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Outline 
•  QCD and its large Nc limits: different treatments of 

fermions yield distinct large Nc limits.  
–  Quarks: fundamental (F) 
–   2-index anti-symmetric (AS) 
–   Hybred or Corrigan-Ramond (CR)   

•  Generic properties 

•  Baryons & baryon models 

•  Nuclear interactions & dense matter 



“When you come to a 
fork in  the road, take it.” 
---Yogi Berra,   
American baseball 
player, coach and part-
time philosopher 

Quarks in 
Fundamental 

Quarks in 2-
index anti-
symmetric 

“Two roads diverged in a 
wood, and I—    
I took the one less traveled by 
And that has made all the 
difference.” 
---Robert Frost,   
American poet 



QCD and its large Nc limits:  
•  The large Nc limit of QCD is not unique 

–  For gluons there is a unique prescription SU(3)SU(Nc) 
–  However for  quarks, we can choose different 

representations of the gauge group 
–  Asymptotic freedom restricts the possibilities to the 

fundamental (F), adjoint (Adj), two index symmtetric (S), 
two index anti-symmtetric (S),  

•  Adj transforms like gluons (traceless fundamental color-
anticolor); dimension Nc2-1; 8  for Nc=3 (unlike our world). 

•  S transforms like two colors (eg fundamental quarks) with indices 
symmetrized; dimension Nc2-Nc; 6  for Nc=3 (unlike our world). 

•  AS transforms like two colors (eg fundamental quarks) with 
indices antisymmetrized; dimension ½Nc(Nc-1); 3  for Nc=3 (just 
like our world). 



•  Note that Nc=3 quarks in the AS representation 
are indistinguishable from the (anti-)
fundamental. 

•  However quarks in the AS and F extrapolate to 
large Nc in different ways.   
–  The large Nc limits are physically  different 
–  The 1/Nc expansions are different. 
–  A priori  it is not obvious which expansion is better 
–  It may well depend on the observable in question 

•  The idea of using QCD (AS) at large Nc is old 
–  Corrigan &Ramond (1979)  
–  Idea was revived in early part of this decade by 

Armoni, Shifman and Veneziano who discovered a 
remarkable duality that emerges at large Nc.  



Principal difference between QCD(AS) and QCD(F) at large 
Nc is in the role of quarks loops 

Easy to see this using `t Hooft color flow diagrams  

QCD(F) 

Insertion of a planar 
quark loops yields a 
1/Nc suppression. 

Leading order graphs 
are made of planar 
gluons 
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QCD(AS) 

Insertion of a planar 
quark loops does not 
lead to a 1/Nc 
suppression. 

Leading order graphs 
are made of planar 
gluons and quarks 

  

€ 

g2 ~ 1/Nc

3 color loops Nc
3

⎫ 
⎬ 
⎭ 
Nc
2

  

€ 

g4 ~ 1/Nc
2

4 color loops Nc
4

⎫ 
⎬ 
⎭ 
Nc
2

Principal phenomenological difference between the two is 
the inclusion of quark loop effects at leading order in QCD
(AS) 



A remarkable fact about QCD(AS):  
At large Nc, QCD(AS) with Dirac fermions becomes 
equivalent to QCD(Adj) with Majorona fermions  for a 
certain class of observables.  These “neutral sector” 
observables include      .   

The full nonperturbative demonstration of this by Armoni, Shifman and 
Venziano (ASV)is quite beautiful and highly nontrivial.  There is a simple 
hand waving argument which gets to the guts of it € 

q q

Due to large Nc planarity, any fermion loops 
divide any gluons in a diagram into those inside 
and those outside. 

With two index representations the “inside” 
gluons couple to the inner color line of the quark 
and “outside” gluons to the outer ones 



QCD(AS) QCD(Adj) 
Since the inside gluons don’t know about what happens outside, one can 
flip the direction of color flow on the outside without changing the dynamics. 



