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Topological Insulators Basic Properties

Topological Insulators

in condensed matter theory, there has been a lot of interest in
states of matter known generically as topological insulators (and
topological superconductors)
these are of interest because they do not fall into the ‘Landau
classification’, in which phases of matter are distinguished by
symmetry breaking
instead, phases are distinguished by some ’topological quantum
number’

I classic example (2+1) is the Hall conductivity σH
I associated with transport 〈Jµ(x)Jν(0)〉
I effective action is Chern-Simons for gauge field conjugate to

charge current
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Topological Insulators Basic Properties

Topological Insulators

focus of this talk:
I there are other transport properties (related to 〈Tµν(x)Tλρ(0)〉) that

may be of interest
I here the analogue of σH is the dissipationless viscosity ζH

effective action is a functional of background ’gravitational’ fields
the dissipationless viscosity (2+1) is associated with a
Chern-Simons-like term involving torsion
natural to use the first-order formalism in which vielbein and spin
connection are thought of as independent (but non-dynamical
here)
encounter interesting renormalization features
many interesting questions remain to be answered

I e.g., relation to anomalies

Rob Leigh (University of Illinois) Torsion U.Va.: Feb 23, 2011 3 / 1



Topological Insulators Basic Properties

Topological Insulators

focus of this talk:
I there are other transport properties (related to 〈Tµν(x)Tλρ(0)〉) that

may be of interest
I here the analogue of σH is the dissipationless viscosity ζH

effective action is a functional of background ’gravitational’ fields
the dissipationless viscosity (2+1) is associated with a
Chern-Simons-like term involving torsion
natural to use the first-order formalism in which vielbein and spin
connection are thought of as independent (but non-dynamical
here)
encounter interesting renormalization features
many interesting questions remain to be answered

I e.g., relation to anomalies

Rob Leigh (University of Illinois) Torsion U.Va.: Feb 23, 2011 3 / 1



Topological Insulators Basic Properties

Topological Insulators

focus of this talk:
I there are other transport properties (related to 〈Tµν(x)Tλρ(0)〉) that

may be of interest
I here the analogue of σH is the dissipationless viscosity ζH

effective action is a functional of background ’gravitational’ fields
the dissipationless viscosity (2+1) is associated with a
Chern-Simons-like term involving torsion
natural to use the first-order formalism in which vielbein and spin
connection are thought of as independent (but non-dynamical
here)
encounter interesting renormalization features
many interesting questions remain to be answered

I e.g., relation to anomalies

Rob Leigh (University of Illinois) Torsion U.Va.: Feb 23, 2011 3 / 1



Topological Insulators Basic Properties

Topological Insulators

focus of this talk:
I there are other transport properties (related to 〈Tµν(x)Tλρ(0)〉) that

may be of interest
I here the analogue of σH is the dissipationless viscosity ζH

effective action is a functional of background ’gravitational’ fields
the dissipationless viscosity (2+1) is associated with a
Chern-Simons-like term involving torsion
natural to use the first-order formalism in which vielbein and spin
connection are thought of as independent (but non-dynamical
here)
encounter interesting renormalization features
many interesting questions remain to be answered

I e.g., relation to anomalies

Rob Leigh (University of Illinois) Torsion U.Va.: Feb 23, 2011 3 / 1



Topological Insulators Basic Properties

Topological Insulators

focus of this talk:
I there are other transport properties (related to 〈Tµν(x)Tλρ(0)〉) that

may be of interest
I here the analogue of σH is the dissipationless viscosity ζH

effective action is a functional of background ’gravitational’ fields
the dissipationless viscosity (2+1) is associated with a
Chern-Simons-like term involving torsion
natural to use the first-order formalism in which vielbein and spin
connection are thought of as independent (but non-dynamical
here)
encounter interesting renormalization features
many interesting questions remain to be answered

I e.g., relation to anomalies

Rob Leigh (University of Illinois) Torsion U.Va.: Feb 23, 2011 3 / 1



Topological Insulators Basic Properties

Topological Insulators

topological features of the band structure of a material play a
central role
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Topological Insulators Basic Properties

Topological Insulators

topological features of the band structure of
a material play a central role
properties can be stated very generally (e.g.,
in terms of Chern classes of Berry
curvatures, in which the parameter space is
momentum space)
often, simple models such as massive Dirac
fields are a good approximation
this can be thought of as zooming into some
particular feature of the band structure
in this case, the mass of the Dirac fermion is
the parameter that sets the gap
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Topological Insulators Basic Properties

Topological Insulators: Axion Domain Walls

as we will see, topological phases can be distinguished by the
sign of the fermion mass

