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Outline

• Hadron Phenomenology

‣ PDFs at large-x

• Parton-Hadron Duality

‣ How to explain it?

‣ Rôle of perturbative QCD

‣ New data analysis: JLab 

‣ Intersection of pQCD and nonperturbative QCD

• Strong coupling constant at low energy
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Structure Functions and DIS

F2(x,Q
2) =

X

qq̄

Z 1

0
d⇠ f1(⇠, Q

2)xe2q �(x� ⇠)

Parton Model
Bjorken scaling

F2(x) ⌘ F2(x,Q
2)

Scaling violations 
lead to 

Q2-dependence of the Structure Functions

→ DGLAP equations 
            [Dokshitzer–Gribov–Lipatov Altarelli-Parisi]

→ Jargon: “Q2  or QCD evolution”

http://en.wikipedia.org/w/index.php?title=Yuri_Dokshitzer&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Yuri_Dokshitzer&action=edit&redlink=1
http://en.wikipedia.org/wiki/Vladimir_Gribov
http://en.wikipedia.org/wiki/Vladimir_Gribov
http://en.wikipedia.org/wiki/Lev_Lipatov
http://en.wikipedia.org/wiki/Lev_Lipatov
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P→ splitting functions
C→ coefficient functions

In practice:

1.  DGLAP
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q0→ input PDFs
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Large-x region

• When x→1, →elastic scattering

• Exclusive scattering

• Intertwine with resonance region

• How to obtain clean PDFs?

pQCD at Q2 ! 200 GeV2 shown for comparison demon-
strates the large effect of pQCD corrections above x"
0:2. In Fig. 2, we show the low W2 data extracted here,
along with large W2 data from [24,25]. Note that the data
in the resonance region smoothly blend to the deep in-
elastic—another manifestation of BG duality. The curves
correspond to our calculations including pQCD# TMC
at NLO (dashes), and pQCD# TMC with resummation
(full). The dots in each curve represent regions where
TMC are uncertain. The effect we find is qualitatively
similar to that found in [9,10], in that over the range
0:45 $ x $ 0:85, higher order perturbative contributions,
in this case large x resummation, improve the agreement
with the data. Substantial discrepancies remain, which we
interpret in terms of dynamical HT corrections. We pa-
rametrize H%x;Q2& as

H%x;Q2& ! FpQCD#TMC
2 %x;Q2&CHT%x&: (3)

Equation (3) is motivated by the lack of knowledge of the
anomalous dimensions of the twist-4 operators, a reason-
able assumption within the precision of the data (see also
[26]). Our fixed W2 approach enables us to extract CHT
from the resonance region and from the DIS region,
separately.

In Fig. 3(a) we show the coefficient CHT, Eq. (3), ex-
tracted from the following: (i) DIS data with W2 '
4 GeV2, (ii) the resonance region, W2 < 4 GeV2, as
well as (iii) averaged over the entire range of W2. The
figure also shows the range of extractions previous to the
current one [11,27]. We observe in all three cases, values
for CHT smaller than the ones in [11,27], because of the
effect of large x resummation. We have checked that our
results without resummation are consistent with a pre-
vious extraction using moments of the structure function
[12]. Most importantly, while the large W2 data track a
curve that is consistent with the 1=W2 behavior expected
from most models [28], the low W2 data yield a much
smaller value for CHT, and they show a bend over of the
slope vs x, already predictable from a similar behavior of
the slopes at low W2 in Fig. 2. This surprising effect is not
a consequence of the interplay of higher order corrections
and the HT terms, but just of the extension of our detailed
pQCD analysis to the large x, low W2 kinematical region.
In order to ascertain whether the discrepancy between the
low W2 and large W2 values of CHT are due to O%1=Q4&
terms in the twist expansion, Eq. (1), which could become
more important at low W2, we have extracted for each
resonance the quantity !H%x;Q2&, defined as

Fexp
2

FpQCD#TMC
2

! 1# CHT%x&
Q2 # !H%x;Q2&; (4)

where CHT%x& coincides with the value fitted at large W2.
From Fig. 3(b) one sees that !H%x;Q2& is negative for all
lower W2 ( $ 3:4 GeV2) bins, as expected if a cancella-
tion among higher order inverse powers were to occur,
consistent with the requirement of parton-hadron duality.
However, we uncover a nontrivial Q2 dependence of this
term: one can see a sharp change between the behavior of
the higher mass resonances and that of the N ( ! tran-
sition region which shows a distinctively steeper fall with

Q2 (GeV2)

F
2p (

x,
Q

2 )

FIG. 2 (color online). Comparison of pQCD# TMC calcula-
tions at NLO (dashed lines) and with resummation (full lines),
with current large x data. The solid dots are in the resonance
region, 1:3 $ W2 $ 3:4 GeV2; the open triangles correspond to
W2 $ 1:3 GeV2. The dotted lines represent the regions where
TMC contributions are uncertain.
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FIG. 3 (color online). (a) Coefficient CHT, Eq. (3), extracted
from DIS data with W2 ' 4 GeV2 (solid dots), from the reso-
nance region, W2 < 4 GeV2 (stars) and averaged over the entire
range of W2 (open dots). The shaded area summarizes extrac-
tions previous to the current one. A dotted line at zero is added
to guide the eye; (b) !H, Eq. (4), extracted at fixed values of
W2 as described in the text, and plotted vs Q2. The figure
further elucidates a breakdown of the twist expansion at low
W2, already visible in (a).
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Large-x region

• When x→1, →elastic scattering

• Exclusive scattering

• Intertwine with resonance region

• How to obtain clean PDFs?
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4 GeV2, (ii) the resonance region, W2 < 4 GeV2, as
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figure also shows the range of extractions previous to the
current one [11,27]. We observe in all three cases, values
for CHT smaller than the ones in [11,27], because of the
effect of large x resummation. We have checked that our
results without resummation are consistent with a pre-
vious extraction using moments of the structure function
[12]. Most importantly, while the large W2 data track a
curve that is consistent with the 1=W2 behavior expected
from most models [28], the low W2 data yield a much
smaller value for CHT, and they show a bend over of the
slope vs x, already predictable from a similar behavior of
the slopes at low W2 in Fig. 2. This surprising effect is not
a consequence of the interplay of higher order corrections
and the HT terms, but just of the extension of our detailed
pQCD analysis to the large x, low W2 kinematical region.
In order to ascertain whether the discrepancy between the
low W2 and large W2 values of CHT are due to O%1=Q4&
terms in the twist expansion, Eq. (1), which could become
more important at low W2, we have extracted for each
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tions at NLO (dashed lines) and with resummation (full lines),
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FIG. 3 (color online). (a) Coefficient CHT, Eq. (3), extracted
from DIS data with W2 ' 4 GeV2 (solid dots), from the reso-
nance region, W2 < 4 GeV2 (stars) and averaged over the entire
range of W2 (open dots). The shaded area summarizes extrac-
tions previous to the current one. A dotted line at zero is added
to guide the eye; (b) !H, Eq. (4), extracted at fixed values of
W2 as described in the text, and plotted vs Q2. The figure
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• Order in pQCD?

• Higher order in PDFs?

• Corrections due to target mass

• Tuning of pQCD?



Target Mass Corrections

‣ Effects associated with the nonzero mass of the target

‣  infinite vs. finite target mass ⇒ Bjorken vs. Nachtmann variable

J. Phys. G: Nucl. Part. Phys. 35 (2008) 053101 Topical Review

Figure 2. The Nachtmann variable ξ as a function of the Bjorken scaling variable x, for Q2 = 1,
2, 4 and 10 GeV2. For reference, a dotted line is shown for the limiting case ξ = x.

For electromagnetic or weak neutral current (NC) scattering, the vector boson (V )–
nucleon subprocess is V (q)+N(P ) → X(PX), where V = γ , Z0. The related charged current
(CC) process, which is important in neutrino–hadron scattering, ν(k)+N(p) → $(k′)+X(PX),
where V = W±, will be discussed in section 3, where we discuss the correspondence with the
parton model.

In addition to the virtuality of the exchanged boson, Q2, inelastic scattering is also
characterized by the Bjorken scaling variable x, where

x = Q2

2P · q
. (1)

In the massless target and quark limits (or equivalently in the Q2 → ∞ limit), x is equivalent
to the light-cone momentum fraction of the target carried by the interacting parton. In the
target rest frame, the Bjorken variable can be written as x = Q2/2Mν, where ν = E − E′ is
the energy transferred to the hadronic system, and we define the inelasticity of the process by
y = ν/E. For convenience, we also introduce the variable r to denote a frequently appearing
combination of factors:

r =

√

1 +
4x2M2

Q2
≡

√
1 +

Q2

ν2
. (2)

At finite Q2, the effects of the target and quark masses modify the identification of the
Bjorken x variable with the light-cone momentum fraction. For massless quarks, the parton
light-cone fraction is given by the Nachtmann variable ξ [33],

ξ = 2x

1 +
√

1 + 4x2M2/Q2
. (3)

At large values of Q2, ξ ∼ x. As figure 2 shows, however, for Q2 less than a few times
the target mass of ∼1 GeV, ξ can deviate significantly from x, especially at large x values. The
Nachtmann variable appears naturally in the OPE, as we outline below. The full details of the
notation, including parton masses, appear in appendix A.

We can write any generic inclusive lepton–nuclear scattering cross section as a
combination of a hadronic tensor Wµν and a leptonic tensor Lµν :

dσ ∼ WµνL
µν,

4

, ...., Accardi & Qiu (2008)
J. Phys. G: Nucl. Part. Phys. 35

x =
Q

2

2P.q
, ⇠ =

2x

1 +
p

1 + 4x2
M

2
/Q

2

suppressed in a fully quantitative fit at large x. It is this second approach that we will
follow in this paper.

We evaluate F

th
2 taking into account perturbative evolution at NLO, and introduce sub-

sequently the e↵ects of TMCs, and LxR. Since only valence quarks distributions are relevant
in our kinematics, we consider only the Non Singlet (NS) sector,

F

NS

2 (x,Q2) = xq(x,Q2) +
↵

s

4⇡

X

q

Z 1

x

dz B

q

NS(z)
x

z

q

⇣
x

z

,Q

2
⌘

, (2)

The PDFs, q(x,Q2), are taken from current parametrizations. We have chosen to present
results using the MSTW08 set at NLO as initial parametrization [31]. We have checked
that there were no significant discrepancies when using other sets, i.e., CTEQ6 [32] and the
dynamical GJRFVNS [33]. The function B

q

NS is the Wilson coe�cient function for quark-
quark.

By evaluating the ratios Rexp/th, using current parametrizations, one finds a sensible de-
viation from the data, even when the theoretical uncertainty from the parametrizations
is included (Figure 1). One possible explanation is in the lack of accuracy in the PDF
parametrizations in the large x, low W

2 domain, since most groups implement much larger
thresholds for W 2. The way to a fully quantitative fit would then start from re-fitting the
large x data with new appropriate sets of PDFs, and simultaneously accounting for both
TMCs, and LxR. The number of parameters, and the uncertainty associated with this pro-
cedure would however be dauntingly increasing. For this reason, it is therefore necessary
to take the preparatory step, conducted with the present analysis, of assessing the relative
weight of the di↵erent contributions.

The additional corrections due to the finite mass of the initial nucleon, or the TMCs, are
included directly in F

NS,th

2 as [34] (see also review in [35]),

F

NS(TMC)
2 (x,Q2) =

x

2

⇠

2
�

3
F

1
2 (⇠, Q2) + 6

x

3
M

2

Q

2
�

4

Z 1

⇠

d⇠

0

⇠

02 F
1
2 (⇠0, Q2), (3)

where F

1
2 ⌘ F

NS

2 is the structure function in the absence of TMC. Since TMC should in
principle be applied also to the HT, we disregard terms of O(1/Q4) [36]. Note that the
expansion in Eq. (3) is valid for Q

2 larger than ⇡ 1 GeV2. TMCs move the ratio closer
to unity, as represented by the open green diamonds in Fig. 1. Uncertainties on TMCs are
very small [36]. However a larger error might arise from the procedure used to account for
TMCs [37]. Studies of the sensitivity to this procedure are on their way and will be published
elsewhere. At this stage, by including only TMCs and standard PDF parametrizations, we
still observe a large discrepancy with the data.

Next, we consider LxR e↵ects. A major consequence of LxR is a shift of the scale at
which ↵

s

is calculated to lower values, with increasing z (see for instance Refs. [11, 12, 38]).
This introduces a model dependence within the PQCD approach in that the value of the
QCD running coupling in the infrared region is regulated by LxR so as to satisfy duality.
In other words, LxR contains an additional degree of freedom, gathered in the definition of
the coupling constant, to tune the scaling structure functions.

LxR arises formally from terms containing powers of ln(1 � z), z being the longitudinal
variable in the evolution equations, that are present in the Wilson coe�cient functions
B

q

NS(z), in Eq. (2). To NLO and in the MS scheme, the Wilson coe�cient function for

4

Georgi & Politzer (1976)

F (x,Q2,M2) /
Z

⇠/x

⇠

dx

x
H(⇠/x,Q2)q(x,Q2)
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Bloom-Gilman duality

‣ Inclusive electroproduction                                  
can be studied in both the resonance 
and the scaling region

‣ Connection in the data 
between structure function 

‣ in resonance region
‣ in the scaling region

W. Melnitchouk et al. / Physics Reports 406 (2005) 127–301 153
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Fig. 11. Proton !Wp
2 = F

p
2 structure function data in the resonance region as a function of ", at Q2 = 0.45, 0.85, 1.70, and

3.30GeV2 from Hall C at Jefferson Lab [7,58]. The arrows indicate the elastic point, " = "(x = 1). The curves represent fits
to deep inelastic structure function data at the same " but higher (W2, Q2) from NMC [59] at Q2 = 5GeV2 (dashed) and
Q2 = 10GeV2 (solid).