However:  QCD(Adj) with a single massless quark is N=1 
SUSY Yang-Mills. Thus, at  large Nc a non-Supersymmetric 
theory (QCD(AS) with one flavor) is equivalent to a 
supersymmetric theory.  Thus one can use all the power of 
SUSY to compute observables in N=1 SYM and at large Nc 
one has predicted observables in QCD(AS) ! 

This equivalence is pretty but can you make any 
money on it?   

If all you can do is relate one intractable theory to another, 
it would be of limited utility. 



ASV scheme:  Suppose you put the quarks one flavor in the 
AS representation and the other flavor(s) in the F. For 
example put up quarks in AS and down quarks in F. The 
ones in the F are dynamically suppressed at large Nc and 
the theory again becomes equivalent to N=1 SYM.  In fact 
this is precisely  the Corrigan-Ramond scheme introduced 
long ago to ensure baryons with 3 quarks at any Nc. 

Can you make any phenomenological money on it?   

Real QCD has more than one flavor!!! 



Isospin (or more generally flavor symmetry) is badly broken 
at large Nc since the flavors are treated different. 

But… 
In my view, the scheme is likely not be viable 
phenomenologically.  The 1/Nc expansion is based on the 
assumption that the large Nc world is similar to the Nc=3 
one.  In this case they are radically different . 

At any Nc≠3, this isospin violation is large!!! 

For example while you can form      mesons and       mesons for arbitrary 
Nc,       and       only exist for Nc=3; for all other Nc, they are not color 
singlets.  Don’t get an isotriplet of pions except at Nc=3.  
Large isospin violations occur as soon as one departs Nc=3; one does 
not have the isospin violation smoothly turning off as Nc approaches 3. € 
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Accordingly in the remainder of this talk I will focus 
entirely on the cases where all flavors are either AS or F. 



Generic Virtues and Vices of QCD(AS) 
and QCD(F) at large Nc 

QCD(F) 

QCD(AS) 

Explains the 
success of the 
OZI rule in a 
natural way 

Fails to explain 
effects involving 
the anomaly 
(eg. η’) 

Fails to 
explains the 
success of the 
OZI rule 

Naturally 
includes effects 
involving the 
anomaly 



Implication for Baryons and Baryon Models 
•  Baryons are heavy 

–  QCD(F) MN~Nc (Consistency shown by Witten 1979) 
–  QCD(AS) MN~Nc2 (Consistency shown by Cherman&TDC 

2006, Bolognesi 2006; TDC, Lebed, Schafer 2010) 

QCD(F):  There are Nc quarks each of which contributes 
to the energy as it propagates.  The interactions between 
between quarks also contribute of order Nc. 
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Relatively easy to see that all classes of connected diagram 
contribute at order Nc or less to the mass in QCD(F).   

What about QCD(AS)? 

Bolognesi showed that a color singlet baryon had each kind 
quark color once and only once: Nc(Nc-1)/2 quarks. Thus 
one expects baryon mass to scale as Nc2 



•  There is a problem: apply Witten’s reasoning  
and there is an inconsistency---the interactions 
don’t appear to scale as Nc2 

Look at the one-gluon contribution 
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Even worse!!      

What’s going on? 

The combinatorics are wrong.   There is a subtlety which 
does not arise in the case of QCD(F)  



b r 

Gluon exchange simply 
flips colors of quarks 

Final quark colors are same as 
initial ones; all such exchanges 
are allowed for color singlets. 



Naively, O(Nc3) but 
No contribution 

Contributes 
O(Nc2)  

Each quark has 2 
color indices 

Not all exchanges contribute in a color 
singlet, (which requires each color 
combination once and only once). 

Contributes 
O(Nc2)  



•  This fact suppresses many of the combinatoric 
factors.   

•  A Cherman & TDC(2006)  showed that for a 
wide a class of diagrams the total contributions 
are ~Nc2 as needed. 

– However general proof was lacking due to the 
complexity of the general case 

•  Recently, some new diagrammatic tools were 
developed which allowed for a full proof.  Even 
with these tools the demonstration is rather 
intricate TDC, RF Lebed and D.L. Shafer( 2010). 