I e.g., in 2+1, well-known that parity switches the sign of m
axion domain wall (3+1): place materials of opposite sign of m
next to one another

I realistic example: HgTe vs. CdTe – very similar materials, but one
has a very strong spin-orbit coupling that induces band inversion of
s,p levels

I i.e., if we imagine turning on couplings slowly, one material has a
level crossing, the other doesn’t

I model gaps by Dirac fermions with opposite sign mass

Rob Leigh (University of Illinois) Torsion U.Va.: Feb 23, 2011 6 / 1



Topological Insulators Basic Properties

Topological Insulators: Midgap Surface States

on boundaries or on interfaces between phases, there are
protected gapless fermionic states

I an application of Callan-Harvey effect
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Topological Insulators Hall Conductivity

Hall Conductivity: QHE

the QHE is a time-reversal breaking topological insulator in which
a magnetic field is applied perpendicular to a plane
the low energy physics is described by a Chern-Simons action

I couple a background EM field, effective action is CS in IR
I the level of the EM CS determines the Hall conductivity

Seff =
k

4π
e2

~

∫
A ∧ dA →

{
J i = ke2

h ε
ijEj

J0 = ke2

h B

the Hall conductivity is quantized in units of e2/h
fundamental length scale `2B = ~c

eB

well-known that chiral CFT is supported on boundaries when
σH 6= 0
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Topological Insulators Hall Conductivity

QHE as Berry Curvature

the Hall conductivity can be understood in terms of a Berry
connection on momentum space, written as a sum over occupied
states

ai(~k) = −i
∑
α∈occ

〈α,~k | ∂
∂ki
|α,~k〉

the Kubo formula then gives

σH =
e2

h
1

2π

∫
BZ

f =
e2

h
c1

where

fij(~k) =
∂aj(~k)

∂ki
− ∂ai(~k)

∂ki j

extends to other topological insulators
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Topological Insulators Hall Conductivity

Quantum Anomalous Hall Effect (QAHE)

other systems in 2+1 can also have a Hall conductivity [Haldane ’88],
depending on the symmetries of the system
the simplest realization is just a massive Dirac fermion in 2+1

I we’ll use this model as our paradigm
I it has the advantage that the band structure is simple, and

calculations are straightforward
I realistic systems, with more complicated band structure can be

usefully modeled this way to some extent

the Hall conductivity is sensitive to the sign of the fermion mass
closely related to the parity anomaly
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Topological Insulators Hall Conductivity

Hall Conductivity: QAHE

in the Dirac model, this is obtained by computing the 1-loop
determinant in a gauge field background

S =

Z
d3x i

» 1

2
ψγ

aDaψ −
1

2
Daψγ

a
ψ − mψψ

–

Seff =

Z d3k

(2π)3
Aa(−k)

"Z d3p

(2π)3
trγa(/p − /k − m)−1

γ
b(/p − m)−1

#
Ab(k)

' −m

"Z d3p

(2π)3

1

(p2 − |m|2)2

# Z d3k

(2π)3
Aa(−k)trγa/kγbAb(k)

' −
m

|m|
1

8π

Z d3k

(2π)3
ε

abcAa(−k)kcAb(k)

this (apparently) finite result thus gives σxy = ±1
2

e2

h
I we’ll return to a more careful regularization later
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Dissipationless Viscosity

Elasticity and Viscosity

consider an elastic medium with a fixed reference state, and
consider small perturbations ua(x).

T ij = Λijk`uk` + ηijk`u̇k`

uk` '
1
2

(
∂uk

∂x`
+
∂u`

∂xk

)
(strain)

we decompose

Λijk` = κδk`δij + µ

(
δikδj` + δjkδi` − 2

D
δijδk`

)
where κ and µ are the bulk and shear moduli, respectively

ηijk` = ζδk`δij + η

(
δikδj` + δjkδi` − 2

D
δijδk`

)
where ζ and η are the bulk and shear viscosities, respectively
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Dissipationless Viscosity

Dissipationless Viscosity

in D = 2 however, there is an additional possibility, since εij is an
invariant tensor
there is an additional viscosity term proportional to

ηij;k`
3 =

1
4
ζH

(
εikδj` + εjkδi` + εi`δjk + εj`δik

)
this is dissipationless, so the coefficient is called dissipationless
viscosity (or Hall viscosity)
note that this is entirely analogous to the current J i = σijEj and in
D = 2 we can write

σij = σij
S + σHε

ij

and σH is the (dissipationless) Hall viscosity
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Dissipationless Viscosity

The Geometry of Strain

one should think in terms of a vielbein (co-frame)

ea
µ = δa

µ + wa
µ

wa
µ =

∂ua

∂xµ

we will see that it is ea that is analogous to the gauge field A, and
the torsion T a plays the role of the curvature F
torsion enters because we have a (non-trivial) material medium
it is natural to ask:

I is the dissipationless viscosity an interesting observable (analogous
to σH )?

