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extensions to SM3

A sequential family of heavy quarks and leptons has not been ruled

out yet –G. D. Kribs, T. Plehn, M. Spannowsky and T. Tait, PRD 76, 075016(2007); P. Q.

Hung and M. Sher, PRD 77, 037302 (2008); H. He, N. Polonsky andS. Su, PRD 64, 053004

(2001); M. Chanowitz, PRL 87, 231802 (2001) V. A. Novikov, L.B. Okun, A. N. Rozanov and

M. I. Vysotsky, PLB 529 (2002);... B. Holdom, PLB 686(2010);J. Erler, P. Langacker, PRL

105,031801 (2010), ...

A heavy 4th generation can alleviate the naturalness (hierarchy)

problem of SM3

Similar to the top-quark condensation models, the 4th generation

might trigger the dynamical electroweak symmetry breaking.
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How?
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force for condensates
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How?

From our study with RGE+SDE, a heavy 4th generation

drives the Yukawa couplings to the strong region⇒ binding
force for condensates

brings the cutoff scale down toΛ ∼ TeV⇒ hierarchy problem

leads to a quasi-fixed point aroundΛ at two-loop level⇒
Landau pole, triviality

suggests the restoration of scale invariance aboveΛ ⇒ new
conformal theories?
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RG running of couplings in SM3

We begin with the RGE approach. The RG running of
gauge couplings and Higgs couplings (quartic and
Yukawa) in SM3 (Mh = 120GeV ∼ 180GeV )
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RGE in SM4

We study the evolutions of gauge and Higgs
couplings (quartic and Yukawa) in SM4
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We study the evolutions of gauge and Higgs
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We study the evolutions of gauge and Higgs
couplings (quartic and Yukawa) in SM4

At two-loop level (MS scheme),16π2 dyi

dt
= βyi

e.g. the Higgs quartic coupling
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q)] + ...

other couplingsβyq , βyl
, βyt , βgi,i=1,2,3 ... (Machacek and Vaughn,

1983)
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Zeros of β-functions

These RGEs can be integrated numerically, but first we
search for roots ofβyi = 0 with fixed gauge couplings.
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Zeros of β-functions

These RGEs can be integrated numerically, but first we
search for roots ofβyi = 0 with fixed gauge couplings.

g2
3 g2

2 g2
1 λ g2

t g2
q g2

l

1.478 0.425 0.213 17.561 31.407 52.298 56.583

1.225 0.413 0.217 17.457 31.200 52.185 55.664

1.003 0.404 0.223 17.376 31.073 52.147 54.934

0.902 0.396 0.226 17.339 31.014 52.126 54.604

0.815 0.386 0.230 17.308 30.963 52.107 54.321

0.652 0.366 0.239 17.249 30.866 52.066 53.792

0.565 0.354 0.245 17.218 30.814 52.042 53.511

0.304 0.284 0.304 17.125 30.655 51.966 52.661

0.999 0.666 0.333 17.339 31.039 52.089 54.817

0.500 0.500 0.500 17.164 30.754 51.990 53.152

0.000 0.000 0.000 17.059 30.488 51.902 51.902
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Zeros of β-functions

The fixed point values of the quartic and Yukawa
couplings are approximately

λ∗/(4π)2 ≈ 0.11, g2∗
t /(4π)2 ≈ 0.2, g2∗

q /(4π)2 ≈ 0.33, g2∗
l /(4π)2 ≈ 0.34
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The gauge couplings contribute only small fluctuations.
These correspond tonaiveMS masses (using
mH = v

√
2λ, mf = vgf/

√
2, v = 246 GeV )
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H = 1.44 TeV, m∗
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Zeros of β-functions

The fixed point values of the quartic and Yukawa
couplings are approximately

λ∗/(4π)2 ≈ 0.11, g2∗
t /(4π)2 ≈ 0.2, g2∗

q /(4π)2 ≈ 0.33, g2∗
l /(4π)2 ≈ 0.34

The gauge couplings contribute only small fluctuations.
These correspond tonaiveMS masses (using
mH = v

√
2λ, mf = vgf/

√
2, v = 246 GeV )

m∗
H = 1.44 TeV, m∗

t = 0.97 TeV, m∗
q = 1.26 TeV, m∗

l = 1.28 TeV.

Questions:

Can this (quasi)fixed point be reached?

If yes, at what energy scale?
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RG running of Higgs couplings

The RG running of Higgs couplings (quartic and
Yukawa), light mass cases (Mq = 120GeV ∼ 250GeV )
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RG running of Higgs couplings

The RG running of Higgs couplings (quartic and
Yukawa), heavy mass case (Mq = 300GeV ∼ 500GeV )
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Landau Pole vs. Fixed Point

Compare 1-loop and 2-loop results
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RG running of Higgs couplings

From the numerical calculations, we see that

The evolution of Higgs couplings run into a
quasi-fixed point at some scaleΛFP

ΛFP decreases when the mass the 4th generation
increases
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RG running of Higgs couplings

From the numerical calculations, we see that

The evolution of Higgs couplings run into a
quasi-fixed point at some scaleΛFP

ΛFP decreases when the mass the 4th generation
increases

An interesting thing is, by increasing their masses just
about 3 times, the 4th generation bringsΛFP from ≈ 1016

GeV down tofew TeV.