–  The scaling of the baryon mass as Nc2 for QCD(AS) 
is now on as solid ground as Witten’s demonstration 
that it scales as Nc in QCD(F) 



•  Generic meson-baryon coupling is strong 
–  QCD(F) gNm~Nc1/2 (Witten 1979) 
–  QCD(AS) gNm~Nc (Cherman&TDC 2006) 

•  If pion coupling to the nucleon gA/fπ has a 
generic strength (gA/fπ~Nc1/2 for QCD(F); gA/
fπ~Nc for QCD(AS) ) then an S(2Nf) spin-flavor 
symmetry emerges at large Nc.  This is a 
consequence of demanding “large Nc 
consistency” in which the π-N scattering 
amplitude is Nc0 while the Born and cross-born 
contributions are  Nc1 (F) or Nc2 (AS) (Gervais& 
Sakita 1984; Dashen&Manohar 1993) 



•  Spin-Flavor (Gervais&Sakita84, Dashen&Manohar92) 

Consider pion-nucleon scattering  
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                     A ~ Nc[σ iτ a,σ jτ b ]

                     A ~ Nc
2[σ iτ a,σ jτ b ]

QCD(F) 

QCD(AS) 

~Nc
2  QCD(F) 

~Nc
4  QCD(AS) 

~Nc
1  QCD(F) 

~Nc
2  QCD(AS) 



This violates unitarity (and Witten scaling rules) 
To get sensible results this needs to be canceled 

Cancellations require 

•  Other baryons in intermediated state which are 
degenerate with nucleon at large Nc.  (eg. Δ) 

• Conspiracy between vertices 



Group Theory 
•  Assume family of degenerate baryons at 

large Nc. 

•  Assume coupling constants Xia between 
these baryons.  Consistency requires 

•  Full group structure follows from spin and 
flavor transformation properties; 
contracted SU(2 Nf) 

•  Scale of the corrections fixed: 

[Xia,Xjb]=0 

[Xia,Xjb]~Nc-1 QCD(F)         [Xia,Xjb]~Nc-2 QCD(AS) 
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[Ji,J j ] = iεijkJk
[Ta ,Tb ] = ifabcTc
[Ti,X jb ] = iεijkXkb

[Ta ,X jb ] = ifabcX jc

[Xia ,X jb ] = 0

Contracted SU(2Nf) Symmetry 

Degenerate baryons fall in irreps of this 
group at large Nc 



Such a symmetry implies that there is an infinite tower of 
baryon states with I=J which are degenerate at large Nc and 
with relative matrix elements fixed by CG coefficients of the 
group. 

For Nc=3 the N& Δ are identified as members of the band.  
(Other states are large Nc artifacts) 

Corrections to this: 
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 QCD(F) :     MΔ −MN ~
1
Nc

     Fractional correction to ratio of ME's ~ 1
Nc

                                                    Fractional correction to ratio of "Golden" ME's ~ 1
Nc 

2

QCD(AS) :    MΔ −MN ~
1
Nc

2      Fractional correction to ratio of ME's ~ 1
Nc

2

                                                    Fractional correction to ratio of "Golden" ME's ~ 1
Nc 
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Phenomenologically the predictions of the contracred SU(2Nf) 
symmetry and the scale of its breaking do very well   
Eg.  Axial couplings Dashen & Manohar 1993 
       Baryon mass relations and SU(3) flavor breaking Jenkins &Lebed 1995 

            Cherman,Cohen &Lebed 2009 

and Ω 

and Λ 

Isoscalar mass 
combinations 



  One of many possible measures: 
       
      ≈     ≈ 0.25 

with Bi = Σ0, Λ, Ξ0 
   Any other reasonable definition should give 

 ε ≈ 0.25–0.30 

Scale of SU(3) flavor breaking 



The I = 0 Mass Combinations 
Special to 1/Nc 

Cherman, Cohen & RFL, Phys. Rev. D 80, 036002 [2009]: 
Compare these results for NC

F and NC
AS 

ε Is SU(3) flavors breaking scale 

Can we see evidence of large Nc behavior behavior in these 
relations beyond mere SU(3) flavor and its breaking? 