I is it in some sense topological?
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Dissipationless Viscosity The First-Order Formalism and Torsion

First-order Formalism

recall that in differential geometry, if we consider the bundle of
(co)frames {ea} on a manifold, we can endow it with a connection;
given a section of this bundle, we have a metric
the connection is referred to as metric compatible if it kills the
metric, ∇g = 0

I this implies that the connection can be thought of as one-forms ωab

valued in SO(n) (rather than SL(n))

there is always a unique (Levi-Civita) connection, which is
torsion-free

T a ≡ dea + ωa
b ∧ eb

of course, in (the metric formulation of) classical GR, the vanishing
of the torsion is a constraint, which greatly complicates the theory
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Dissipationless Viscosity The First-Order Formalism and Torsion

First-order Formalism

in the first-order formalism, we regard ea and ωa
b as independent

variables, and there are formulations of classical GR in which the
torsion-free condition comes about as an equation of motion
rather than a constraint [’Einstein-Cartan’, ’MacDowell-Mansouri’]
in this talk, I’m interested in ea and ωa

b as background
(non-dynamical) fields, much like EM fields are considered as
background fields in CMT
in this context, there is no reason whatsoever to assume that the
torsion should vanish
thinking this way has consequences...
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Dissipationless Viscosity The First-Order Formalism and Torsion

Stress and Lorentz Currents

consider the stress-energy tensor. One often claims that in field
theory this can be written as δS

δgµν

what’s really going on there is that if one takes a theory without
dynamical gravity, one can introduce a metric and require that the
resulting theory is diff- and Lorentz-invariant
this has the effect of relating the canonical stress tensor to δS

δgµν

in the first order formalism, we can do the same thing
I we find currents associated with both diffeomorphisms and Lorentz

transformations
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Dissipationless Viscosity The First-Order Formalism and Torsion

Stress and Lorentz Currents

associated with Lorentz transformations

δea = θa
beb

δωa
b = ([θ, ω]− dθ)a

b = −D(θa
b)

there is a Lorentz current Jµa
b

= δS
δωµa

b

associated with diffeomorphisms

δ′ea = iξT a + D(iξea)

δ′ωa
b = iξRa

b

there is a ‘stress current’ Jµa = δS
δea
µ

if we go back to the metric formulation with LC connection, we
recover Tµν
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Dissipationless Viscosity The First-Order Formalism and Torsion

Sources of Torsion: Dislocations

in general, a dislocation has the property that passage around any
closed contour enclosing a dislocation line, results in a translation
of the displacement vector u by the Burgers vector b∮

dua = −ba

several types of dislocation are possible
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Dissipationless Viscosity The First-Order Formalism and Torsion

Sources of Torsion: Dislocations

curvature is associated instead with disinclinations – a rotation (or
Lorentz transformation) after following a closed path
these statements fit well with classical geometry – indeed, one
has, in the presence of torsion

[∇ea ,∇ea ] = −T c
ab∇ec + Rcd ;abJcd
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Dissipationless Viscosity The First-Order Formalism and Torsion

The Effective Action

so let’s compute the dissipationless viscosity in a simple
topological insulator
in fact, there is a unique parity odd, Lorentz invariant with one
derivative that can occur in 2 + 1 dimensions

Seff =
ζH

4π

∫
ea ∧ T bηab

so this is what we are looking for
whereas in 3 + 1, we can write tr F ∧ F = d tr(A ∧ dA + 2

3A3),
here we have

d(ea ∧ T bηab) = T a ∧ T bηab − ea ∧ eb ∧ Rab

the latter is the Nieh-Yan form: is it topological?
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Dissipationless Viscosity The First-Order Formalism and Torsion

ζH for IQHE

consider first IQHE: the computation can be done by putting the
system on a torus, and varying the metric at constant volume

e1 =
1
√
τ2

(dx − τ1dy), e2 =
√
τ2dy

the wavefunctions in the LLL can be written (z = (x + τy)/L)

ψ
(s)
0 (x , y) = eiπNΦτy2/L2

eiπ(1+2s)zθ (NΦz + sτ ; NΦτ)

for s = 0,1, ...,NΦ − 1 (finite number of states)
the system has a Berry curvature (in space of metrics), and this
can be related to ζH

IQHE [Avron et al ’95]

F =
NΦ

8π
dτ1 ∧ dτ2

τ2
2

→ ζH =
~

8π`2B

finite!
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Dissipationless Viscosity The First-Order Formalism and Torsion

