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• Why do we want to do relativistic Hydro?

• Why second order hydro, and what are coefficients?

• Perturbative Calculation of Coefficients

• Kubo Relations for Coefficients

• Self-consistency: hydro’s contrib. to hydro coeff.

• Conclusions
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Heavy ion collisions

Accelerate two heavy nuclei to high energy, slam together.

Just before: Lorentz contracted nuclei
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After the scattering: region where nuclei overlapped:

“Flat almond” shaped region of q, q̄, g which scattered.

∼2 thousand random v quarks+gluons: isotropic in xy

plane
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Behavior IF no re-interactions (transparency)

Just fly out and hit the detector.

Detector will see xy plane isotropy
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local CM motions

⇒

Pressure contours Expansion pattern

Anisotropy leads to anisotropic (local CM motion) flow.
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Free particle propagation:

• System-average CM flow velocities 〈v2
x,CM〉 > 〈v2

y,CM〉

• Must have local CM 〈p2
x〉 < 〈p2

y〉 so total 〈p2
x〉 = 〈p2

y〉

Efficient Equilibration:

• System-average CM flow still has 〈v2
x,CM〉 > 〈v2

y,CM〉

• system changes locally towards 〈T xx
local CM〉 = 〈T yy

local CM〉

• Adding these together, 〈T xx
tot,labframe〉 > 〈T yy

tot,labframe〉

Net “Elliptic Flow” v2 ≡ p2
x−p2

y

p2
x+p2

y
measures re-interaction
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Elliptic flow is measured

  

 

0 0.25 0.5 0.75 1

0

5

10

v
2 
(%

)

 + +  

 

p + p

STAR

hydro EOS Q

hydro EOS H

(b)130 GeV Au + Au

-
(minimum bias)

π π

0

0.02

0.04

0.06

0.08

0.1

0.12

.2 .6 .40 0 0.4 0 0.8    1.0  1.2 1 1.6

π π±

K
K

s
0

p
p-

Λ

Λ
+Λ
-

Hydrodynamics 
results

pT
pTTransverse momentum      (GeV/c)      (GeV/c)

v 2

(a) 200 GeV Au + Au
(minimum bias)

STAR data

STAR experiment, minimum bias... .

We should try to understand it theoretically.

First try: ideal hydrodynamics (works OK!)
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Ideal Hydrodynamics

Ideal hydro: stress-energy conservation

∂µT
µν = 0 (4 equations, 10 unknowns)

plus local equilibrium assumption:

T µν = T µν
eq = ǫuµuν + P (ǫ)∆µν ,

uµuµ = −1,∆µν = gµν − uµuν

depends on 4 parameters (ǫ, 3 comp of uµ): closed.

works pretty well for heavy ions. But quantify corrections!
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Nonideal Hydro

Assume that ideal hydro is “good starting point,” look for

small systematic corrections.

Near equilibrium iff ttherm ≪ tvary, lvary/v (so ∂ small)

Allows expansion of corrections in gradients:

Tµν = Tµν
eq + Πµν [∂, ǫ, u]

Πµν = O(∂u, ∂ǫ) + O(∂2u, (∂u)2, . . .) + O(∂3 . . .)

For Conformal theory Tµ
µ = 0 = Πµ

µ, 1-order term unique:

Πµν = −ησµν , σµν = ∆µα∆νβ
(

∂αuβ + ∂βuα − 2

3
gαβ∂ · u

)

Coefficient η is shear viscosity.
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So why not consider (Navier-Stokes)

T µν = ǫuµuν + P∆µν − ησµν ?

Because in relativisitc setting, it is

• Acausal: shear viscosity is transverse momentum diffusion. Diffusion

∂tP⊥ ∼ ∇2P⊥ has instantaneous prop. speed. Müller 1967, Israel+Stewart 1976

• Unstable: v > c prop + non-uniform flow velocity → propagate from

future into past, exponentially growing solutions. Hiscock 1983

Problem: short length scales, η|σ| ∼ P . Numerics must treat

these scales (or there’s “numerical viscosity”)

Virginia, 12 April 2011: page 10 of 34



Israel-Stewart approach

Add one second order term:

Πµν = −ησµν + ητπ uα∂ασµν

Make (1’st order accurate) ησ → −Π in order-2 term:

τπ uα∂αΠµν ≡ τπ Π̇µν = −ησµν − Πµν

Relaxation eq driving Πµν towards −ησµν .

Momentum diff. no longer instantaneous.

Causality, stability are restored (depending on τπ)

But why only one 2’nd order term???
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Second order hydrodynamics

It is more consistent to include all possible 2’nd order terms.