TheQ2 dependence of the scaling structure function is not drastic, as theQ2 = 5 and 10GeV2 values
of the structure function are quite similar. However, theQ2 dependence of Fp

2 in the resonance region is
significant, as can be seen in the difference between theQ2 = 0.45 and 3.3GeV2 spectra. Knowledge of
the Q2 dependence of the scaling structure function is an important improvement over the original data
sets available to Bloom and Gilman [2,3].
The same data set, combined with some lower Q2 data from SLAC, is depicted in Fig. 12 in a single

plot. Here, the salient features of duality are even more striking: above " ∼ 0.2 the data all average to the
scaling curve. Moreover, the position of the resonance peaks relative to the scaling curve is determined
byQ2, with the higherQ2 values at higher ". Therefore, both the size andmomentum dependence of the
resonance region structure function are apparently determined by the scaling limit curve. The lower-Q2

data (below " ∼ 0.2) will be discussed in more detail in Section 5.1.3, below. We note, however, that it

W2=Q2(1/x-1)+M2

W. Melnitchouk et al. / Physics Reports 406 (2005) 127–301 139

in the parton model effectively counts quark charges, while the n=2 moment of the F2 structure function
corresponds to the momentum sum rule. In the Bjorken limit, the moments of the F1 and F2 structure
functions are related via the Callan–Gross relation, Eq. (12), asM

(n)
2 = 2M(n)

1 .
As discussed in Section 5.1.1 below, formally the operator product expansion in QCD defines the

moments for n = 2, 4, 6 . . . . To obtain moments for other values of n requires an analytic continuation
to be made in n. Alternatively, if the x dependence of the structure functions is known, one can define the
moments operationally via Eqs. (42) and (43). Note that formally the moments include also the elastic
point at x = 1, which, while negligible at highQ2, can give large contributions at smallQ2.
The Cornwall–Norton moments defined in terms of the Bjorken x scaling variable are appropriate in

the region of kinematics whereQ2 is much larger than typical hadronic mass scales, where corrections of
the typeM2/Q2 can be neglected. In this case only operators with spin n contribute to the nth moments
(see Section 5.1). For finite M2/Q2, however, the nth moments receive contributions from spins n and
higher, which can complicate the physical interpretation of the moments.
By redefining the moments in terms of a generalized scaling variable ! which takes target mass cor-

rections into account, Nachtmann [12] showed that the new nth moments still receive contributions from
spin n operators only, even at finiteM2/Q2. Specifically, for the F2 structure function one has [12,13]

M
N(n)
2 (Q2) =

∫ 1

0
dx

!n+1

x3

{
3+ 3(n + 1)r + n(n + 2)r2

(n + 2)(n + 3)

}
F2(x, Q2) , (44)

where

! = 2x
1+

√
1+ 4M2x2/Q2

(45)

is the Nachtmann scaling variable, and r =
√
1+ 4M2x2/Q2. In the limitQ2 → ∞ one can easily verify

that the moment MN(n)
2 → M

(n)
2 in Eq. (43). Similarly, for the longitudinal Nachtmann moments, one

has [12,14]

M
N(n)
L (Q2) =

∫ 1

0
dx

!n+1

x3

{
FL(x, Q2) + 4M2x2

Q2
(n + 1)!/x − 2(n + 2)

(n + 2)(n + 3)
F2(x, Q2)

}
, (46)

which approachesM(n)
L in theQ2 → ∞ limit. The Nachtmann ! variable and the correspondingmoments

can also be generalized to include finite quark mass effects [15,16], although in practice this is mainly
relevant for heavy quarks.
For spin-dependent scattering, the nth Cornwall–Norton moments of the g1 and g2 structure functions

are defined analogously to Eqs. (42) and (43) as

"(n)
1,2(Q

2) =
∫ 1

0
dx xn−1g1,2(x, Q2) , (47)

for n = 1, 3, 5 . . . in the case of the g1 structure function, and n = 3, 5 . . . for g2. With this definition the
n = 1 moment of g1 corresponds to the nucleon axial vector charge. As for the unpolarized moments, for
other values of n one needs to either analytically continue in n, or define the moments operationally via
Eq. (47). In the text we will sometimes refer to the lowest (n = 1) moments "(1)

1,2 simply as "1,2, without
the superscript.

PreQCD



Parton-Hadron Duality
Introduction (2)

Present in Nature in different aspects:

• e+ - e− → hadrons ≡
∑

q (e+e− → qq̄) ⇒ σhadrons ≡
∑

q

σ̂q

• ep → eX ⇒ dσ ≈
∑

q

∫
dx q(x, Q2)dσ̂q

• ep → ehX ⇒ dσ ≈
∑

q

∫
dx q(x, Q2)Dh(z,Q2)dσ̂q

• e→p
⇒⇐ → e→X

• eA → eX

• τ → ν+ hadrons

• semi-leptonic decay of heavy quarks

• γp → π+ + n

Alessandra Fantoni Frascati, First Workshop on Quark-Hadron Duality and the Transition to pQCD, June 6-8, 2005 3

Complementarity between Parton and Hadron descriptions of observable

 [Poggio, Quinn & Weinberg, Phys Rev D13]

Data (2)

e+ - e− → hadrons

......

ep → eX

I. Niculescu et al., PRL 85 (2000) 1182,

I. Niculescu et al., PRL 85 (2000) 1186

Alessandra Fantoni Frascati, First Workshop on Quark-Hadron Duality and the Transition to pQCD, June 6-8, 2005 5

averaged hadronic cross section ⇔ averaged quark cross section
⇒ Smearing techniques



Bloom-Gilman: what do we understand?

Structure functions 
Resonance region ⇔ Scaling region

 [Niculescu et al., PRL85]

xBj>0.5, Q2 multi-GeV region ⇒ 1.2<W2≤4GeV2 

[Bloom & Gilman, Phys.Rev.Lett.25]

‣   The resonance region data oscillate around the scaling curve.
‣   The resonance data are on average equivalent to the scaling curve
‣   The resonance region data “slide” along the deep inelastic curve with increasing Q2.

 Review [Melnitchouk et al., Physics Reports 406]



Duality and QCD3 approches (3)

c) Comparison between SF integrals in RES & DIS regions, in the same x interval

Ires(Q2) =
∫ xM

xm

FRes
2 (x, Q2) dx

IDIS(Q2) =
∫ xM

xm

FDIS
2 (x, Q2) dx

Γ̃res
1 (Q2) =

∫ xM

xm

gRes
1 (x, Q2) dx

Γ̃DIS
1 (Q2) =

∫ xM

xm

gDIS
1 (x, Q2) dx

g1 = A1 · F2
2x(1+R)

(xM ÷ xm) ⇐⇒ W 2
m ÷ W 2

M # 1 ÷ 4 GeV2 ∀ Q2

R = IRes/IDIS = 1 ⇐= Duality fulfilled =⇒ R = Γ̃Res
1 /Γ̃DIS

1 = 1

◦ Resonance region can be described in terms of quark degrees of freedom
◦ Distinction between resonance & DIS region is somehow artificial
=⇒ Duality provides access to large x where DIS data suffer for low statistic

Alessandra Fantoni Frascati, First Workshop on Quark-Hadron Duality and the Transition to pQCD, June 6-8, 2005 11

experiment

perturbative QCD

• Nonperturbative models analysis
• Perturbative analysis

Global duality: xM÷xm ⇔ W2m÷W2M⇒ 1.2÷4 GeV2
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Data analysis:  F2 at JLab

include LxR e↵ects. A consequence of LxR is that as x increases there is a shift to lower
values of the scale at which ↵

s

is calculated (see for instance Ref. [11] or the classical review
in Ref.[12]). At large x and low W

2, this shift requires a freezing of the coupling constant
in the infrared region.

The key result in the present work is that, by turning this argument around, or by using
the fact that our analysis, through LxR, is regulated by the value of the QCD coupling in
the infrared region, we can extract such coupling from experimental data. In our analysis
canonical higher-twist terms are suppressed in that their separate contributions to the per-
turbative curve to be compared to the large x data is negligible. However, nonperturbative
e↵ects are present as they become absorbed in the coupling’s infrared behavior.

The extracted coupling we obtain is consistent with schemes of scale fixing in which
↵

s

can be extended to the entire Q

2 domain. Various frameworks have been proposed
where the e↵ective coupling is free of the Landau pole, e.g., the BLM scheme [13] and its
recent extension using the Principle of Maximum Comformality [14], methods based on the
analyticity properties of ↵

s

[15, 16], and finally, including nonperturbative e↵ects [17–20]
(see also Refs. [21, 22] where ↵

s

was defined introducing nonperturbative e↵ects fixed by
a physical set of parameters). While the focus of the present manuscript is on suggesting
a way of extracting the running coupling from data, more detailed future studies will be
dedicated to connecting our approach to the mentioned schemes.

2. In order to evaluate the e↵ect of LxR we perform a fit of all available large x, eP

inclusive scattering data. We start from standard parametrizations of the PDFs, and we
consider systematically the e↵ects of TMCs, and perturbative evolution using either NLO or
next-to-leading log (NLL) resummed coe�cient functions, i.e., with and without LxR. Note
that the scope of the present fit is not towards a global analysis, but to assess the possible
interplay among the di↵erent components that impact Q

2 evolution at large x, including
LxR, TMCs, and HTs. In the resonance region, W 2  4 GeV2, we consider averages of both
data and theoretical evaluations by comparing limited intervals defined as,

R

exp/th(Q2) =

R
xmax(W 2=1.2GeV2)

xmin(W 2=4GeV2)
dxF

exp

2 (x,Q2)R
xmax(W 2=1.2GeV2)

xmin(W 2=4GeV2)
dxF

th
2 (x,Q2)

. (1)

In the present analysis, we use, for F

exp

2 , the data from JLab (Hall C, E94110) [23]
reanalyzed (binning in Q

2 and x) as explained in [24] as well as the SLAC data [25]. The
values of Q2 and the average values of x for each interval are given in Table I. The function
F

th
2 is the theoretical evaluation which is the same in both the DIS and resonance, Eq. (1),

regions. Notice that if Eq. (1) is equal to 1, duality is fulfilled. Since x is integrated over
the entire resonance region, we are considering global duality.

The OPE formulation of quark-hadron duality [26] suggests that the higher-twist contri-
butions to the scaling structure function would either be small or cancel otherwise duality
would be strongly violated. However, the role of the higher-twist terms is still unclear
since they would otherwise be expected to dominate the cross section at x ! 1. To an-
swer the question of the nature of a dual description, two complementary approaches have
been adopted. The first is the nonperturbative model’s view on the scaling of the structure
functions at low-energies [27–29]; the second approach consists in a perturbative analy-
sis [9, 10, 30], that through LxR provides a scenario by which the e↵ect of HTs can be

3

Q

2 [GeV2] xave I

exp(Q2)

1.75 0.516 6.994⇥10�2

2.5 0.603 4.881⇥10�2

3.75 0.702 2.356⇥10�2

5. 0.753 1.267⇥10�2

6.5 0.800 0.685⇥10�2

4. 0.712 2.045⇥10�2

5. 0.755 1.255⇥10�2

6. 0.787 0.802⇥10�2

7. 0.812 0.531⇥10�2

8. 0.832 0.363⇥10�2

TABLE I: Upper block: Integrals of JLab data from Refs. [23, 24], appearing in the numerator of
Eq. (1). The first column shows the average values of x for each bin. Lower block: SLAC data [25].
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FIG. 1: Ratio R

exp/th(Q2) of Eq. (1) where the theoretical analysis includes PQCD evolution using
the MSTW08 PDF set (black triangle), and MSTW08 PDF set plus TMCs (open green diamonds).
Ratios with error bars on data integrated in quadrature ; right panel: ratios with weighted error
bars on data integrated in quadrature.
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a way of extracting the running coupling from data, more detailed future studies will be
dedicated to connecting our approach to the mentioned schemes.
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inclusive scattering data. We start from standard parametrizations of the PDFs, and we
consider systematically the e↵ects of TMCs, and perturbative evolution using either NLO or
next-to-leading log (NLL) resummed coe�cient functions, i.e., with and without LxR. Note
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2 evolution at large x, including
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2 , the data from JLab (Hall C, E94110) [23]
reanalyzed (binning in Q

2 and x) as explained in [24] as well as the SLAC data [25]. The
values of Q2 and the average values of x for each interval are given in Table I. The function
F

th
2 is the theoretical evaluation which is the same in both the DIS and resonance, Eq. (1),

regions. Notice that if Eq. (1) is equal to 1, duality is fulfilled. Since x is integrated over
the entire resonance region, we are considering global duality.

The OPE formulation of quark-hadron duality [26] suggests that the higher-twist contri-
butions to the scaling structure function would either be small or cancel otherwise duality
would be strongly violated. However, the role of the higher-twist terms is still unclear
since they would otherwise be expected to dominate the cross section at x ! 1. To an-
swer the question of the nature of a dual description, two complementary approaches have
been adopted. The first is the nonperturbative model’s view on the scaling of the structure
functions at low-energies [27–29]; the second approach consists in a perturbative analy-
sis [9, 10, 30], that through LxR provides a scenario by which the e↵ect of HTs can be
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exp/th(Q2) of Eq. (1) where the theoretical analysis includes PQCD evolution using
the MSTW08 PDF set (black triangle), and MSTW08 PDF set plus TMCs (open green diamonds).
Ratios with error bars on data integrated in quadrature ; right panel: ratios with weighted error
bars on data integrated in quadrature.
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where E.P. means end points and [. . .]+ denotes the standard plus-prescription. The function

P̂

(0)
qq
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include LxR e↵ects. A consequence of LxR is that as x increases there is a shift to lower
values of the scale at which ↵
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is calculated (see for instance Ref. [11] or the classical review
in Ref.[12]). At large x and low W

2, this shift requires a freezing of the coupling constant
in the infrared region.