ζH for QAHE (massive Dirac)

we did the calculation in three different ways
I as a Berry curvature on a torus
I as a Feynman diagram calculation of a stress-stress correlator
〈Jµa (x)Jνb (0)〉

I as an effective action: Dirac determinant in background ea, ωa
b

fields
I’ll describe the latter here; the Dirac operator is

D/ = γaeµa

(
∂µ +

1
4
ωµ;bcγ

bc
)

+ T a
baγ

b

we may write

− ln det(D/−m) = − ln det(D/LC −m)− ln det
D/−m
D/LC −m

the LC determinant will contain the volume divergence,
gravitational CS, ....
the latter relative factor vanishes with torsion
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Dissipationless Viscosity The First-Order Formalism and Torsion

ζH for QAHE (massive Dirac)

− ln det
D/−m
D/LC −m

= − ln det
D/−m
D/LC −m

D/LC + m
D/LC + m

= − ln det

(
1 +

(D/−D/LC)(D/LC + m)

D/2
LC −m2

)
after a short computation, we find D/−D/LC = ±1

4ε
abcCa;bc ≡ 1

4c
(here, Ca;bc is the contorsion)
thus there is a simple perturbative expansion in powers of c that
we can do

− ln det
D/−m
D/LC −m

= − ln det
(

1 +
1
4

c(D/LC −m)−1
)

' −1
4

tr c(D/LC −m)−1 + ...
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Dissipationless Viscosity The First-Order Formalism and Torsion

ζH for massive Dirac

working close to flat space, we then easily get

1
2

m
∫

d3x c(x)

∫
d3k

(2π)3
1

k2 + m2

=
1
2

imIT (m)

∫
d3x c(x) = ±1

2
imIT (m)

∫
ea ∧ Ta

the integral IT (m) that appears here is linearly divergent

IT (m) = −
∫ ∞
ε

dt
∫

dk
2π2 e−t(k2+m2)k2 = − 1

4π

(
1√
πε
− |m|+ ...

)
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Dissipationless Viscosity The First-Order Formalism and Torsion

ζH for massive Dirac

the presence of this divergence is easy to understand by
power-counting: ea

µ has mass dimension zero (c.f. Aµ, mass
dimension one)

I thus, the coefficient of ea ∧ Ta must be of order mΛ
I the coefficient of A ∧ dA must be of order m/|m| (or smaller)

in fact both are sensitive to the cutoff
this can be seen in a lattice version

H =
∑
px ,py

c†~p [sin pxσx + sin pyσy + (2−m − cos px − cos py )σz ] c~p

I here there are four Dirac points at ~p = (kπ/a, `π/a) (k , ` = 0,1)

H(k,`) ' eikπpxσx + ei`πpyσy + (2k + 2`−m)σz =
∑

a

da(k , `; m)σa

I each contributes to both σH and ζH
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Dissipationless Viscosity The First-Order Formalism and Torsion

ζH for massive Dirac: regulated version

each Dirac point contributes ±1
2 (depending on sign of mass) to

σH → σH ∈ Z
whereas σH is about charge, ζH is about momentum
thus each Dirac point contributes to ζH , but three of them
contribute O(1/a)

shows up in the continuum as a linear divergence
in the continuum theory, we can regulate via Pauli-Villars

σ
reg
H =

e2

2h

N∑
i=0

Ci sign Mi , ζ
reg
H =

1
16π

N∑
i=0

CiMi IT (Mi)

(here C0 = 1,M0 = m)
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Dissipationless Viscosity The First-Order Formalism and Torsion

ζH for massive Dirac: renormalization

there is a physical renormalization condition that we apply:
I if σH = 0, then ζH = 0
I here, the idea is that if σH = 0 the system should be trivial (no d.o.f.

induced on boundaries)
I secondly, require ζH to be finite→

∑N
i=0 Ci = 0

suppose that m < 0 is the trivial insulator. We conclude

−1 +
N∑

i=1

Ci sign Mi = 0, −|m|2 +
N∑

i=1

Ci |Mi |2 sign Mi = 0

then, for m > 0, we get

σ
reg
H =

e2

h
, ζ

reg
H =

1
16π
|m|2

2π
≡ ~

8π`2

the viscosity→ 0 as m→ 0, much as it does as B → 0 in IQHE
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Dissipationless Viscosity The First-Order Formalism and Torsion

Conclusions and Comments

related phenomena exist in other dimensions
one puzzle here is the relation to anomalies

I there are various physical processes in the EM case that one can
consider that can be related to spectral flow

I there are analogues for torsion/dislocations, but the results cannot
be interpreted in terms of zero modes alone (again, because
torsion couples to momentum rather than charge)
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