•  Take each Mi and form Mi', the same combination 
with all “–” signs turned to “+” (Note that Mi' is O
(NC) [NC

F], O(NC
2) [NC

AS]) 
•  Define the scale-independent ratios Ri ≡ Mi /(½ 

Mi') 
 e.g., M3 = N0 – 3Σ0 + Λ + Ξ0 
  R3 = (N0 – 3Σ0 + Λ + Ξ0)/[½ (N0 + 3Σ0 + Λ + Ξ0)] 

To test the quality of the large Nc predcitions of 
mass relations quantitatively we need  
quantitative measure of their accuracy. 



Jenkins & RFL (1995) 

Analysis based on QCD(F) 

Mass 
difference 
quotient 

Large Nc has real predictive power: the relations 
are MUCH better than pure SU(3)!!   



Note that depending on the choice taken for ε this 
has “natural” coefficients as an expansion in 1/Nc 
QCD(F) or1/Nc

2  QCD (AS) (A. Cherman, TDC & R. F. 
Lebed 2009) 

An analogous study for magnetic moments 
recently completed by Rich Lebed indicates that 
QCD(F) works much more naturally than QCD
(AS)(R. F. Lebed 2010) 

As noted above which expansion works better 
may depend snsitively on which observable is 
being studied 



 The role of meson loops in 
baryon properties 

•  In both the case of QCD(F) and QCD(AS) 
baryons include effects which at the hadronic 
level appear to be due to meson loops 

•  This fact is often not fully appreciated but is 
clearly true for both QCD(AS) and QCD(F).  



Consider QCD(F) 

Meson loop contribution to the nucleon self-energy is 
order Nc.  This is leading order since MN~ Nc.  

  (Analogous behavior in QCD(AS) with Nc
1/2Nc .) 

How can this be? Quark loops are suppressed at large 
Nc for QCD(F) and surely meson loops involve quark 
loops. 



Actually this is not true. 

While meson loops in meson do involve quark loops for baryons 
they need not (TDC & D.B. Leinweber 1992):consider “z-graphs” in 
“old fashioned” perturbation theory for quarks in a nucleon 

At hadronic level this looks like 

Very strong evidence for this: Skyrme and other large Nc 
chiral soliton models exactly reproduce the non-analytic 
dependence on mπ which emerge from pion loops in chiral 
perturbation theory(TDC& W. Broniowski 1992) 



QCD(AS) also has contribution at leading order from  internal quark 
loops.  This yields some qualitative differences: 

Eg. strange quark form factors in the nucleon 

(Cherman&TDC 2007)    
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GE
s (Q2) ~ Nc

0         QCD(F)
GE

s (Q2) ~ Nc
1         QCD(AS)

All sensible models which are supposed to encode 
large Nc physics should reproduce these  generic 
features in a self-consistent way 

Often, models build in Nc scaling implicitly through 
parameters.  For example in the Skyrme model fπ is a 
parameter and encodes the correct QCD(F) scaling if 
one takes fπ~Nc1/2.   



The same models will correctly reproduce QCD(AS) 
scaling for the predictions if one imposes QCD(AS) 
scaling for the input paramters; simple subsitution 
Nc

1/2Nc  

Most of the models on the market (eg. Skyrme, NJL, 
Holographic etc )  are self-consistent in that if you 
impose the correct Nc scaling for the input parameters, 
you will get the correct scaling for the predictions; eg.  
MN~Nc for QCD(F) 

Models for QCD(AS) can differ in form QCD(F)  since at 
leading order they are allowed terms associated with 
internal quark loops (eg.~ terms with more than one  
flavor trace in Skyrme type models.) 