The key result in the present work is that, by turning this argument around, or by using
the fact that our analysis, through LxR, is regulated by the value of the QCD coupling in
the infrared region, we can extract such coupling from experimental data. In our analysis
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a physical set of parameters). While the focus of the present manuscript is on suggesting
a way of extracting the running coupling from data, more detailed future studies will be
dedicated to connecting our approach to the mentioned schemes.

2. In order to evaluate the e↵ect of LxR we perform a fit of all available large x, eP

inclusive scattering data. We start from standard parametrizations of the PDFs, and we
consider systematically the e↵ects of TMCs, and perturbative evolution using either NLO or
next-to-leading log (NLL) resummed coe�cient functions, i.e., with and without LxR. Note
that the scope of the present fit is not towards a global analysis, but to assess the possible
interplay among the di↵erent components that impact Q

2 evolution at large x, including
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regions. Notice that if Eq. (1) is equal to 1, duality is fulfilled. Since x is integrated over
the entire resonance region, we are considering global duality.

The OPE formulation of quark-hadron duality [26] suggests that the higher-twist contri-
butions to the scaling structure function would either be small or cancel otherwise duality
would be strongly violated. However, the role of the higher-twist terms is still unclear
since they would otherwise be expected to dominate the cross section at x ! 1. To an-
swer the question of the nature of a dual description, two complementary approaches have
been adopted. The first is the nonperturbative model’s view on the scaling of the structure
functions at low-energies [27–29]; the second approach consists in a perturbative analy-
sis [9, 10, 30], that through LxR provides a scenario by which the e↵ect of HTs can be
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exp/th(Q2) of Eq. (1) where the theoretical analysis includes PQCD evolution using
the MSTW08 PDF set (black triangle), and MSTW08 PDF set plus TMCs (open green diamonds).
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F2 in perturbative QCD

MS scheme →

In practice:

1.  DGLAP

2. convolution with coefficient functions

1. q0→ leading-twist  PDFs
here MSTW08NLO

2. q0→ evolved to  q(x, Q2) via DGLAP 
with

P→ splitting functions, to NLO

3. C→ coefficient functions, to NLO
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3. C→ coefficient functions, to NLO
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2 w , the mass squared of the final state in the y *  parton collision (figure 15), that really 
sets this limit (Brodsky and Lepage 1980). From figure 15 and 0 3.8.2, it is easily 
seen that 

Q2 
w 2  = - (1 - z )  

2 
(4.70) 

for the basic subprocess, while the mass squared of the final state in the y*N collision 
is W 2  = Q2(1  -x ) /x  + M N 2 .  Thus equation (4.69) becomes (Amati et a1 1980) 

1 2 

a aFNS In Q2 (x, Q 2 ) =  X dzFNS(? ,  Z Q 2 ) ( ~ P q ~ o ) ( ~ ) + ( ~ ) z ~ q ~ 1 ) ( z ) )  21r + (4.71) 21r 

where because (equation (2.19)) 
2 

2 2 Po 2 2  
a s ( w  )=a,(Q ) - -aa , (Q  ) l n x - .  I .  

41r Q 
the term in Pqq(l) like -$30Pqq‘o’In (1-z) has now been summed into the leading 
term, leaving Pqq(l) with no such terms. Moreover, w 2  as the argument of a ,  
sums not just the O(as2) terms into the leading term, but all higher orders too. 
Equation (4.71) is believed to sum all the leading double logarithm terms into the 
first term too (Ciafaloni 1980). Terms of lower order in In (1  - 2 )  cannot, of course, 
be summed into the as term, since their contribution depends on the gauge. Neverthe- 
less, we have in equation (4.71) succeeded in summing the double log terms of all 
orders into the running coupling, rather as the renormalisation group allowed the 
single logs to be summed. Though potentially large logarithms still remain, equation 
(4.71) does provide us with a satisfactory interpolation formula from the regime in 
which Q 2  - W 2  >>A2, to which the renormalisation group applies, to where Q 2  >> W 2  >> 
A’. Equation (4.71) thus goes beyond equation (4.1) for moments. Whether it allows 
the further transition to the regime Q 2  >> W 2  - A’, we will come to shortly. Moreover, 
the 1/z in w 2  equation (4.70), is not necessarily the correct way to treat the l n t  
factors in Pq4(’’. Since these do not affect the large n behaviour of the moments, we 
are free to use z w 2  or t 2 w 2 ,  etc, as the argument of as. Nevertheless, w 2  is physically 
most natural. 

Now notice, most importantly, that since it is the region of z - 1 that gives the 
dominant contribution to equation (4.68) (for all x ) ,  we always need the behaviour 
of a ,  for very small values of its argument, equation (4.71). However, this double 
log summation has given a ,  a time-like argument, equation (4.70). It has the same 
cuts as the y*q  amplitude (figure 19), the discontinuity of which is related to the 
structure function. Thus, just as in 80 1.4, 1.5 and 2.3, we must perform a perturbative 
expansion in the space-like regime, where q 2  = -QZ and? w are both negative and 
far from any physical thresholds. The large logarithms are then summed and the 
resulting series in a ,  assumed sensible. We then analytically continue this amplitude 
to the time-like w 2  regime and, in taking its discontinuity, remember that a s ( w 2 )  is 
complex too. This will then involve the real and imaginary parts of a,, As discussed 
in 0 2.3, las(w2)) will be a more natural expansion parameter. This will sum terms of 
O(aS3) and higher, which also give gauge-invariant contributions into the leading 
order-see 8 5 . 5  for a more exact discussion. Though the form of Ias(w2)1 for w 2 < A 2  

i We use u 2  for the y*q  energy in its centre of mass and W 2  for that of the full y*N process. Thus at 
fixed Q2, neglecting masses, u 2  = W2(x = 2). 
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restricted phase space for real gluon emission



Many ways to implement LxR

Our strategy

‣  We don’t touch the DGLAP part

‣ Resummation at the coefficient function level :

‣ Divergent term at x→1,

suppressed in a fully quantitative fit at large x. It is this second approach that we will
follow in this paper.

We evaluate F

th
2 taking into account perturbative evolution at NLO, and introduce sub-

sequently the e↵ects of TMCs, and LxR. Since only valence quarks distributions are relevant
in our kinematics, we consider only the Non Singlet (NS) sector,

F

NS

2 (x,Q2) = xq(x,Q2) +
↵

s

4⇡

X

q

Z 1

x

dz B

q

NS(z)
x

z

q
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z

,Q

2
⌘

, (2)

The PDFs, q(x,Q2), are taken from current parametrizations. We have chosen to present
results using the MSTW08 set at NLO as initial parametrization [31]. We have checked
that there were no significant discrepancies when using other sets, i.e., CTEQ6 [32] and the
dynamical GJRFVNS [33]. The function B

q

NS is the Wilson coe�cient function for quark-
quark.

By evaluating the ratios Rexp/th, using current parametrizations, one finds a sensible de-
viation from the data, even when the theoretical uncertainty from the parametrizations
is included (Figure 1). One possible explanation is in the lack of accuracy in the PDF
parametrizations in the large x, low W

2 domain, since most groups implement much larger
thresholds for W 2. The way to a fully quantitative fit would then start from re-fitting the
large x data with new appropriate sets of PDFs, and simultaneously accounting for both
TMCs, and LxR. The number of parameters, and the uncertainty associated with this pro-
cedure would however be dauntingly increasing. For this reason, it is therefore necessary
to take the preparatory step, conducted with the present analysis, of assessing the relative
weight of the di↵erent contributions.

The additional corrections due to the finite mass of the initial nucleon, or the TMCs, are
included directly in F

NS,th

2 as [34] (see also review in [35]),

F
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2 is the structure function in the absence of TMC. Since TMC should in
principle be applied also to the HT, we disregard terms of O(1/Q4) [36]. Note that the
expansion in Eq. (3) is valid for Q

2 larger than ⇡ 1 GeV2. TMCs move the ratio closer
to unity, as represented by the open green diamonds in Fig. 1. Uncertainties on TMCs are
very small [36]. However a larger error might arise from the procedure used to account for
TMCs [37]. Studies of the sensitivity to this procedure are on their way and will be published
elsewhere. At this stage, by including only TMCs and standard PDF parametrizations, we
still observe a large discrepancy with the data.

Next, we consider LxR e↵ects. A major consequence of LxR is a shift of the scale at
which ↵

s

is calculated to lower values, with increasing z (see for instance Refs. [11, 12, 38]).
This introduces a model dependence within the PQCD approach in that the value of the
QCD running coupling in the infrared region is regulated by LxR so as to satisfy duality.
In other words, LxR contains an additional degree of freedom, gathered in the definition of
the coupling constant, to tune the scaling structure functions.

LxR arises formally from terms containing powers of ln(1 � z), z being the longitudinal
variable in the evolution equations, that are present in the Wilson coe�cient functions
B
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NS(z), in Eq. (2). To NLO and in the MS scheme, the Wilson coe�cient function for
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Many ways to implement LxR

Our strategy

‣  We don’t touch the DGLAP part

‣ Resummation at the coefficient function level :

‣ Divergent term at x→1,

suppressed in a fully quantitative fit at large x. It is this second approach that we will
follow in this paper.

We evaluate F

th
2 taking into account perturbative evolution at NLO, and introduce sub-

sequently the e↵ects of TMCs, and LxR. Since only valence quarks distributions are relevant
in our kinematics, we consider only the Non Singlet (NS) sector,
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The PDFs, q(x,Q2), are taken from current parametrizations. We have chosen to present
results using the MSTW08 set at NLO as initial parametrization [31]. We have checked
that there were no significant discrepancies when using other sets, i.e., CTEQ6 [32] and the
dynamical GJRFVNS [33]. The function B

q

NS is the Wilson coe�cient function for quark-
quark.

By evaluating the ratios Rexp/th, using current parametrizations, one finds a sensible de-
viation from the data, even when the theoretical uncertainty from the parametrizations
is included (Figure 1). One possible explanation is in the lack of accuracy in the PDF
parametrizations in the large x, low W

2 domain, since most groups implement much larger
thresholds for W 2. The way to a fully quantitative fit would then start from re-fitting the
large x data with new appropriate sets of PDFs, and simultaneously accounting for both
TMCs, and LxR. The number of parameters, and the uncertainty associated with this pro-
cedure would however be dauntingly increasing. For this reason, it is therefore necessary
to take the preparatory step, conducted with the present analysis, of assessing the relative
weight of the di↵erent contributions.

The additional corrections due to the finite mass of the initial nucleon, or the TMCs, are
included directly in F
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where F
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2 is the structure function in the absence of TMC. Since TMC should in
principle be applied also to the HT, we disregard terms of O(1/Q4) [36]. Note that the
expansion in Eq. (3) is valid for Q

2 larger than ⇡ 1 GeV2. TMCs move the ratio closer
to unity, as represented by the open green diamonds in Fig. 1. Uncertainties on TMCs are
very small [36]. However a larger error might arise from the procedure used to account for
TMCs [37]. Studies of the sensitivity to this procedure are on their way and will be published
elsewhere. At this stage, by including only TMCs and standard PDF parametrizations, we
still observe a large discrepancy with the data.

Next, we consider LxR e↵ects. A major consequence of LxR is a shift of the scale at
which ↵

s

is calculated to lower values, with increasing z (see for instance Refs. [11, 12, 38]).
This introduces a model dependence within the PQCD approach in that the value of the
QCD running coupling in the infrared region is regulated by LxR so as to satisfy duality.
In other words, LxR contains an additional degree of freedom, gathered in the definition of
the coupling constant, to tune the scaling structure functions.

LxR arises formally from terms containing powers of ln(1 � z), z being the longitudinal
variable in the evolution equations, that are present in the Wilson coe�cient functions
B
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NS(z), in Eq. (2). To NLO and in the MS scheme, the Wilson coe�cient function for
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where E.P. means end points and [. . .]+ denotes the standard plus-prescription. The function
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(z) is the LO splitting function for quark-quark. The logarithmic terms, i.e., ln(1� z),
in B
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NS(z) become very large at large x values. They need to be resummed to all orders in
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. Resummation was first introduced by linking this issue to the definition of the correct
kinematical variable that determines the phase space for the radiation of gluons at large x.
This was found to be f
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2(1� z)/z, instead of Q2 [11, 39]. As a result, the argument
of the strong coupling constant becomes z-dependent [40],
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where E.P. means end points and [. . .]+ denotes the standard plus-prescription. The function
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(z) is the LO splitting function for quark-quark. The logarithmic terms, i.e., ln(1� z),
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NS(z) become very large at large x values. They need to be resummed to all orders in
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. Resummation was first introduced by linking this issue to the definition of the correct
kinematical variable that determines the phase space for the radiation of gluons at large x.
This was found to be f
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Many ways to implement LxR

Our strategy

‣  We don’t touch the DGLAP part

‣ Resummation at the coefficient function level :

‣ Divergent term at x→1,

suppressed in a fully quantitative fit at large x. It is this second approach that we will
follow in this paper.

We evaluate F

th
2 taking into account perturbative evolution at NLO, and introduce sub-

sequently the e↵ects of TMCs, and LxR. Since only valence quarks distributions are relevant
in our kinematics, we consider only the Non Singlet (NS) sector,
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The PDFs, q(x,Q2), are taken from current parametrizations. We have chosen to present
results using the MSTW08 set at NLO as initial parametrization [31]. We have checked
that there were no significant discrepancies when using other sets, i.e., CTEQ6 [32] and the
dynamical GJRFVNS [33]. The function B

q

NS is the Wilson coe�cient function for quark-
quark.

