systematic study of different approaches to effective charge

Nonperturbative QCD coupling from Phenomenology

Joint analysis: Chen, Courtoy, Deur, Liuti & Vento

Nonperturbative Coupling Constant & LxR

How we go further : Nonperturbative Coupling Constant from DSE

- Nonperturbative effects gathered in effective coupling α_s^{NP}
- Use of NP running coupling that scales to LO pQCD result
- Include in LxR
- Apply with Shirkov and Fischer effective coupling as well

[Courtoy, Liuti & Vento, in progress]

Nonperturbative Coupling Constant & LxR

How we go further : Nonperturbative Coupling Constant from DSE

Cornwall α_s^{NP} 3-4 free parameters (up to physical constrains)

- Nonperturbative effects gathered in effective coupling α_s^{NP}
- Use of NP running coupling that scales to LO pQCD result
- Include in LxR
- Apply with Shirkov and Fischer effective coupling as well
- **How to relate the coupling constant?**
 - Commensurate Scale Relations?
 - RG-improved perturbation theory?

[Courtoy, Liuti & Vento, in progress]

[Brodsky & Lu, Phys. Rev. D251]

[Niculescu et al., PRD60] [Bianchi, Fantoni & Liuti, PRD69]

⇔ Duality fulfilled if R=1

[Niculescu et al., PRD60] [Bianchi, Fantoni & Liuti, PRD69]

Duality fulfilled if R=1

 $\leftarrow \quad LxR \text{ sensitive to } \alpha_s$

[Niculescu et al., PRD60] [Bianchi, Fantoni & Liuti, PRD69]

Duality fulfilled if R=1
LxR sensitive to
$$\alpha_s$$

[Niculescu et al., PRD60] [Bianchi, Fantoni & Liuti, PRD69]

del norientel

New JLab data has been analyzed

(P. Monaghan)

FIGURE 5. The effective coupling α_{s,g_1} extracted from JLab data, its fit, and its extraction using the Burkert and Ioffe [24] model to obtain Γ_1^{p-n} . The α_s calculations are: Top left: Schwinger-Dyson equations (Cornwall [35]); Top right: Schwinger-Dyson equations (Bloch) [36] and α_s used in a quark constituent model [37]; Bottom left: Schwinger-Dyson equations (Maris-Tandy [38]), Fischer, Alkofer, Reinhardt and Von Smekal [39] and Bhagwat et al. [40]; Bottom right: Lattice QCD [41].

LxR

The functional form \ln_{LxR} is therefore slightly changed. Two distinct regions can be studied: the "running" behavior in $x < z < z_{max}$ and the "steady" behavior $z_{max} < z < 1$,

$$F_{2}^{NS,\text{Resum}}(x, z_{\text{max}}, Q^{2}) = xq(x, Q^{2}) + \frac{\alpha_{s}}{4\pi} \sum_{q} \left\{ \int_{x}^{1} dz \left[B_{\text{NS}}^{q}(z) - \hat{P}_{qq}^{(0)}(z) \ln(1-z) \right] + \int_{x}^{z_{\text{max}}} dz \, \hat{P}_{qq}^{(0)}(z) \ln_{\text{LxR}} + \ln_{\text{LxR, max}} \int_{z_{\text{max}}}^{1} dz \, \hat{P}_{qq}^{(0)}(z) \right\} \frac{x}{z} \, q\left(\frac{x}{z}, Q^{2}\right).$$

Extraction of α_s at low energy

• Polarized scattering from both proton and neutron

Deur et al. Phys.Lett. B650 (2007) 244-248

Natale, PoS QCD-TNT09 (2009) 031

Bjorken Sum Rule from JLab & GDH Sum Rule at Q²=0 GeV²

• Deep Inelastic Scattering (DIS) at large Bjorken-x & parton-hadron duality

Liuti, [arXiv:1101.5303 [hep-ph]].

• Semi-Inclusive DIS & Extraction of T-odd TMDs from SSAs

A.C., Vento & Scopetta, Eur. Phys. J. A47, 49 (2011)

Joint analysis: Chen, Courtoy, Deur, Liuti & Vento

Nonperturbative Gluon Propagator

Solving the Schwinger-Dyson eqs ...

$$\Delta^{-1}(Q^2) = Q^2 + m^2(Q^2)$$

- J. M. Cornwall, Phys. Rev. D26, 1453 (1982)
- A. C. Aguilar and J. Papavassiliou, JHEP0612, 012 (2006)

$$m^2(Q^2) = m_0^2 \left[\ln\left(\frac{Q^2 + \rho m_0^2}{\Lambda^2}\right) \middle/ \ln\left(\frac{\rho m_0^2}{\Lambda^2}\right) \right]^{-1-\gamma}$$

0.5

Gluon Mass as IR Regulator

• effective gluon mass phenomenological estimates

$$m_0 \sim \Lambda - 2\Lambda$$

- Solution free of Landau pole
- Freezes in the IR

Low mass scenario High mass scenario

NP Momentum-dependence of the Coupling Constant

$$\frac{\alpha_{\rm NP}(Q^2)}{4\pi} = \left[\beta_0 \ln\left(\frac{Q^2 + \rho m^2(Q^2)}{\Lambda^2}\right)\right]^{-1}$$

NLO exact perturbative evolution $\Lambda{=}250~\text{MeV}$; \overline{MS} scheme

Low mass scenario NP coupling constant $m_0{=}250~MeV$; $\Lambda{=}250~MeV$; $\rho{=}1.5$

High mass scenario NP coupling constant $m_0{=}500~MeV$; $\Lambda{=}250~MeV$; $\rho{=}2.$