For generic mesons this is hard to pick out.  However for 
observables dominated by long distance behavior this is 
controlled by pion loop physics and is fixed by chiral 
symmetry, the contracted SU(2Nf) symmetry and the value 
of  gA/fπ ; the leading behavior is model independent and 
calculable in large Nc chiral perturbation theory.  

Sensible models should also correctly encode the 
leading order contributions from meson loops in 
baryons discussed above.  

For example the long range part of the isoscalar and 
isovector electromagnetic form factors are dominated 
by 3 pion and 2 pion contribtions respectively 



For models in the chiral limit of mπ=0, there is a 
remarkable combination of form factors in which all 
model dependent parameters cancel Cherman, TDC, Nielsen 
(2009) 

This ratio is valid for both QCD(F) & QCD(AS) and is a 
good probe of whether a model correctly incorporates 
the leading order large Nc physics associated with 
meson loops in the baryon. All chiral soliton models 
(Skyrme, NJL) when treated at leading order in 1/N 
(mean-field or classical hedgehogs semi-classicaly 
quantized) satisfy this. 
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˜ G (r) is the Fourier transform of the
standard momentum space fom factors



However the top-down Sakai&Sugmato model derived from a 
stringy construction is problematic.  It has in additon to Nc and 
a scale parameter, a strength parameter λ, which must taken 
as large to derive a gravity theory from the stringy construction.  

Taking large λ in a baryon model, yields small size objects 
treatable as 5-d instantons (Hata et al 2007; Hashimoto, Sakai, 
Sugimoto 2008; Hong et al 2008) 

Bottom up holographic models of baryons as 5-d 
Skyrmions (Pomarol-Wulzer, 2008) also satisfy this relation.  
The have correctly built in the meson loop physics 
present at leading order in 1/Nc 
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fπ =
λNc

54π 4 MKK gA = Nc
24
45π 2

gA
fπ
~ Nc

λ

Hadronic couplings in the SS model 
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gA
fπ
~ Nc

λ
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gA
fπ
~ Nc

λ

If  large Nc limit is implicitly taken first in the construction of the 
model then pion cloud effect contributes at leading order (Nc) 
albeit with a coefficient which is numerically small (~1/λ) 

However if the large λ limit is implicitly taken first in the 
construction of the model then pion cloud effect vanishes at the 
outset.  This would be very troubling since unlike the large Nc 
limit, the large λ limit is an artifact of the model which has no 
analog in QCD.  Thus an artificial limit would eliminate leading 
order QCD effects in the 1/Nc expansion. 

Which is it?  Use model independent form factor relations to tell. 



Expressions for form factors for solitons in the Sakai-
Sugimoto model are known.  The ratio can be evaluated: 

•  Unfortunately, the model as implemented does not satisfy 
large Nc relation. Ratio depends on model parameter λ; 
as a model independent result it cannot.  Note moreover 
that it diverges in the large λ limit. 

•  The model fails to correctly treat  the long distance 
physics (which is supposed to be fixed by chiral 
symmetry).  Apparently the large λ limit is implicitly being 
taken before the large Nc limit. The implemetation of 
the model does not correctly encode large Nc and 
chiral physics of QCD.  

ρ1 ≈.669 is a fixed numerical value associated 
with an eigenvalue in the theory  



Implication for Nuclear Interactions and 
Dense Matter 

•  May be of more theoretical then phenomenological 
importance as nucleon-nucleon forces are 
unnaturally  strong in both large Nc limits 
–  QCD(F) V NN~ Nc 
–  QCD(AS) VNN~ Nc2  

Easily seen via a meson exchange picture 

~Nc1/2   QCD(F)  
~Nc      QCD(AS) 

~Nc1/2   QCD(F)  
~Nc      QCD(AS) 



•  Nucleon-Nucleon forces include dynamics of 
multi-meson exchanges at leading order in 1/Nc 

~Nc1/2   QCD(F)  
~Nc      QCD(AS) 

~Nc1/2   QCD(F)  
~Nc      QCD(AS) 

~Nc0   QCD(F)  
~Nc0       QCD(AS) 