By evaluating the ratios Rexp/th, using current parametrizations, one finds a sensible de-
viation from the data, even when the theoretical uncertainty from the parametrizations
is included (Figure 1). One possible explanation is in the lack of accuracy in the PDF
parametrizations in the large x, low W

2 domain, since most groups implement much larger
thresholds for W 2. The way to a fully quantitative fit would then start from re-fitting the
large x data with new appropriate sets of PDFs, and simultaneously accounting for both
TMCs, and LxR. The number of parameters, and the uncertainty associated with this pro-
cedure would however be dauntingly increasing. For this reason, it is therefore necessary
to take the preparatory step, conducted with the present analysis, of assessing the relative
weight of the di↵erent contributions.

The additional corrections due to the finite mass of the initial nucleon, or the TMCs, are
included directly in F

NS,th

2 as [34] (see also review in [35]),
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where F
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2 ⌘ F

NS

2 is the structure function in the absence of TMC. Since TMC should in
principle be applied also to the HT, we disregard terms of O(1/Q4) [36]. Note that the
expansion in Eq. (3) is valid for Q

2 larger than ⇡ 1 GeV2. TMCs move the ratio closer
to unity, as represented by the open green diamonds in Fig. 1. Uncertainties on TMCs are
very small [36]. However a larger error might arise from the procedure used to account for
TMCs [37]. Studies of the sensitivity to this procedure are on their way and will be published
elsewhere. At this stage, by including only TMCs and standard PDF parametrizations, we
still observe a large discrepancy with the data.

Next, we consider LxR e↵ects. A major consequence of LxR is a shift of the scale at
which ↵

s

is calculated to lower values, with increasing z (see for instance Refs. [11, 12, 38]).
This introduces a model dependence within the PQCD approach in that the value of the
QCD running coupling in the infrared region is regulated by LxR so as to satisfy duality.
In other words, LxR contains an additional degree of freedom, gathered in the definition of
the coupling constant, to tune the scaling structure functions.

LxR arises formally from terms containing powers of ln(1 � z), z being the longitudinal
variable in the evolution equations, that are present in the Wilson coe�cient functions
B
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NS(z), in Eq. (2). To NLO and in the MS scheme, the Wilson coe�cient function for
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. Resummation was first introduced by linking this issue to the definition of the correct
kinematical variable that determines the phase space for the radiation of gluons at large x.
This was found to be f
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where E.P. means end points and [. . .]+ denotes the standard plus-prescription. The function
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(z) is the LO splitting function for quark-quark. The logarithmic terms, i.e., ln(1� z),
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NS(z) become very large at large x values. They need to be resummed to all orders in
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. Resummation was first introduced by linking this issue to the definition of the correct
kinematical variable that determines the phase space for the radiation of gluons at large x.
This was found to be f
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of the strong coupling constant becomes z-dependent [40],
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‣ Need to be resummed to all order in αs  

‣ defining the correct kinematics
In this procedure, however, an ambiguity is introduced, related to the need of continuing
the value of ↵

s

for low values of its argument, i.e., for z ! 1 [41]. Since the size of this
ambiguity is of the same order as the higher-twist corrections, it has been considered, in a
previous work [42], as a source of theoretical error or higher order e↵ects. We investigate
the e↵ect induced by changing the argument of ↵

s

on the behavior of the ln(1� z)-terms in
the convolution Eq. (2), and resum those terms as
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including the complete z dependence of ↵
s,LO(W̃ 2) to all logarithms.1 Note that we are using

three di↵erent concepts of order expansions. The present analysis is conducted to next-to-
leading order (we evolve the PDF sets to NLO), to leading-twist (we consider the LT PDFs
only) and to all logarithms (we include ↵

s,LO(scale) to all logarithms). This resummation is
easily understood when considering the first term of the expansion of ↵
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(W̃ 2) in ln((1�z)/z),
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as proposed in Ref. [40]. To all logarithms, the convolution becomes
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where,
B

Resum

NS = B

q

NS(z)� P̂

(0)
qq
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Using F

NS,Resum

2 plus TMCs, in Eq. (1), will make the ratio R decreases substantially,
essentially leaving no space for HT terms. This is due in our approach mostly to the change
of the argument of the running coupling constant. At fixed Q

2, in the integration over
x < z < 1, the scale f

W

2 = Q

2(1 � z)/z is shifted and can reach low values, where the
running of the coupling constant starts blowing up. At this stage, our analysis requires
nonperturbative information. A way to address this issue is to set a maximum value for
the longitudinal momentum fraction, zmax, which defines a limit from which nonperturbative
e↵ects have to be accounted for, and to cut ↵

s

at the corresponding scale, f
W

2(zmax) =
Q

2(1� zmax)/zmax. Larger values of zmax correspond to lower values at which the scale should
be cut in the analysis, meaning that the perturbative value can be used. As we show later,
large zmax occurs in the data at large Q2, therefore the e↵ect of the shift in scale gets smaller.

The functional form lnLxR is therefore slightly changed. Two distinct regions can be
studied: the “running” behavior in x < z < zmax and the “steady” behavior zmax < z < 1,

F

NS,Resum

2 (x, zmax, Q
2) = xq(x,Q2) +

↵
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4⇡
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q

NS(z)� P̂
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+
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(0)
qq
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dz P̂

(0)
qq

(z)

)
x

z

q

⇣
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2
⌘
.

(10)

1 The terms proportional to ln z are not divergent at z ! 1.
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Fig. 1. Running of the strong coupling constant in the MS with ⇤LO = 174MeV. The solid black
curve represent the LO ↵s(Q2)/4⇡. The dashed red curve represents the expansion of the strong
coupling in ln((1� z)/z), for z = 0.7 ; the dotted blue curve is the complete ↵s(Q2(1� z)/z)/4⇡
for the same value of z.

• the complete z dependence of ↵
s

(W̃ 2).

The running of each of the three versions of the coupling constant starts being
very di↵erent when z ! 1. We illustrate this behavior on Fig. 1 for z = 0.7. The
infrared behavior of the coupling constant with argument Q

2 starts to matter to
lower Q2 values than for a coupling constant which argument is W̃ 2. On the other
hand, the corresponding Landau poles do not coincide: for smallQ2 values and large-
z, the argument of ↵

s

(W̃ 2) di↵ers from the logarithmic terms taken into account in
the NLO expansion. The asymptotic value di↵ers for ↵

s

(W̃ 2) and expansion w.r.t.
↵

s

(Q2), as shown in the inner frame.
The meaning of LxR becomes very clear from Fig.1. It is now understood that

the only free parameter in testing the realization of duality here, is related to ↵

s

.
By playing with the argument of the running coupling constant, we can tune the
scaling structure function and extract the low Q

2 behavior that determines duality.
For instance, by setting a maximum value for z one would prevent the DGLAP
evolution from including extremely large values of the coupling constant. Moreover,
this zmax could define a criterion of convergence of the expansion w.r.t the complete
↵

s

(W̃ 2), as illustrated in Fig. 2.
This exercice has to be repeated for each experimental data point. We observe

from our analysis that the maximum value of z or, equivalently, the scale in which
the running of the coupling is stopped changes from one to another data point.
A rough qualitative parameterization of the realization fo duality would look like
Fig. 3, where we have use the Cornwall’s e↵ective charge resulting from a massive
gluon propagator [2]. In e↵ect, the dynamical gluon mass generation leads to the
freezing of the QCD running coupling constant. The nonperturbative generalization
of ↵

s

(Q2) comes, here, in the form

Example

‣ LO exact solution, Λ=174MeV → reaches Landau pole at Q=174MeV

‣ expansion in αs

‣ full dependence in z, 

Λ=174MeV → reaches Landau pole at Q >174MeV

In this procedure, however, an ambiguity is introduced, related to the need of continuing
the value of ↵

s

for low values of its argument, i.e., for z ! 1 [41]. Since the size of this
ambiguity is of the same order as the higher-twist corrections, it has been considered, in a
previous work [42], as a source of theoretical error or higher order e↵ects. We investigate
the e↵ect induced by changing the argument of ↵

s

on the behavior of the ln(1� z)-terms in
the convolution Eq. (2), and resum those terms as

ln(1� z) =
1

↵

s,LO(Q2)

Z
Q

2

d lnQ2
⇥
↵

s,LO(Q
2(1� z))� ↵

s,LO(Q
2)
⇤ ⌘ lnLxR , (6)

including the complete z dependence of ↵
s,LO(W̃ 2) to all logarithms.1 Note that we are using

three di↵erent concepts of order expansions. The present analysis is conducted to next-to-
leading order (we evolve the PDF sets to NLO), to leading-twist (we consider the LT PDFs
only) and to all logarithms (we include ↵

s,LO(scale) to all logarithms). This resummation is
easily understood when considering the first term of the expansion of ↵

s

(W̃ 2) in ln((1�z)/z),
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s
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s

(Q2)� �0
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◆
↵
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s

(Q2), (7)

as proposed in Ref. [40]. To all logarithms, the convolution becomes

F
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4⇡
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⇣
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⌘
, (8)

where,
B

Resum

NS = B

q

NS(z)� P̂

(0)
qq

(z) ln(1� z) + P̂

(0)
qq

(z) lnLxR . (9)

Using F

NS,Resum

2 plus TMCs, in Eq. (1), will make the ratio R decreases substantially,
essentially leaving no space for HT terms. This is due in our approach mostly to the change
of the argument of the running coupling constant. At fixed Q

2, in the integration over
x < z < 1, the scale f

W

2 = Q

2(1 � z)/z is shifted and can reach low values, where the
running of the coupling constant starts blowing up. At this stage, our analysis requires
nonperturbative information. A way to address this issue is to set a maximum value for
the longitudinal momentum fraction, zmax, which defines a limit from which nonperturbative
e↵ects have to be accounted for, and to cut ↵

s

at the corresponding scale, f
W

2(zmax) =
Q

2(1� zmax)/zmax. Larger values of zmax correspond to lower values at which the scale should
be cut in the analysis, meaning that the perturbative value can be used. As we show later,
large zmax occurs in the data at large Q2, therefore the e↵ect of the shift in scale gets smaller.

The functional form lnLxR is therefore slightly changed. Two distinct regions can be
studied: the “running” behavior in x < z < zmax and the “steady” behavior zmax < z < 1,
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1 The terms proportional to ln z are not divergent at z ! 1.
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• the complete z dependence of ↵
s

(W̃ 2).

The running of each of the three versions of the coupling constant starts being
very di↵erent when z ! 1. We illustrate this behavior on Fig. 1 for z = 0.7. The
infrared behavior of the coupling constant with argument Q

2 starts to matter to
lower Q2 values than for a coupling constant which argument is W̃ 2. On the other
hand, the corresponding Landau poles do not coincide: for smallQ2 values and large-
z, the argument of ↵

s

(W̃ 2) di↵ers from the logarithmic terms taken into account in
the NLO expansion. The asymptotic value di↵ers for ↵

s

(W̃ 2) and expansion w.r.t.
↵

s

(Q2), as shown in the inner frame.
The meaning of LxR becomes very clear from Fig.1. It is now understood that

the only free parameter in testing the realization of duality here, is related to ↵

s

.
By playing with the argument of the running coupling constant, we can tune the
scaling structure function and extract the low Q

2 behavior that determines duality.
For instance, by setting a maximum value for z one would prevent the DGLAP
evolution from including extremely large values of the coupling constant. Moreover,
this zmax could define a criterion of convergence of the expansion w.r.t the complete
↵

s

(W̃ 2), as illustrated in Fig. 2.
This exercice has to be repeated for each experimental data point. We observe

from our analysis that the maximum value of z or, equivalently, the scale in which
the running of the coupling is stopped changes from one to another data point.
A rough qualitative parameterization of the realization fo duality would look like
Fig. 3, where we have use the Cornwall’s e↵ective charge resulting from a massive
gluon propagator [2]. In e↵ect, the dynamical gluon mass generation leads to the
freezing of the QCD running coupling constant. The nonperturbative generalization
of ↵

s

(Q2) comes, here, in the form

Example

‣ LO exact solution, Λ=174MeV → reaches Landau pole at Q=174MeV

‣ expansion in αs

‣ full dependence in z, 

Λ=174MeV → reaches Landau pole at Q >174MeV

In this procedure, however, an ambiguity is introduced, related to the need of continuing
the value of ↵

s

for low values of its argument, i.e., for z ! 1 [41]. Since the size of this
ambiguity is of the same order as the higher-twist corrections, it has been considered, in a
previous work [42], as a source of theoretical error or higher order e↵ects. We investigate
the e↵ect induced by changing the argument of ↵

s

on the behavior of the ln(1� z)-terms in
the convolution Eq. (2), and resum those terms as

ln(1� z) =
1

↵

s,LO(Q2)

Z
Q

2

d lnQ2
⇥
↵

s,LO(Q
2(1� z))� ↵

s,LO(Q
2)
⇤ ⌘ lnLxR , (6)

including the complete z dependence of ↵
s,LO(W̃ 2) to all logarithms.1 Note that we are using

three di↵erent concepts of order expansions. The present analysis is conducted to next-to-
leading order (we evolve the PDF sets to NLO), to leading-twist (we consider the LT PDFs
only) and to all logarithms (we include ↵

s,LO(scale) to all logarithms). This resummation is
easily understood when considering the first term of the expansion of ↵

s

(W̃ 2) in ln((1�z)/z),

↵

s

(W̃ 2) = ↵

s

(Q2)� �0

4⇡
ln

✓
1� z

z

◆
↵

2
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(Q2), (7)

as proposed in Ref. [40]. To all logarithms, the convolution becomes

F

NS,Resum

2 (x,Q2) = xq(x,Q2) +
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Z 1

x
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NS (z)
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, (8)

where,
B

Resum

NS = B

q

NS(z)� P̂

(0)
qq

(z) ln(1� z) + P̂

(0)
qq

(z) lnLxR . (9)

Using F

NS,Resum

2 plus TMCs, in Eq. (1), will make the ratio R decreases substantially,
essentially leaving no space for HT terms. This is due in our approach mostly to the change
of the argument of the running coupling constant. At fixed Q

2, in the integration over
x < z < 1, the scale f

W

2 = Q

2(1 � z)/z is shifted and can reach low values, where the
running of the coupling constant starts blowing up. At this stage, our analysis requires
nonperturbative information. A way to address this issue is to set a maximum value for
the longitudinal momentum fraction, zmax, which defines a limit from which nonperturbative
e↵ects have to be accounted for, and to cut ↵

s

at the corresponding scale, f
W

2(zmax) =
Q

2(1� zmax)/zmax. Larger values of zmax correspond to lower values at which the scale should
be cut in the analysis, meaning that the perturbative value can be used. As we show later,
large zmax occurs in the data at large Q2, therefore the e↵ect of the shift in scale gets smaller.