Assume conformality and vanishing chem. potentials:

5 possible terms Baier et al, [arXiv:0712.2451]

Πµν
2 ord. = ητπ

[

uα∂ασµν+
1

3
σµν∂αuα

]

+ λ1 [σµ
ασνα−(trace)]

+λ2

[

1

2
(σµ

αΩνα + σν
αΩµα) − (trace)

]

+λ3 [Ωµ
αΩνα − (trace)] + κ (Rµν − . . .) ,

Ωµν ≡ 1

2
∆µα∆νβ(∂αuβ − ∂βuα) [vorticity] .

Let’s learn what we can about this theory, its 6 coeff’s
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Step 1: What do σµν, Ωµν mean?

Consider ∂yvx 6= 0 and ∂xvy 6= 0:

Each pattern is shear-flow. But not purely shear flow!
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Step 1: What do σµν, Ωµν mean?

Same-sign ∂xvy = ∂yvx Opposite-sign ∂xvy = −∂yvx

Shear flow Vorticity

Two basic local measures of flow nonuniformity.

First order: Πµν = −ησµν as it’s symmetric!

Fluid “pushing back” against shear flow
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τπ: if shear flow σµν “turns

on”, delay in Πµν “turning

on”

λ2: if shear makes Πµν 6= 0,

vorticity rotates Πµν axis from shear

axis.

Sensible sign if λ2 < 0 (sorry)

λ1: some nonlinearity. λ3: rotate about z axis→ T zz reduced
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I would like to calculate these coefficients.

Two cases: weak coupling, strong-coupled N=4SYM

That failing, I want a rule for relating them to equilibrium

field theory correlators (Kubo relation)

In any case I want to understand consistency or limitations

of 2’nd order hydro theory.

Goals of remainder of the talk
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Theories where I can calculate:

• Weakly coupled QCD (realistically, αs < 1/20!)

• N=4 SYM in infinite Nc and coupling limit

What I expect to find:

There should be some equilibration time scale τ .

A term with n deriv’s should be ∼ P/τn.

Hence, certain ratios should be dimensionless.

Use η as my “standard” and build dim’less ratios.

If ratios robust, use as “priors”: only fit η to data
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QCD vs SYM comparison

η/s behaves as 1/α2
s ln(1/αs) diverges at weak coupling.

But ratios stay finite!

Ratio QCD value SYM value

ητπ(ǫ+P )
η2 5 to 5.9 2.6137

λ1(ǫ+P )
η2 4.1 to 5.2 2

λ2(ǫ+P )
η2 −10 to −11.8 −2.77

κ(ǫ+P )
η2 0 4

λ3(ǫ+P )
η2 0 0

Good news: Not qualitatively different.

Kinetic theory relation λ2 = −2ητπ not actually general.
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Kubo formulae

We want expressions which relate the transport coefficients

to equilibrium correlation functions in the plasma fluct-diss

Would provide rigorous definition of η, λ123, . . ..

Example: long known that η is given by

η = lim
ω→0

d

dω

∫

d3x dt eiωt
〈[

T xy(x, t) , T xy(0, 0)
]〉

Θ(t)

Similar relations for second-order transport coefficients?
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How to get Kubo relations

Find framework where I can compute Tµν using hydro or using

field theory, both should be valid.

Time-varying geometry does the job:

• Start at t ≪ 0 with flat-space, equilibrium thermal system

ρ = e−HT , gµν = ηµν

• At some time t0 < 0 start deforming metric

gµν = ηµν + hµν(x) in such a way as to force the system to

experience shear and vorticity

• Choose hµν small and slowly varying so you stay near

equilibrium and gradient expansion, hydro are valid
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Give a hydro theorist hxy(z, t), h0x(y) nonzero.

Ask them what T µν(0) will be.

Answer: T µν = (ǫ + P )uµuν + Pgµν + Πµν

First, find ǫ, u: Hydro says

∇µT
µν = 0 → uµ = (1, 0, 0, 0) + O(∂2) .

Then uµ = (1, h0x, 0, 0), Γx
yt etc nonzero.