Overall contribiution is  
QCD(F) V NN~ Nc 
QCD(AS) VNN~ Nc2 

This is leading order scaling 
and is correctly captured by 
sensible large Nc model  

Note that this physics 
is absent in the SS 
treated as an 
instanton 



•  Nuclear matter is crystalline and saturates in both 
large Nc limits 
–  QCD(F) ρsat~ Nc0    B~ Nc1  
–  QCD(AS) ρsat~ Nc0    B~ Nc2 

–  Pion exchange is dominant long range interaction and 
has an attractive channel.  Any attractive quantum 
system with parametrically strong forces or heavy mass 
will become arbitrarily well localized around the classical 
minimum 

•  While both limits are similar in this respect there 
equations of state are  expected to qualitatively 
different.  Consider T,µ~Nc0 



T 

The Nc=3 QCD Phase Diagram:           
A Cartoon  

Quark-gluon plasma 

Hadron gas 

Nuclear 
matter 

Color superconductor 
at very high µ and 
possibly at lower µ. 
 Other exotic phases 
possible 

µ	





T 

µ	



QCD (F) Phase Diagram at Large Nc : 
A Cartoon  

Quark-gluon plasma 

Hadron gas 

Nuclear 
matter 

Chiral Spiral? 
Quarkyonic matter? 
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O(Nc
2)
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O(Nc
0)
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O(Nc
1 )

€ 

O(Nc
1 )

Large Nc behavior for dense matter with µ~Nc
0 looks 

completely different from Nc=3!!!  

At large Nc, gluons involved in 
deconfinement transition do not 
care about quarks 



T 

QCD (AS) Phase Diagram at Large Nc : 
A Cartoon  

Quark-gluon plasma 

Hadron gas 

Nuclear 
matter 

Possible exotic 
phases at 
larger µ	



µ	



€ 

O(Nc
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O(Nc
0)
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O(Nc
2)

 Gluons involved in deconfinement 
transition do  care about quarks in 
QCD(AS) even at large Nc 

Large Nc behavior for dense matter with µ~Nc
0 in QCD(AS) 

looks qualitatively different from  QCDS(F)  



What about asymptotically high densities 
at low T? 

•  Characteristic momenta are small interactions via 
1-gluon exchange; nonperturbative effects through 
infrared enhancement of effects with perturbative 
kernal.  

•  Nc=3 : As noted by Son (1999) there is Strong 
evidence for color superconductivity; BCS 
instability in RG flow; BCS gap given parametrically  
by  
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Note 1/g not 1/g2 in exponential 



•  Nc ∞:            where λ, the `t Hooft coupling, is 
independent of Nc 

–  The gap is exponentially suppressed at large Nc!! 
•  However this does not happen (at least in QCD(F)).  

The BCS calculation only shows that a Fermi gas is 
unstable against the BCS instability.  If there are 
other instabilities to a different phase at a larger 
energy scale they will dominate. 
–  Note that        type condensates such as BCS depend on 

g2 not Nc g2.  This is why the effect is exponentially small. 
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Ladders are key ingredient 

Look at color flow (‘t Hooft diagrams with gluons carrying 
color-anticolor)   

Note factors of couplings cost 1/Nc but no loop factors 
counteract it.  The color just bounces back and forth.   

The situation is quite different with instabilities towards 
condensates which are color singlets (although not 
necessarily gauge invariant), eg. some  type of possibly 
nonlocal       condensate. 

€ 

q q



Look at color flow (‘t Hooft diagrams with gluons carrying 
color-anticolor)   

Note factors of couplings cost 1/Nc but are compensated by 
color loop factors.  The relevant combination is Nc g2 =λ.  
Thus, effects should not be exponentially down in Nc.	



Thus IF an instability towards a color-singlet condensate 
exists at large Nc it will occur rather than the BCS phase. 