The functional form lnLxR is therefore slightly changed. Two distinct regions can be
studied: the “running” behavior in x < z < zmax and the “steady” behavior zmax < z < 1,
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↵

s

4⇡

X

q

(Z 1

x

dz

h
B

q

NS(z)� P̂

(0)
qq

(z) ln(1� z)
i

+

Z
zmax

x

dz P̂

(0)
qq

(z) lnLxR + lnLxR, max

Z 1

zmax

dz P̂

(0)
qq

(z)

)
x

z

q

⇣
x

z

,Q

2
⌘
.

(10)

1 The terms proportional to ln z are not divergent at z ! 1.
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constrained in the region of interest (x ! 0.3) despite it does not correspond di-
rectly to measured data. FDIS

2 is an input that once fed into the evolution equations
determines the structure functions behavior at much larger Q2. However, the error
on this type of backward evolution is expected here to be small, being dominated
by the valence contribution (a quantitative analysis of the latter will be carried out
in an upcoming study [17]). Had we applied the same procedure to low x where the
singlet and gluon distributions govern F2, we would have gotten a much larger error
at low Q2 because of the strong correlation with the value of αs.

Besides perturbative evolution one has to take into account several hadronic
corrections to FDIS

2 . For instance, if we evolve the structure functions to NLO, we
find that duality is violated by a given amount. However Target Mass Corrections
(TMCs) are important here and move the ratio closer to unity. The most important
effect for our purposes is the effect of LxR, that we develop hereafter.

2.1. Large-x Resummation

Large x threshold resummation effects (LxR) arise formally from terms containing
powers of ln(1−z), z being the longitudinal variable in the evolution equations, that
are present in the Wilson coefficient functions C(z). Below we write schematically
how the latter relate the parton distributions to e.g. the structure function F2,

FLT
2 (x,Q2) =

αs

2π

∑

q

∫ 1

x

dz C(z) q(x/z,Q2), (2)

where we have considered only the non-singlet (NS) contribution to F2 since only
valence quarks distributions are relevant in our kinematics. The logarithmic terms
in C(z) become very large at large x, and they need to be resummed to all orders
in αs. Resummation was first introduced by linking this issue to the definition of
the correct kinematical variable that determines the phase space for the radiation
of gluons at large x. This was found to be W̃ 2 = Q2(1−z)/z, instead of Q2 [15, 20].
As a result, the argument of the strong coupling constant becomes z-dependent:
αs(Q2) → αs(Q2(1 − z)/z) [21, 22]. In this procedure, however, an ambiguity is
introduced, related to the need of continuing the value of αs for low values of its
argument, i.e. for z → 1 [23].

Since the size of this ambiguity is of the same order as the higher-twist correc-
tions, it has been considered, in previous work [24], as a source of theoretical error
or higher order effects. We propose an accurate analysis [17] from which one can
extract αs for values of the scale in the infrared region. To do so, we investigate the
effect of varying the form of the running coupling on the evolution equations. We
consider the following choices:

• αs(Q2) ;
• an expansion of αs(W̃ 2) in ln((1− z)/z), to NLO,

αs(W̃
2) = αs(Q

2)−
β0

4π
ln

(
1− z

z

)
α2
s(Q

2), (3)
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Fig. 1. Running of the strong coupling constant in the MS with ΛLO = 174MeV. The solid black
curve represent the LO αs(Q2)/4π. The dashed red curve represents the expansion of the strong
coupling in ln((1 − z)/z), for z = 0.7 ; the dotted blue curve is the complete αs(Q2(1− z)/z)/4π
for the same value of z.

• the complete z dependence of αs(W̃ 2).

The running of each of the three versions of the coupling constant starts being
very different when z → 1. We illustrate this behavior on Fig. 1 for z = 0.7. The
infrared behavior of the coupling constant with argument Q2 starts to matter to
lower Q2 values than for a coupling constant which argument is W̃ 2. On the other
hand, the corresponding Landau poles do not coincide: for smallQ2 values and large-
z, the argument of αs(W̃ 2) differs from the logarithmic terms taken into account in
the NLO expansion. The asymptotic value differs for αs(W̃ 2) and expansion w.r.t.
αs(Q2), as shown in the inner frame.

The meaning of LxR becomes very clear from Fig.1. It is now understood that
the only free parameter in testing the realization of duality here, is related to αs.
By playing with the argument of the running coupling constant, we can tune the
scaling structure function and extract the low Q2 behavior that determines duality.
For instance, by setting a maximum value for z one would prevent the DGLAP
evolution from including extremely large values of the coupling constant. Moreover,
this zmax could define a criterion of convergence of the expansion w.r.t the complete
αs(W̃ 2), as illustrated in Fig. 2.

This exercice has to be repeated for each experimental data point. We observe
from our analysis that the maximum value of z or, equivalently, the scale in which
the running of the coupling is stopped changes from one to another data point.
A rough qualitative parameterization of the realization fo duality would look like
Fig. 3, where we have use the Cornwall’s effective charge resulting from a massive
gluon propagator [2]. In effect, the dynamical gluon mass generation leads to the
freezing of the QCD running coupling constant. The nonperturbative generalization
of αs(Q2) comes, here, in the form

[Courtoy & Liuti, 1208.5636]

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

z

Α
s!20.

G
eV

2 ,z
"#4Π

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

z

Α
s!2.G

eV
2 ,z
"#4Π

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

z

Α
s!0.40

2
G
eV

2 ,z
"#4Π



Large-x Resummation: αs as (hidden)  free parameter 

August 29, 2012 0:19 WSPC/INSTRUCTION FILE evo12˙courtoy˙liuti

4 Courtoy, Liuti

constrained in the region of interest (x ! 0.3) despite it does not correspond di-
rectly to measured data. FDIS

2 is an input that once fed into the evolution equations
determines the structure functions behavior at much larger Q2. However, the error
on this type of backward evolution is expected here to be small, being dominated
by the valence contribution (a quantitative analysis of the latter will be carried out
in an upcoming study [17]). Had we applied the same procedure to low x where the
singlet and gluon distributions govern F2, we would have gotten a much larger error
at low Q2 because of the strong correlation with the value of αs.

Besides perturbative evolution one has to take into account several hadronic
corrections to FDIS

2 . For instance, if we evolve the structure functions to NLO, we
find that duality is violated by a given amount. However Target Mass Corrections
(TMCs) are important here and move the ratio closer to unity. The most important
effect for our purposes is the effect of LxR, that we develop hereafter.

2.1. Large-x Resummation

Large x threshold resummation effects (LxR) arise formally from terms containing
powers of ln(1−z), z being the longitudinal variable in the evolution equations, that
are present in the Wilson coefficient functions C(z). Below we write schematically
how the latter relate the parton distributions to e.g. the structure function F2,

FLT
2 (x,Q2) =

αs

2π

∑

q

∫ 1

x

dz C(z) q(x/z,Q2), (2)

where we have considered only the non-singlet (NS) contribution to F2 since only
valence quarks distributions are relevant in our kinematics. The logarithmic terms
in C(z) become very large at large x, and they need to be resummed to all orders
in αs. Resummation was first introduced by linking this issue to the definition of
the correct kinematical variable that determines the phase space for the radiation
of gluons at large x. This was found to be W̃ 2 = Q2(1−z)/z, instead of Q2 [15, 20].
As a result, the argument of the strong coupling constant becomes z-dependent:
αs(Q2) → αs(Q2(1 − z)/z) [21, 22]. In this procedure, however, an ambiguity is
introduced, related to the need of continuing the value of αs for low values of its
argument, i.e. for z → 1 [23].

Since the size of this ambiguity is of the same order as the higher-twist correc-
tions, it has been considered, in previous work [24], as a source of theoretical error
or higher order effects. We propose an accurate analysis [17] from which one can
extract αs for values of the scale in the infrared region. To do so, we investigate the
effect of varying the form of the running coupling on the evolution equations. We
consider the following choices:

• αs(Q2) ;
• an expansion of αs(W̃ 2) in ln((1− z)/z), to NLO,

αs(W̃
2) = αs(Q

2)−
β0

4π
ln

(
1− z

z

)
α2
s(Q

2), (3)
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Fig. 1. Running of the strong coupling constant in the MS with ΛLO = 174MeV. The solid black
curve represent the LO αs(Q2)/4π. The dashed red curve represents the expansion of the strong
coupling in ln((1 − z)/z), for z = 0.7 ; the dotted blue curve is the complete αs(Q2(1− z)/z)/4π
for the same value of z.

• the complete z dependence of αs(W̃ 2).

The running of each of the three versions of the coupling constant starts being
very different when z → 1. We illustrate this behavior on Fig. 1 for z = 0.7. The
infrared behavior of the coupling constant with argument Q2 starts to matter to
lower Q2 values than for a coupling constant which argument is W̃ 2. On the other
hand, the corresponding Landau poles do not coincide: for smallQ2 values and large-
z, the argument of αs(W̃ 2) differs from the logarithmic terms taken into account in
the NLO expansion. The asymptotic value differs for αs(W̃ 2) and expansion w.r.t.
αs(Q2), as shown in the inner frame.

The meaning of LxR becomes very clear from Fig.1. It is now understood that
the only free parameter in testing the realization of duality here, is related to αs.
By playing with the argument of the running coupling constant, we can tune the
scaling structure function and extract the low Q2 behavior that determines duality.
For instance, by setting a maximum value for z one would prevent the DGLAP
evolution from including extremely large values of the coupling constant. Moreover,
this zmax could define a criterion of convergence of the expansion w.r.t the complete
αs(W̃ 2), as illustrated in Fig. 2.

This exercice has to be repeated for each experimental data point. We observe
from our analysis that the maximum value of z or, equivalently, the scale in which
the running of the coupling is stopped changes from one to another data point.
A rough qualitative parameterization of the realization fo duality would look like
Fig. 3, where we have use the Cornwall’s effective charge resulting from a massive
gluon propagator [2]. In effect, the dynamical gluon mass generation leads to the
freezing of the QCD running coupling constant. The nonperturbative generalization
of αs(Q2) comes, here, in the form
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constrained in the region of interest (x ! 0.3) despite it does not correspond di-
rectly to measured data. FDIS

2 is an input that once fed into the evolution equations
determines the structure functions behavior at much larger Q2. However, the error
on this type of backward evolution is expected here to be small, being dominated
by the valence contribution (a quantitative analysis of the latter will be carried out
in an upcoming study [17]). Had we applied the same procedure to low x where the
singlet and gluon distributions govern F2, we would have gotten a much larger error
at low Q2 because of the strong correlation with the value of αs.

Besides perturbative evolution one has to take into account several hadronic
corrections to FDIS

2 . For instance, if we evolve the structure functions to NLO, we
find that duality is violated by a given amount. However Target Mass Corrections
(TMCs) are important here and move the ratio closer to unity. The most important
effect for our purposes is the effect of LxR, that we develop hereafter.

2.1. Large-x Resummation

Large x threshold resummation effects (LxR) arise formally from terms containing
powers of ln(1−z), z being the longitudinal variable in the evolution equations, that
are present in the Wilson coefficient functions C(z). Below we write schematically
how the latter relate the parton distributions to e.g. the structure function F2,

FLT
2 (x,Q2) =

αs

2π

∑

q

∫ 1

x

dz C(z) q(x/z,Q2), (2)

where we have considered only the non-singlet (NS) contribution to F2 since only
valence quarks distributions are relevant in our kinematics. The logarithmic terms
in C(z) become very large at large x, and they need to be resummed to all orders
in αs. Resummation was first introduced by linking this issue to the definition of
the correct kinematical variable that determines the phase space for the radiation
of gluons at large x. This was found to be W̃ 2 = Q2(1−z)/z, instead of Q2 [15, 20].
As a result, the argument of the strong coupling constant becomes z-dependent:
αs(Q2) → αs(Q2(1 − z)/z) [21, 22]. In this procedure, however, an ambiguity is
introduced, related to the need of continuing the value of αs for low values of its
argument, i.e. for z → 1 [23].