They give rise to nonzero σxy, Ωxy, etc:

σxy = ∂thxy , Ωxy = −∂yh0x/2

Other terms R〈xy〉, u · ∇σxy found similarly.
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T xy at O(h) and O(∂2), for hxy 6= 0:

T xy = −η∂thxy + ητπ∂2
t hxy −

κ

2

(

∂2
t hxy + ∂2

zhxy

)

and T xy at O(∂2, h2) for hxz(t), hyz(t), hx0(z), hy0(z) nonzero:

Πxy = η∂t(hxzhyz) +
κ

2

(

hxz∂
2
t hyz+hyz∂

2
t hxz

)

+ λ1∂thxz∂thyz

+ητπ

(

1

2
∂thxz∂zh0y +

1

2
∂thyz∂zh0x

− ∂thxz∂thyz − hxz∂
2
t hyz − hyz∂

2
t hxz

)

−λ2

4
(∂thxz∂zh0y + ∂thyz∂zh0x) +

λ3

4
∂zh0x∂zh0y

So at O(h) T xy depends on η, τπ, κ; at O(h2), depends on all 6!

Virginia, 12 April 2011: page 21 of 34



Give field theorist hxy(z, t), etc nonzero.

Ask them what T xy will be.

〈Tµν(t)〉 = Tr e−HT eiHtT̂µνe−iHt , Tµν =
−2√−g

∂
√−gL
∂hµν

with H = H[h(t′)]! Schwinger-Keldysh in gµν = ηµν + hµν :

W ≡ ln

∫

C =

D(Φ1,Φ2,Φ3) eiS1[h1,Φ1]−iS2[h2,Φ2]−S3[Φ3]

S1[h1], S2[h2] depend on independent fields and metrics!

T1 =
−2iδW

δh1
, T2 =

+2iδW

δh2
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Introduce average and difference variables:

hr = h1+h2

2 , ha = h1 − h2 , Tr = T1+T2

2 , Ta = T1 − T2

Note, due to signs eiS1−iS2 , Tr = −2iδW
δha

, Ta = −2iδW
δhr

. Take

δ/δha → 〈T 〉. Then set ha = 0, hr = h, expand in h:

〈Tµν〉h = Gµν
r (0) − 1

2

∫

d4xGµν,αβ
ra (0, x)hαβ(x)

+
1

8

∫

d4xd4yGµν,αβ,γδ
raa (0, x, y)hαβ(x)hγδ(y)

Gµν,αβ...
ra... (0, x . . .) ≡ (−i)n−1(−2i)nδnW

δga,µν(0)δgr,αβ(x) . . .

∣

∣

∣

∣

∣

gµν=ηµν

= (−i)n−1
〈

Tµν
r (0)Tαβ

a (x) . . .
〉

+ c.t.
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Now equate the hydro, field theorist answers:

T xy = −η∂thxy + ητπ∂2
t hxy −

κ

2

(

∂2
t hxy + ∂2

zhxy

)

= −
∫

d4x Gxy,xy
ra (0, x)hxy(x)

Introduce Fourier transform

Gxy,xy
ra (ω, k) =

∫

d4xei(ωt−kz)Gxy,xy
ra (0, x)

and use that h slowly varying, find BRSSS 0712.2451

η = −i∂ωGxy,xy
ra (ω, k)|ω=0=k ,

κ = −∂2
kz

Gxy,xy
ra (ω, k)|ω=0=k ,

ητπ =
1

2

(

∂2
ωGxy,xy

ra (ω, k) − ∂2
kz

Gxy,xy
ra (ω, k)

)∣

∣

∣

ω=0=k
.
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Repeat for T xy and O(h2) terms:

Πxy = η∂t(hxzhyz) +
κ

2

(

hxz∂
2
t hyz+hyz∂

2
t hxz

)

+ λ1∂thxz∂thyz

+ητπ

(

1

2
∂thxz∂zh0y +

1

2
∂thyz∂zh0x

− ∂thxz∂thyz − hxz∂
2
t hyz − hyz∂

2
t hxz

)

−λ2

4
(∂thxz∂zh0y + ∂thyz∂zh0x) +

λ3

4
∂zh0x∂zh0y

=

∫

d4xd4y (Gxy,xz,yz
raa (0, x, y)hxz(x)hyz(y)

+Gxy,xz,0y
raa hxz(x)h0y(y) + Gxy,yz,0x

raa hyz(x)h0x(y)

+Gxy,0x,0y
raa (0, x, y)h0x(x)h0y(y)

)
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Introduce Fourier transforms again:

Gxy,xz,0y
raa (p, q) ≡

∫

d4xd4ye−i(p·x+q·y)Gxy,xz,0y
raa (0, x, y) etc

Read off 2’nd order Kubo relations:

λ1 = ητπ − lim
pt,qt→0

∂2

∂pt∂qt
lim

p,q→0
Gxy,xz,yz

raa (p, q)

λ2 = 2ητπ − 4 lim
pt,q→0

∂2

∂pt∂qz
lim

p,qt→0
Gxy,xz,0y

raa (p, q)

λ3 = −4 lim
p,q→0

∂2

∂pz∂qz
lim

pt,qt→0
Gxy,0x,0y

raa (p, q) .
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Nature of κ and λ3

κ and λ3 have Kubo relations NOT involving ∂t’s.