Son and Shuster (1999) showed that that such a 
condensate exists in standard ‘t Hooft-Witten large Nc limit. 
It is a spatially varying chiral condensate of the Deryagin, 
Grigoriev, and Rubakov (DGR) type: 
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q (x')q(x) = ei
 
P ⋅(
 
x '+
 
x ) d4q∫ e−iq(

 
x −
 
x ' ) f (q) |

 
P |=µ

The DGR instability can only be reliably computed for 
µ>>ΛQCD  (perturbatively large) and only occurs for µ<µcrit.  
The reason that µcrit exists is that at sufficiently high values 
of µ, the Debye mass cuts off the RG running before the 
instability sets in. 
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µcrtit ~ ΛQCD exp γ log
2(Nc )( ) γ ≈ .02173

As Nc∞, µcrit∞ and the DGR instability exists for all 
pertubative values of µ.    



Moreover as expected its scale is NOT exponentially down 
in Nc 
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ΔDGR ~ µexp − 4π
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g2Nc
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Thus, the DGR instability is much stronger than the BCS 
instability.  The system will form a DGR phase rather than a 
BCS phase when possible and at large Nc it is always 
possible. 

  

€ 

µcrtit ~ ΛQCD exp γ log
2(Nc )( ) γ ≈ .02173

For moderate Nc, µcrit is small enough so that DGR 
instability does not occur---at least not in the perturbative 
regime where it is computable.  One needs Nc~1000 to 
have a DGR phase (in perturbative regime) 

λ	



 However it is only possible when µ<µcrit where  



•  However QCD(AS) and QCD(F) are qualitatively 
different. 

•  Recall that for QCD(F) at asymptotically high 
chemical potentials color superconductivity lose to 
a DGR instability if the DGR instability occurs. 

•  DGR won because it is a color singlet (although not 
gauge invariant. 
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The bottom line: the DGR phase will not occur at Nc=3 and 
color superconductivity will occur.  At large Nc the DGR 
phase exists.  The large Nc world for QCD(F) at high 
density is qualitatively different from Nc=3 



  

€ 

µcrtit ~ ΛQCD exp γ log
2(Nc )( ) γ ≈ .02173

But for large Nc µcrit∞.   

 Recall that in QCD(F) the DGR phase is only possible 
when µ<µcrit where  

 What happens in QCD(AS)? 
Both the BCS and DGR instabilities using were studied by 
standard means  Buchoff, Cherman, TDC (2010) :  

An RG equation was set up for excitations near the Fermi 
surface.  Now if the Fermi surface is unstable the coupling 
strength will diverge as one integrates out the contributions 
of everything except a small shell near the Fermi surface. 



The gap is determined qualitatively from the position at 
which the divergence occurs.   

For QCD(AS) we found that   
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As compared to 
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Note that the dependence is not just Nc
1/2Nc .  The RG 

equations depend explicitly on the representation of the 
quark field and are non-linear.  As with QCD(F) the gap 
is exponentially down in Nc.  



Thus we again expect that the DGR instability will win as it 
is a color singlet, provided that it occurs.  

Does it? 

NO!! 

The RG analysis is done using the same effective 1-d 
theory near the Fermi surface as was done for QCD(F).  
However, in QCD(AS) the RG running is affected by 
quark loops.  These serve to screen the gluons and 
cutoff the RG flow before the instability is reached. 

Thus QCD(AS) at very high densities is qualitative 
different QCD(F) at large Nc.  As for the case of 
Nc=3 it is likely to be in a BCS phase and is 
certainly not in a DGR 



An optimist might take this to mean that QCD(AS) is more 
likely than QCD(F) to be qualitatively similar to QCD at 
Nc=3 than QCD(F) even at smaller densities and might 
serve as a useful first step for modeling in that region.    

Perhaps with enough good  wine  I could be convinced of this   

But it would take a lot of good wine  



Summary 
•  QCD(AS) is an alternative way to extrapolate to 

large Nc. 
•  Typical models of the baryon capture the 

leading Nc behavior of QCD for both limits but 
baryons in the SS model (treated as an 
instanton) do not. 

•  At very high density QCD(AS) does not 
undergo a DGR transition at large Nc while 
QCD(F) does.  