Since the size of this ambiguity is of the same order as the higher-twist correc-
tions, it has been considered, in previous work [24], as a source of theoretical error
or higher order effects. We propose an accurate analysis [17] from which one can
extract αs for values of the scale in the infrared region. To do so, we investigate the
effect of varying the form of the running coupling on the evolution equations. We
consider the following choices:

• αs(Q2) ;
• an expansion of αs(W̃ 2) in ln((1− z)/z), to NLO,

αs(W̃
2) = αs(Q

2)−
β0

4π
ln

(
1− z

z

)
α2
s(Q

2), (3)
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Fig. 1. Running of the strong coupling constant in the MS with ΛLO = 174MeV. The solid black
curve represent the LO αs(Q2)/4π. The dashed red curve represents the expansion of the strong
coupling in ln((1 − z)/z), for z = 0.7 ; the dotted blue curve is the complete αs(Q2(1− z)/z)/4π
for the same value of z.

• the complete z dependence of αs(W̃ 2).

The running of each of the three versions of the coupling constant starts being
very different when z → 1. We illustrate this behavior on Fig. 1 for z = 0.7. The
infrared behavior of the coupling constant with argument Q2 starts to matter to
lower Q2 values than for a coupling constant which argument is W̃ 2. On the other
hand, the corresponding Landau poles do not coincide: for smallQ2 values and large-
z, the argument of αs(W̃ 2) differs from the logarithmic terms taken into account in
the NLO expansion. The asymptotic value differs for αs(W̃ 2) and expansion w.r.t.
αs(Q2), as shown in the inner frame.

The meaning of LxR becomes very clear from Fig.1. It is now understood that
the only free parameter in testing the realization of duality here, is related to αs.
By playing with the argument of the running coupling constant, we can tune the
scaling structure function and extract the low Q2 behavior that determines duality.
For instance, by setting a maximum value for z one would prevent the DGLAP
evolution from including extremely large values of the coupling constant. Moreover,
this zmax could define a criterion of convergence of the expansion w.r.t the complete
αs(W̃ 2), as illustrated in Fig. 2.

This exercice has to be repeated for each experimental data point. We observe
from our analysis that the maximum value of z or, equivalently, the scale in which
the running of the coupling is stopped changes from one to another data point.
A rough qualitative parameterization of the realization fo duality would look like
Fig. 3, where we have use the Cornwall’s effective charge resulting from a massive
gluon propagator [2]. In effect, the dynamical gluon mass generation leads to the
freezing of the QCD running coupling constant. The nonperturbative generalization
of αs(Q2) comes, here, in the form
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What does a cut in αs means?  
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QCD Coupling Constant in pQCD

‣ QCD with massless quarks 
➡ no scale parameters

‣ RGE introduces a momentum scale Λ
➡ interaction strength =1

• Renormalization scheme dependence of Λ

•World data average (2009)

that corresponds to    (to NNLO)
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of the measurements with the others, exclusive averages,
leaving out one of the 8 measurements at a time, are cal-
culated. These are presented in the 5th column of table 1,
together with the corresponding number of standard de-
viations 5 between the exclusive mean and the respective
single measurement.

As can be seen, the values of exclusive means vary only
between a minimum of 0.11818 and a maximum 0.11876.
Note that in the case of these exclusive means and ac-
cording to the ”rules” of calculating their overall errors,
in four out of the eight cases small error scaling factors
of g = 1.06...1.08 had to be applied, while in the other
cases, overall correlation factors of about 0.1, and in one
case of 0.7, had to be applied to assure χ2/ndf = 1. Most
notably, the average value αs(MZ0) changes to αs(MZ0) =
0.1186±0.0011when omitting the result from lattice QCD.

5 Summary and Discussion

In this review, new results and measurements of αs are
summarised, and the world average value of αs(MZ0), as
previously given in [7,28,6], is updated. Based on eight
recent measurements, which partly use new and improved
N3LO, NNLO and lattice QCD predictions, the new av-
erage value is

αs(MZ0) = 0.1184± 0.0007 ,

which corresponds to

Λ(5)

MS
= (213 ± 9 )MeV .

This result is consistent with the one obtained in the pre-
viuos review three years ago [28], which was αs(MZ0) =
0.1189±0.0010. The previous and the actual world average
have been obtained from a non-overlapping set of single
results; their agreement therefore demonstrates a large de-
gree of compatibility between the old and the new, largely
improved set of measurements.

The individual mesurements, as listed in table 1 and
displayed in figure 5, show a very satisfactory agreement
with each other and with the overall average: only one
out of eight measurements exceeds a deviation from the
average by more than one standard deviation, and the
largest deviation between any two out of the eight results,
namely the ones from τ decays and from structure func-
tions, amounts to 2 standard deviations 6.

There remains, however, an apparent and long-standing
systematic difference: results from structure functions pre-
fer smaller values of αs(MZ0) than most of the others, i.e.
those from e+e− annihilations, from τ decays, but also
those from jet production in deep inelastic scattering. This
issue apparently remains to be true, although almost all of
the new results are based on significantly improved QCD

5 The number of standard deviations is defined as the
square-root of the value of χ2.

6 assuming their assigned total errors to be fully uncorre-
lated.

predictions, up to N3LO for structure functions, τ and Z0

hadronic widths, and NNLO for e+e− event shapes.
The reliability of “measurements” of αs based on “ex-

periments” on the lattice have gradually improved over
the years, too. Including vaccum polarisation of three light
quark flavours and extended means to understand and cor-
rect for finite lattice spacing and volume effects, the overall
error of these results significally decreased over time, while
the value of αs(MZ0) gradually approached the world aver-
age. Lattice results today quote the smallest overall error
on αs(MZ0); it is, however, ensuring to see and note that
the world average without lattice results is only marginally
different, while the small size of the total uncertainty on
the world average is, naturally, largely influenced by the
lattice result.

QCD α  (Μ  ) = 0.1184 ± 0.0007s Z
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Fig. 6. Summary of measurements of αs as a function of the
respective energy scale Q. The curves are QCD predictions for
the combined world average value of αs(MZ0), in 4-loop ap-
proximation and using 3-loop threshold matching at the heavy
quark pole masses Mc = 1.5 GeV and Mb = 4.7 GeV. Full sym-
bols are results based on N3LO QCD, open circles are based on
NNLO, open triangles and squares on NLO QCD. The cross-
filled square is based on lattice QCD. The filled triangle at
Q = 20 GeV (from DIS structure functions) is calculated from
the original result which includes data in the energy range from
Q =2 to 170 GeV.

In order to demonstrate the agreement of measure-
ments with the specific energy dependence of αs predicted
by QCD, in figure 6 the recent measurements of αs are
shown as a function of the energy scale Q. For those results
which are based on several αs determinations at different
values of energy scales Q, the individual values of αs(Q)
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In order to demonstrate the agreement of measure-
ments with the specific energy dependence of αs predicted
by QCD, in figure 6 the recent measurements of αs are
shown as a function of the energy scale Q. For those results
which are based on several αs determinations at different
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with each other and with the overall average: only one
out of eight measurements exceeds a deviation from the
average by more than one standard deviation, and the
largest deviation between any two out of the eight results,
namely the ones from τ decays and from structure func-
tions, amounts to 2 standard deviations 6.
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systematic difference: results from structure functions pre-
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QCD Running Coupling Constant
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Intermediate energy?
Perturbative to non-perturbative transition?



Effective Charges

the UV-regulated theory, is thus equivalent to the renor-

malization of the vector potential and field strength: A!
ren ¼

Z"1=2
3 A!

0 , G
!"
ren ¼ Z"1=2

3 G!"
0 with a rescaled Lagrangian

density Lren
QCD ¼ Z"1

3 L0
QCD ¼ ðgphys=g0Þ"2L0. In lattice

gauge theory, the lattice spacing a serves as the UV regu-
lator, and the renormalized QCD coupling is determined
from the normalization of the gluon field strength as it
appears in the gluon propagator. The inverse of the lattice
size L sets the mass scale of the resulting running coupling.
As in lattice gauge theory, color confinement in AdS/QCD
reflects nonpertubative dynamics at large distances. The
QCD couplings defined from lattice gauge theory and the
soft-wall holographic model are thus similar in concept,
and both schemes are expected to have similar properties in
the nonperturbative domain, up to a rescaling of their
respective momentum scales.

The gauge/gravity correspondence has also been used to
study the running coupling of the dual field theory. One can
modify the dynamics of the dilaton in the AdS space to
simulate the QCD # function in the UV domain [30–36].
For example, a #-function ansatz of the boundary field
theory is used as input in Refs. [32–36] to modify the AdS
metrics assuming the correspondence between the AdS
variable z and the energy scale E of the conformal field
theory, E% 1=z, as discussed in Ref. [37]. In our paper, the
effective QCD coupling is identified by using the precise
mapping from z in AdS space to the transverse impact
variable $ in LF QCD.

IV. COMPARISON OF THE HOLOGRAPHIC
COUPLINGWITH OTHER EFFECTIVE CHARGES

The effective coupling %AdSðQ2Þ (solid line) is com-
pared in Fig. 1 with experimental and lattice data. For
this comparison to be meaningful, we have to impose the
same normalization on the AdS coupling as the g1 cou-
pling. This defines %AdS

s normalized to the g1 scheme

%AdS
g1 ðQ2 ¼ 0Þ ¼ &: (10)

A similar value for the normalization constant is derived
in Ref. [22] from the AdS/CFT prediction for the current-
current correlator. The value of the five-dimensional cou-
pling found in [22] for a SUð2Þ flavor gauge theory is

ðg25ÞSUð2Þ ¼ 12&2R=NC, and thus ðg
2
5

4&ÞSUð2Þ ¼ & for NC ¼
3 in units R ¼ 1.

The couplings in Fig. 1 agree well in the strong coupling
regime up to Q% 1 GeV. The value ' ¼ 0:54 GeV has
been determined from the vector meson principal Regge
trajectory [7]. The lattice results shown in Fig. 1 from
Ref. [38] have been scaled to match the perturbative UV
domain. The effective charge %g1 has been determined in
Ref [39] from several experiments. Figure 1 also displays
other couplings from different observables as well as %g1 ,
which is computed from the Bjorken sum rule [12] over a
large range of momentum transfer (continuous band). At

Q2 ¼ 0 one has the constraint on the slope of %g1 from the
Gerasimov-Drell-Hearn (GDH) sum rule [40], which is
also shown in the figure. The results show no sign of a
phase transition, cusp, or other nonanalytical behavior, a
fact which allows us to extend the functional dependence
of the coupling to large distances. The smooth behavior of
the holographic strong coupling also allows us to extrapo-
late its form to the perturbative domain. This is discussed
further in Sec. VI.
The hadronic model obtained from the dilaton-modified

AdS space provides a semiclassical first approximation to
QCD. Color confinement is introduced by the harmonic
oscillator potential, but effects from gluon creation and
absorption are not included in this effective theory. The
nonperturbative confining effects vanish exponentially at
large momentum transfer [Eq. (9)], and thus the logarith-
mic falloff from pQCD quantum loops will dominate in
this regime.
It is interesting to illustrate what one expects in an

augmented model which contains the standard pQCD con-
tributions. We can use the similarity of the AdS coupling to
the effective charge %g1 at small scales as guide on how to
join the perturbative and nonperturbative regimes. The fit
to the data %fit

g1 from Ref. [39] agrees with pQCD at high
momentum. Thus, the %g1ðQ2Þ coupling provides a guide
for the analytic form of the coupling over all Q2. We write

%AdS
Modified;g1

ðQ2Þ ¼ %AdS
g1 ðQ2ÞgþðQ2Þ þ %fit

g1ðQ2Þg"ðQ2Þ:
(11)

Here, %AdS
g1 is given by Eq. (9) with the normalization (10)

[continuous line in Fig. 1] and %fit
g1 is the analytical fit to the
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FIG. 1 (color online). The effective coupling from LF holo-
graphic mapping for ' ¼ 0:54 GeV is compared with effective
QCD couplings extracted from different observables and lattice
results. Details on the comparison with other effective charges
are given in Ref. [39].
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[Brodsky et al., Phys.Rev.D81]
[Deur et al., Phys.Lett.B60]

The non-perturbative approach:

‣ Importance of finite couplings
‣ Taming the Landau pole 

The non-perturbative extraction:

• Effective couplings from phenomenology

• Dimensional transmutation (RG-improved)

➡  from RS dependence to Observable dependence (à 
la Grunberg)



Non-perturbative analysis

Qualitative analysis

➡  Implications of IR finite 𝞪s in hadronic physics

➡  Cornwall: gluon propagator

➡  Shirkov: analytic perturbative theory

➡  Fischer & Alkofer: ghost-gluon vertex

Examples of  non-perturbative approaches:

Plot by Arlene C. Aguilar

Importance and applications of finite couplings:

e.g.
Dokshitzer et al., Nucl.Phys.B469 (1996) 93



Back to duality

‣ Freeze αs  by imposing a zmax :

‣ Changes the behavior of the coefficient function x→1 
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zmax appears therefore as a free parameter in our analysis. A possible criterion to constrain
it is to fit the large x data assuming a null direct contribution to the structure function from
the dynamical HTs namely, for each Q

2 bin we define zmax by varying R

exp/th as a function
of zmax, so that

R

exp/th(zmax, Q
2) =

Z
xmax

xmin

dxF

exp

2 (x,Q2)
Z

xmax

xmin

dxF

NS,Resum

2 (x, zmax, Q
2)

=
I

exp

I

Resum
= 1 . (11)

In Eq. (11), FNS,Resum

2 (x, zmax, Q
2) was evaluated including TMCs, resummation to all log,

and setting possible dynamical HT contributions to zero. The latter get, however, absorbed
in the coupling’s infrared behavior. More precisely, the suppression of HTs in the structure
function is compensated by the behavior of ↵

s

in the infrared region. As a result, contrarily
to what originally deduced in, e.g., Ref. [43], a definite role of nonperturbative corrections
is obtained, pointing at the fact that duality, defined on the basis of a dominance of single
parton scattering, i.e., suppression of final state interactions, might indeed be broken.