May (must!) set frequency ω = 0 from outset:

κ = − lim
~q→0

∂2

∂q2
z

Gxy,xy
ra (~q, ω = 0)

λ3 = −6 lim
~p,~q→0

∂2

∂py∂qy

Gxx,0x,0x
raa (~p, ωp = 0, ~q, ωq = 0)

But Gra...(ω = 0) = (−)n−1GE(ωE = 0) Euclidean func.

Weak-coupling expansions: κ, λ3 = T 2(O(1) +O(g, g2, . . .))

Leading weak-coupling values calculable and nonzero
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But is hydro even consistent?

We said Πµν = O(∂u) + O(∂2u, (∂u)2) + . . .

based on assumption thermalization is local, microscopic.

Hydro itself predicts long-lived shear,sound modes:

0 = ∂µ

(

T µν = (ǫ+P )uµuν + Pgµν − ησµν
)

fluctuations in uµ, ǫ: dispersion relations

ωshear = i
η

ǫ + P
k2 , ωsound = ± k√

3
+ i

2η

3(ǫ + P )
k2

Small k: long lived, dissipation not local,microscopic
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Hydro Waves Contribute to Viscosity!

Consider shear flow:

Flow decays because x-momentum leaves (diffuses from)

flowing region. One mechanism: propagation of hydro

(sound) waves!
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How to compute hydro contribution to hydro

Above we found

Gxy,xy
ra (ω) = P − iηω + ητπω2 + . . .

Calculate contrib. of hydro modes themselves to Gxyxy.

Feynman rules: T ij = (ǫ + P )uiuj + Pgij ,

〈uiuj(k, ω)〉 =
T

ǫ + P

(δij − k̂ik̂j)2γηk2

(γηk2 − iω)(γηk2 + iω)
shearwave

[

γη = η

ǫ+P
, γ′

η = 4

3
γη

]

+
T

ǫ + P

(k̂ik̂j)2γ′

ηk2ω2

(ω2 − k2/3)2 + (γ′

ηk2ω)2
soundwave

Think of hydro as IR effective theory, η etc are Wilson coeff.
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Computing Gxy,xy
ra (ω, k = 0)

Straightforward application of Feynman rules:

Gxy,xy
ra (ω)[hydro] = −iω

(

17Tkmax

120π2γη

)

+(i+1)ω
3

2

7 +
(

3
2

)
3

2 T

240πγ
3/2
η

kmax: k-scale above which hydro incorrect/inconsistent.

• −iω term: extra contrib. to η

• iω3/2: effective ω dependence of η.

• ω3/2: like τπ but wrong ω dependence.
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Lesson: η

Small η: freer propagation of sound, shear modes.

More efficient momentum transport, raising η.

Depends on kmax. Where does hydro break down?

Scale where it’s no longer self-consistent.

Safe guess: kmax < τ−1
π /2. In N=4 SYM, this is about 2T .

• N=4SYM: added η/s is ∼ 1/N2
c .

• Weak coupling: ηfrom hydro ∼ α4 while ηtot ∼ α−2

• Real QCD: η
s

= .16: add 0.01. η
s

= .08: add 0.036!
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Lesson: τπ

Weak coupling and large Nc: comparing

N 0
c α3T 5/2 ω3/2 vs N 2

c α−4T 2 ω2

Deep IR, ω3/2 term wins, 2-order hydro breaks.

But scale where ω3/2 term takes over is ω ∼ N−4
c α14T .

Check that ω where they equal is more IR than “your

physics” and then use 2-order hydro!

• Nc = 3 = Nf QCD, T = 200MeV, η
s = .16: ω ∼ T

20 Safe!

• Nc = 3 = Nf QCD, T = 200MeV, η
s = .08: ω ∼ 7T Problem!
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Conclusions

• Hydro seems sensible framework in heavy ion coll.

• Need 2’nd order Hydro, 6 hydro coefficients!

• Pert. computation of 2’nd order Hydro: dim’less ratios

same order as N=4SYM, differ in detail

• Kubo relations for nonlinear coefficients found.

κ, λ3 special (really thermodynamic)

• Hydro waves contribute to hydro coefficients!

• Self-consistency issues if η too small, and very low freq.
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