Results are represented by the red hexagons in Fig. 2. The integrals values are given in
Tab. II together with the corresponding values for zmax. Since, for the largest values of Q2,
Q

2 = 10, 15GeV2, outside the resonance region, on Fig. 1, zmax becomes closer to 1, we do
not consider those data points in what follows.
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FIG. 2: The ratio R

exp/th(xave, Q
2) as a function of Q2, on the left pannel, and as a function of xave

on the right. Same as Fig. 1 but with the red hexagon representing the LxR results of Tab. II.
The key shows the results corresponding to JLab data. The open triangle, full diamonds and open
hexagons corresponds to SLAC data.

3. Based on the results of our analysis of large x data including TMCs and LxR, we now
extract ↵

s

by assuming that it runs from the onset of a minimal scale which is determined
from the comparison with data, and it is frozen from that minimal scale downward to the
real photon limit (scale=0 GeV2). As one can see from Table II, data in the resonance region
are crucial for this determination.

In Fig. 3 we show our extracted value ↵
s,NLO(scale) where we used the MS scheme outside

the IR region, for the same value of ⇤ throughout this paper. ↵
s

was obtained as an exact
solution to NLO [21]. Our theoretical error band is defined by the shift in zmax from the

7

‣  Realization of duality depends on zmax :
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zmax appears therefore as a free parameter in our analysis. A possible criterion to constrain
it is to fit the large x data assuming a null direct contribution to the structure function from
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and setting possible dynamical HT contributions to zero. The latter get, however, absorbed
in the coupling’s infrared behavior. More precisely, the suppression of HTs in the structure
function is compensated by the behavior of ↵

s

in the infrared region. As a result, contrarily
to what originally deduced in, e.g., Ref. [43], a definite role of nonperturbative corrections
is obtained, pointing at the fact that duality, defined on the basis of a dominance of single
parton scattering, i.e., suppression of final state interactions, might indeed be broken.

Results are represented by the red hexagons in Fig. 2. The integrals values are given in
Tab. II together with the corresponding values for zmax. Since, for the largest values of Q2,
Q

2 = 10, 15GeV2, outside the resonance region, on Fig. 1, zmax becomes closer to 1, we do
not consider those data points in what follows.
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real photon limit (scale=0 GeV2). As one can see from Table II, data in the resonance region
are crucial for this determination.

In Fig. 3 we show our extracted value ↵
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‣  Realization of duality depends on zmax :

‣ Adjust  zmax  according to the data



Results

zmax appears therefore as a free parameter in our analysis. A possible criterion to constrain
it is to fit the large x data assuming a null direct contribution to the structure function from
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and setting possible dynamical HT contributions to zero. The latter get, however, absorbed
in the coupling’s infrared behavior. More precisely, the suppression of HTs in the structure
function is compensated by the behavior of ↵
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in the infrared region. As a result, contrarily
to what originally deduced in, e.g., Ref. [43], a definite role of nonperturbative corrections
is obtained, pointing at the fact that duality, defined on the basis of a dominance of single
parton scattering, i.e., suppression of final state interactions, might indeed be broken.

Results are represented by the red hexagons in Fig. 2. The integrals values are given in
Tab. II together with the corresponding values for zmax. Since, for the largest values of Q2,
Q

2 = 10, 15GeV2, outside the resonance region, on Fig. 1, zmax becomes closer to 1, we do
not consider those data points in what follows.
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Q

2 [GeV2] I

exp(Q2) I

(0),DIS(Q2) I

(0),DIS+TMC(Q2) I

Resum(zmax, Q
2) zmax

1.75 6.994⇥ 10�2 5.316⇥ 10�2 5.345⇥ 10�2 7.025⇥ 10�2 0.63

2.5 4.881⇥ 10�2 2.765⇥ 10�2 3.393⇥ 10�2 4.872⇥ 10�2 0.745

3.75 2.356⇥ 10�2 1.201⇥ 10�2 1.756⇥ 10�2 2.359⇥ 10�2 0.76

5. 1.267⇥ 10�2 0.553⇥ 10�2 0.942⇥ 10�2 1.270⇥ 10�2 0.79

6.5 0.685⇥ 10�2 0.170⇥ 10�2 0.372⇥ 10�2 0.683⇥ 10�2 0.9

4. 2.045⇥ 10�2 1.017⇥ 10�2 1.487⇥ 10�2 2.041⇥ 10�2 0.79

5. 1.255⇥ 10�2 0.550⇥ 10�2 0.909⇥ 10�2 1.255⇥ 10�2 0.811

6. 0.802⇥ 10�2 0.317⇥ 10�2 0.581⇥ 10�2 0.803⇥ 10�2 0.825

7. 0.531⇥ 10�2 0.191⇥ 10�2 0.383⇥ 10�2 0.532⇥ 10�2 0.837

8. 0.363⇥ 10�2 0.122⇥ 10�2 0.262⇥ 10�2 0.363⇥ 10�2 0.845

TABLE II: Integrals at each stage. In the last columns: the value z

max

associated with
I

Resum(zmax, Q
2).

di↵erent bins displayed in Table II namely,

↵

s,NLO

✓
Q

2
i

(1� zmax,i)

zmax,i

◆
for i = 1, . . . 10 , (12)

i corresponds to the data points. Including this error band, our extracted frozen value of
the coupling constant is, using the MSTW08 PDF set for the analysis,

0.1337  ↵

s,NLO(scale ! 0GeV2)

⇡

 0.1839 . (13)

In the figure we also report values from the extraction using polarized eP scattering data
in Ref. [44–47]. These values represent the first extraction of an e↵ective coupling in the
IR region that was obtained by analyzing the data relevant for the study of the GDH sum
rule. To extract the coupling constant, the MS expression of the Bjorken sum rule up to the
5th order in alpha (calculated in the MS scheme) was used. In order to compare with our
extraction using the F p

2 observable, the finite value for ↵
s

(0) found in [45–47] was rescaled in
[44] assuming the validity of the commensurate scale relations [47] in the entire range of the
scale entering the analysis. The agreement with our analysis which is totally independent,
is impressive.

4. In conclusion, we presented an extraction of ↵
s

using eP scattering data at large x. A
careful analysis of all the contributions appearing at large x including TMCs and LxR, was
performed. The central value for ↵

s

(Q2
< 1GeV2)/⇡ was found to be 0.1588. This value is

in agreement with the extraction from the GDH sum rule analysis [44–46].
When considering PQCD observables at low scales, we implicitly face an interpretation

problem. In the multi-GeV2 region and at large-x, where the resonances lie, perturbative
QCD is pushed to its limits. Both higher terms in the perturbative expansion of that
observable, and power corrections need be taken into account. In the present approach, this
transition is taken into account by re-interpreting the running coupling constant, at the scale
of transition instead. By tuning the scaling structure functions to the averaged data in the
resonance region, we parametrize the realization of duality through an infrared fixed-point

8
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Results

zmax appears therefore as a free parameter in our analysis. A possible criterion to constrain
it is to fit the large x data assuming a null direct contribution to the structure function from
the dynamical HTs namely, for each Q
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In Eq. (11), FNS,Resum

2 (x, zmax, Q
2) was evaluated including TMCs, resummation to all log,

and setting possible dynamical HT contributions to zero. The latter get, however, absorbed
in the coupling’s infrared behavior. More precisely, the suppression of HTs in the structure
function is compensated by the behavior of ↵

s

in the infrared region. As a result, contrarily
to what originally deduced in, e.g., Ref. [43], a definite role of nonperturbative corrections
is obtained, pointing at the fact that duality, defined on the basis of a dominance of single
parton scattering, i.e., suppression of final state interactions, might indeed be broken.

Results are represented by the red hexagons in Fig. 2. The integrals values are given in
Tab. II together with the corresponding values for zmax. Since, for the largest values of Q2,
Q

2 = 10, 15GeV2, outside the resonance region, on Fig. 1, zmax becomes closer to 1, we do
not consider those data points in what follows.
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3. Based on the results of our analysis of large x data including TMCs and LxR, we now
extract ↵

s

by assuming that it runs from the onset of a minimal scale which is determined
from the comparison with data, and it is frozen from that minimal scale downward to the
real photon limit (scale=0 GeV2). As one can see from Table II, data in the resonance region
are crucial for this determination.

In Fig. 3 we show our extracted value ↵
s,NLO(scale) where we used the MS scheme outside

the IR region, for the same value of ⇤ throughout this paper. ↵
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was obtained as an exact
solution to NLO [21]. Our theoretical error band is defined by the shift in zmax from the
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the coupling constant is, using the MSTW08 PDF set for the analysis,

0.1337  ↵

s,NLO(scale ! 0GeV2)

⇡

 0.1839 . (13)

In the figure we also report values from the extraction using polarized eP scattering data
in Ref. [44–47]. These values represent the first extraction of an e↵ective coupling in the
IR region that was obtained by analyzing the data relevant for the study of the GDH sum
rule. To extract the coupling constant, the MS expression of the Bjorken sum rule up to the
5th order in alpha (calculated in the MS scheme) was used. In order to compare with our
extraction using the F p

2 observable, the finite value for ↵
s

(0) found in [45–47] was rescaled in
[44] assuming the validity of the commensurate scale relations [47] in the entire range of the
scale entering the analysis. The agreement with our analysis which is totally independent,
is impressive.

4. In conclusion, we presented an extraction of ↵
s

using eP scattering data at large x. A
careful analysis of all the contributions appearing at large x including TMCs and LxR, was
performed. The central value for ↵

s

(Q2
< 1GeV2)/⇡ was found to be 0.1588. This value is

in agreement with the extraction from the GDH sum rule analysis [44–46].
When considering PQCD observables at low scales, we implicitly face an interpretation

problem. In the multi-GeV2 region and at large-x, where the resonances lie, perturbative
QCD is pushed to its limits. Both higher terms in the perturbative expansion of that
observable, and power corrections need be taken into account. In the present approach, this
transition is taken into account by re-interpreting the running coupling constant, at the scale
of transition instead. By tuning the scaling structure functions to the averaged data in the
resonance region, we parametrize the realization of duality through an infrared fixed-point
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Results

zmax appears therefore as a free parameter in our analysis. A possible criterion to constrain
it is to fit the large x data assuming a null direct contribution to the structure function from
the dynamical HTs namely, for each Q

2 bin we define zmax by varying R

exp/th as a function
of zmax, so that

R

exp/th(zmax, Q
2) =

Z
xmax

xmin

dxF

exp

2 (x,Q2)
Z

xmax

xmin

dxF

NS,Resum

2 (x, zmax, Q
2)

=
I

exp

I

Resum
= 1 . (11)

In Eq. (11), FNS,Resum

2 (x, zmax, Q
2) was evaluated including TMCs, resummation to all log,

and setting possible dynamical HT contributions to zero. The latter get, however, absorbed
in the coupling’s infrared behavior. More precisely, the suppression of HTs in the structure
function is compensated by the behavior of ↵

s

in the infrared region. As a result, contrarily
to what originally deduced in, e.g., Ref. [43], a definite role of nonperturbative corrections
is obtained, pointing at the fact that duality, defined on the basis of a dominance of single
parton scattering, i.e., suppression of final state interactions, might indeed be broken.

Results are represented by the red hexagons in Fig. 2. The integrals values are given in
Tab. II together with the corresponding values for zmax. Since, for the largest values of Q2,
Q

2 = 10, 15GeV2, outside the resonance region, on Fig. 1, zmax becomes closer to 1, we do
not consider those data points in what follows.
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FIG. 2: The ratio R

exp/th(xave, Q
2) as a function of Q2, on the left pannel, and as a function of xave

on the right. Same as Fig. 1 but with the red hexagon representing the LxR results of Tab. II.
The key shows the results corresponding to JLab data. The open triangle, full diamonds and open
hexagons corresponds to SLAC data.

3. Based on the results of our analysis of large x data including TMCs and LxR, we now
extract ↵

s

by assuming that it runs from the onset of a minimal scale which is determined
from the comparison with data, and it is frozen from that minimal scale downward to the
real photon limit (scale=0 GeV2). As one can see from Table II, data in the resonance region
are crucial for this determination.

In Fig. 3 we show our extracted value ↵
s,NLO(scale) where we used the MS scheme outside

the IR region, for the same value of ⇤ throughout this paper. ↵
s

was obtained as an exact
solution to NLO [21]. Our theoretical error band is defined by the shift in zmax from the
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3. Based on the results of our analysis of large x data including TMCs and LxR, we now
extract ↵

s

by assuming that it runs from the onset of a minimal scale which is determined
from the comparison with data, and it is frozen from that minimal scale downward to the
real photon limit (scale=0 GeV2). As one can see from Table II, data in the resonance region
are crucial for this determination.

In Fig. 3 we show our extracted value ↵
s,NLO(scale) where we used the MS scheme outside

the IR region, for the same value of ⇤ throughout this paper. ↵
s

was obtained as an exact
solution to NLO [21]. Our theoretical error band is defined by the shift in zmax from the

7

Q

2 [GeV2] I

exp(Q2) I

(0),DIS(Q2) I

(0),DIS+TMC(Q2) I

Resum(zmax, Q
2) zmax

1.75 6.994⇥ 10�2 5.316⇥ 10�2 5.345⇥ 10�2 7.025⇥ 10�2 0.63

2.5 4.881⇥ 10�2 2.765⇥ 10�2 3.393⇥ 10�2 4.872⇥ 10�2 0.745

3.75 2.356⇥ 10�2 1.201⇥ 10�2 1.756⇥ 10�2 2.359⇥ 10�2 0.76

5. 1.267⇥ 10�2 0.553⇥ 10�2 0.942⇥ 10�2 1.270⇥ 10�2 0.79

6.5 0.685⇥ 10�2 0.170⇥ 10�2 0.372⇥ 10�2 0.683⇥ 10�2 0.9

4. 2.045⇥ 10�2 1.017⇥ 10�2 1.487⇥ 10�2 2.041⇥ 10�2 0.79

5. 1.255⇥ 10�2 0.550⇥ 10�2 0.909⇥ 10�2 1.255⇥ 10�2 0.811

6. 0.802⇥ 10�2 0.317⇥ 10�2 0.581⇥ 10�2 0.803⇥ 10�2 0.825

7. 0.531⇥ 10�2 0.191⇥ 10�2 0.383⇥ 10�2 0.532⇥ 10�2 0.837

8. 0.363⇥ 10�2 0.122⇥ 10�2 0.262⇥ 10�2 0.363⇥ 10�2 0.845

TABLE II: Integrals at each stage. In the last columns: the value z

max

associated with
I

Resum(zmax, Q
2).

di↵erent bins displayed in Table II namely,

↵

s,NLO

✓
Q

2
i

(1� zmax,i)

zmax,i

◆
for i = 1, . . . 10 , (12)

i corresponds to the data points. Including this error band, our extracted frozen value of
the coupling constant is, using the MSTW08 PDF set for the analysis,

0.1337  ↵

s,NLO(scale ! 0GeV2)

⇡

 0.1839 . (13)

In the figure we also report values from the extraction using polarized eP scattering data
in Ref. [44–47]. These values represent the first extraction of an e↵ective coupling in the
IR region that was obtained by analyzing the data relevant for the study of the GDH sum
rule. To extract the coupling constant, the MS expression of the Bjorken sum rule up to the
5th order in alpha (calculated in the MS scheme) was used. In order to compare with our
extraction using the F p

2 observable, the finite value for ↵
s

(0) found in [45–47] was rescaled in
[44] assuming the validity of the commensurate scale relations [47] in the entire range of the
scale entering the analysis. The agreement with our analysis which is totally independent,
is impressive.

4. In conclusion, we presented an extraction of ↵
s

using eP scattering data at large x. A
careful analysis of all the contributions appearing at large x including TMCs and LxR, was
performed. The central value for ↵

s

(Q2
< 1GeV2)/⇡ was found to be 0.1588. This value is

in agreement with the extraction from the GDH sum rule analysis [44–46].
When considering PQCD observables at low scales, we implicitly face an interpretation

problem. In the multi-GeV2 region and at large-x, where the resonances lie, perturbative
QCD is pushed to its limits. Both higher terms in the perturbative expansion of that
observable, and power corrections need be taken into account. In the present approach, this
transition is taken into account by re-interpreting the running coupling constant, at the scale
of transition instead. By tuning the scaling structure functions to the averaged data in the
resonance region, we parametrize the realization of duality through an infrared fixed-point
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Q

2 [GeV2] xave I

exp(Q2)

1.75 0.516 6.994⇥10�2

2.5 0.603 4.881⇥10�2

3.75 0.702 2.356⇥10�2

5. 0.753 1.267⇥10�2

6.5 0.800 0.685⇥10�2

4. 0.712 2.045⇥10�2

5. 0.755 1.255⇥10�2

6. 0.787 0.802⇥10�2

7. 0.812 0.531⇥10�2

8. 0.832 0.363⇥10�2

TABLE I: Upper block: Integrals of JLab data from Refs. [23, 24], appearing in the numerator of
Eq. (1). The first column shows the average values of x for each bin. Lower block: SLAC data [25].
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FIG. 1: Ratio R

exp/th(Q2) of Eq. (1) where the theoretical analysis includes PQCD evolution using
the MSTW08 PDF set (black triangle), and MSTW08 PDF set plus TMCs (open green diamonds).
Ratios with error bars on data integrated in quadrature ; right panel: ratios with weighted error
bars on data integrated in quadrature.

quarks reads,

B

q

NS(z) =


P̂

(0)
qq

(z)

⇢
ln

✓
1� z

z

◆
� 3

2

�
+ E.P.

�

+

, (4)

where E.P. means end points and [. . .]+ denotes the standard plus-prescription. The function

P̂

(0)
qq

(z) is the LO splitting function for quark-quark. The logarithmic terms, i.e., ln(1� z),
in B

q

NS(z) become very large at large x values. They need to be resummed to all orders in
↵

s

. Resummation was first introduced by linking this issue to the definition of the correct
kinematical variable that determines the phase space for the radiation of gluons at large x.
This was found to be f

W

2 = Q

2(1� z)/z, instead of Q2 [11, 39]. As a result, the argument
of the strong coupling constant becomes z-dependent [40],

↵

s

(Q2) ! ↵

s

✓
Q

2 (1� z)

z

◆
. (5)
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Possible twist-3 effects

‣ Higher twist effects are expect to dominate at x→1

‣ de Rújula et al: Duality means suppression of higher-twist 

‣ Intricate rôle of higher-twist at the frontier with NP QCD 

→ compatibility with confinement?

‣ Here: all the nonperturbative effects into αs

→ smooth transition from perturbative to nonperturbative physics



Conclusions and more

‣ Analyzis of the Bloom-Gilman duality in perturbative QCD

‣ Parametrized by the freezing of the running coupling constant

‣ αs (Q2<1GeV2)/π=0.1588



Conclusions and more

‣ Analyzis of the Bloom-Gilman duality in perturbative QCD

‣ Parametrized by the freezing of the running coupling constant

‣ αs (Q2<1GeV2)/π=0.1588

Go deeper into the Qualitative analysis
•  from pQCD: systematic study of all input PDF sets

‣ Self Organizing Map  analysis of PDF with/without Large-x physics

‣ UVa: S. Liuti and E. Askanazi and D. Day

•  from NP QCD: systematic study of different approaches to effective charge



Nonperturbative QCD coupling from 
Phenomenology

Joint analysis: Chen, Courtoy, Deur, Liuti & Vento



Nonperturbative Coupling Constant & LxR
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How we go further : Nonperturbative Coupling Constant from DSE

• Nonperturbative effects gathered in effective coupling αsNP

• Use of NP running coupling that scales to LO pQCD result
• Include in LxR  

• Apply with Shirkov and Fischer effective coupling as well

Cornwall αsNP

3-4 free parameters 

(up to physical constrains) 

[Courtoy, Liuti & Vento, in progress]
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[Courtoy, Liuti & Vento, in progress]

‣ How to relate the coupling constant?

‣ Commensurate Scale Relations?                                                       [Brodsky & Lu, Phys. Rev. D251]

‣  RG-improved perturbation theory?                                                    [Grunberg, Phys. Rev. D29]
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New JLab data has been analyzed      (P. Monaghan)
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FIGURE 5. The effective coupling αs,g1 extracted from JLab data, its fit, and its extraction using the
Burkert and Ioffe [24] model to obtain Γp−n

1 . Theαs calculations are: Top left: Schwinger-Dyson equations
(Cornwall [35]); Top right: Schwinger-Dyson equations (Bloch) [36] and αs used in a quark constituent
model [37]; Bottom left: Schwinger-Dyson equations (Maris-Tandy [38]), Fischer, Alkofer, Reinhardt and
Von Smekal [39] and Bhagwat et al. [40]; Bottom right: Lattice QCD [41].

with the JLab data at intermediate Q2, provides for the first time a coupling at any Q2.
A striking feature of Fig. 4 is that αs,g1 becomes scale invariant at small Q2. This was
predicted by a number of calculations and it is known that color confinement leads to an
infrared fixed point [34], but it is the first time it is seen experimentally. A fit of the αs,g1
has been performed and is shown on Fig. 5 (plain black line).
In Figure 5, αs,g1 is compared to theoretical results. There are several techniques used

to predict αs at small Q2, e.g. lattice QCD, solving the Schwinger-Dyson equations,
or choosing the coupling in a constituent quark model so that it reproduces hadron
spectroscopy. However, the connection between these αs is unclear, in part because of
the different approximations used. In addition, the precise relation between αs,g1 (or
any effective coupling defined using [30] or [27]) and these computations is unknown.
Nevertheless, one can still compare them to see if they share common features. The
calculations and αs,g1 present a similar behavior. Some calculations, in particular the
lattice one, are in excellent agreement with αs,g1.
These works show that αs is scale invariant (conformal behavior) at small and large



LxR

In this procedure, however, an ambiguity is introduced, related to the need of continuing
the value of ↵

s

for low values of its argument, i.e., for z ! 1 [41]. Since the size of this
ambiguity is of the same order as the higher-twist corrections, it has been considered, in a
previous work [42], as a source of theoretical error or higher order e↵ects. We investigate
the e↵ect induced by changing the argument of ↵

s

on the behavior of the ln(1� z)-terms in
the convolution Eq. (2), and resum those terms as

ln(1� z) =
1

↵

s,LO(Q2)

Z
Q

2

d lnQ2
⇥
↵

s,LO(Q
2(1� z))� ↵

s,LO(Q
2)
⇤ ⌘ lnLxR , (6)

including the complete z dependence of ↵
s,LO(W̃ 2) to all logarithms.1 Note that we are using

three di↵erent concepts of order expansions. The present analysis is conducted to next-to-
leading order (we evolve the PDF sets to NLO), to leading-twist (we consider the LT PDFs
only) and to all logarithms (we include ↵

s,LO(scale) to all logarithms). This resummation is
easily understood when considering the first term of the expansion of ↵

s

(W̃ 2) in ln((1�z)/z),

↵

s

(W̃ 2) = ↵

s

(Q2)� �0

4⇡
ln

✓
1� z

z

◆
↵

2
s

(Q2), (7)

as proposed in Ref. [40]. To all logarithms, the convolution becomes

F

NS,Resum

2 (x,Q2) = xq(x,Q2) +
↵

s

4⇡

X

q

Z 1

x

dz B

Resum

NS (z)
x

z

q

⇣
x

z

,Q

2
⌘
, (8)

where,
B

Resum

NS = B

q

NS(z)� P̂

(0)
qq

(z) ln(1� z) + P̂

(0)
qq

(z) lnLxR . (9)

Using F

NS,Resum

2 plus TMCs, in Eq. (1), will make the ratio R decreases substantially,
essentially leaving no space for HT terms. This is due in our approach mostly to the change
of the argument of the running coupling constant. At fixed Q

2, in the integration over
x < z < 1, the scale f

W

2 = Q

2(1 � z)/z is shifted and can reach low values, where the
running of the coupling constant starts blowing up. At this stage, our analysis requires
nonperturbative information. A way to address this issue is to set a maximum value for
the longitudinal momentum fraction, zmax, which defines a limit from which nonperturbative
e↵ects have to be accounted for, and to cut ↵

s

at the corresponding scale, f
W

2(zmax) =
Q

2(1� zmax)/zmax. Larger values of zmax correspond to lower values at which the scale should
be cut in the analysis, meaning that the perturbative value can be used. As we show later,
large zmax occurs in the data at large Q2, therefore the e↵ect of the shift in scale gets smaller.

The functional form lnLxR is therefore slightly changed. Two distinct regions can be
studied: the “running” behavior in x < z < zmax and the “steady” behavior zmax < z < 1,

F

NS,Resum

2 (x, zmax, Q
2) = xq(x,Q2) +

↵

s

4⇡

X

q

(Z 1

x

dz

h
B

q

NS(z)� P̂

(0)
qq

(z) ln(1� z)
i

+

Z
zmax

x

dz P̂

(0)
qq

(z) lnLxR + lnLxR, max

Z 1

zmax

dz P̂

(0)
qq

(z)

)
x

z

q

⇣
x

z

,Q

2
⌘
.

(10)

1 The terms proportional to ln z are not divergent at z ! 1.
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Extraction of αs at low energy

• Polarized scattering from both proton and neutron
Deur et al. Phys.Lett. B650 (2007) 244-248   

Natale, PoS QCD-TNT09 (2009) 031

Bjorken  Sum Rule from JLab & GDH Sum Rule at Q2=0 GeV2

•  Deep Inelastic Scattering (DIS) at large Bjorken-x & parton-hadron duality

Liuti,  [arXiv:1101.5303 [hep-ph]]. 

• Semi-Inclusive DIS & Extraction of T-odd TMDs from SSAs

A.C., Vento & Scopetta, Eur. Phys. J. A47, 49 (2011)

Joint analysis: Chen, Courtoy, Deur, Liuti & Vento

http://inspirebeta.net/author/Deur%2C%20A.?recid=691957&ln=en
http://inspirebeta.net/author/Deur%2C%20A.?recid=691957&ln=en


Nonperturbative Gluon Propagator

��1(Q2) = Q2 + m2(Q2)

m2(Q2) = m2
0

⇤
ln

�
Q2 + �m2

0

�2

⇥ ⇧
ln

�
�m2

0

�2

⇥⌅�1��

m0 ⇥ �� 2�

Solving the Schwinger-Dyson eqs ...  J. M. Cornwall, Phys. Rev. D26, 1453 (1982)
A. C. Aguilar and J. Papavassiliou, JHEP0612, 012 (2006) 

Gluon Mass as IR Regulator

• effective gluon mass
phenomenological estimates

• Solution free of Landau pole
•  Freezes in the IR
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NP Momentum-dependence of the Coupling Constant

�NP(Q2)
4⇤

=
⇤
⇥0 ln

�
Q2 + ⌅m2(Q2)

�2

⇥⌅�1

NLO exact perturbative evolution
Λ=250 MeV ;      scheme

Low mass scenario NP coupling constant
m0=250 MeV ; Λ=250 MeV ; ρ=1.5

High mass scenario NP coupling constant
m0=500 MeV ; Λ=250 MeV ; ρ=2.
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