The existence of a quasi-fixed point⇒ the triviality
problem;
The physical consequences of shifting the scaleΛFP

down to TeV level⇒ provide an alternative solution to
thehierarchy problem.
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Comments

For the RGEs, the expansion parameters are
g2∗

t /16π2 ≈ 0.2, g2∗
q /16π2 ≈ 0.33, g2∗

q /16π2 ≈ 0.34, λ∗/16π2 ≈ 0.11.
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Comments

For the RGEs, the expansion parameters are
g2∗

t /16π2 ≈ 0.2, g2∗
q /16π2 ≈ 0.33, g2∗

q /16π2 ≈ 0.34, λ∗/16π2 ≈ 0.11.

These represent strong quartic and Yukawa
couplings. The exact location ofΛFP and the values
of Higgs couplings atΛFP should be studied
non-perturbatively, e.g. put on lattice

β2−loop(g∗) = 0 may give a clue in findingβ(g∗) = 0 where
the scale invariance is restored at some energy

α
π

or α
4π

? An order of one expansion parameter? We
have seen similar situations before, e.g., the
Wilson-Fisherε-expansion,g4 = 16π2ε/3 for the
physical valueε = 1, ε = 4 − d.
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Wilson-Fisher ε-expansion

µ
d

dµ
g4(µ) = −ε g4(µ) +

3g2
4(µ)

16π2
+ O(g3

4(µ))

µ
d

dµ
g2(µ) = g2(µ)[−2 +

g4(µ)

16π2
+ O(g4(µ))]

whereε = 4 − d andg2 andg4 come from termsg2φ
2/2, g4φ

4/4!

respectively.
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µ
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g2(µ) = g2(µ)[−2 +

g4(µ)

16π2
+ O(g4(µ))]

whereε = 4 − d andg2 andg4 come from termsg2φ
2/2, g4φ

4/4!

respectively.
Solvingβ(g4), β(g2) = 0 equations, one finds a non-trivial
fixed point at

g∗4 =
16π2ε

3
, g∗2 = 0.
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Wilson-Fisher ε-expansion

µ
d

dµ
g4(µ) = −ε g4(µ) +

3g2
4(µ)

16π2
+ O(g3

4(µ))

µ
d

dµ
g2(µ) = g2(µ)[−2 +

g4(µ)

16π2
+ O(g4(µ))]

whereε = 4 − d andg2 andg4 come from termsg2φ
2/2, g4φ

4/4!

respectively.
Solvingβ(g4), β(g2) = 0 equations, one finds a non-trivial
fixed point at

g∗4 =
16π2ε

3
, g∗2 = 0.

For d=3, it corresponds tog∗4 = 16π2/3 ≈ 52.64 or g∗4/16π2 = 1/3
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Wilson-Fisher ε-expansion

The critical exponentν is then given by theε-expansion

ν = 1/2 + ε/12 + 7ε2/162 − 0.01904ε3 + O(ε4)
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Wilson-Fisher ε-expansion

The critical exponentν is then given by theε-expansion

ν = 1/2 + ε/12 + 7ε2/162 − 0.01904ε3 + O(ε4)

At 1-loop level,ν = 0.58, at 2-loop level,ν = 0.63, at 3-loop
level, ν = 0.61 while the experimental value isν = 0.63

–“ It is fortunate though still somewhat mysterious that
an expansion in powers of 1 should work so well.”
–(Weinberg, QFT II)

We do not expect such a precise calculation, but
hopefully inclusion of higher order terms will not shift
the location and the values of the quasi-fixed point by an
order of magnitude.
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Bound States/Condensates

The Yukawa couplings become strong aroundΛFP . Can
the 4th generation fermions form bound states or
condensates by the Yukawa coupling?
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Bound States/Condensates

The Yukawa couplings become strong aroundΛFP . Can
the 4th generation fermions form bound states or
condensates by the Yukawa coupling?
We perform a non-relativistic analysis at quantum
mechanics level, with a Higgs-exchange potential

V (r) = −αY (r)
e−mH(r)r

r

whereαY = m1m2/4πv2.
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Bound States/Condensates

The Yukawa couplings become strong aroundΛFP . Can
the 4th generation fermions form bound states or
condensates by the Yukawa coupling?
We perform a non-relativistic analysis at quantum
mechanics level, with a Higgs-exchange potential

V (r) = −αY (r)
e−mH(r)r

r

whereαY = m1m2/4πv2.
The possibility of forming bound states is characterized
by

Kf =
g3

f

16π
√

λ
.
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Bound States/Condensates

The criteria is

Kf > 2 (variational method)

Kf > 1.68 (numerical method)
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Kf > 2 (variational method)

Kf > 1.68 (numerical method)

If we use the fixed-point values of the quartic and
Yukawa couplings, we find that the 4th generation may
form loosely bound state, while the top quark cannot.
Kq = 1.82, Kl = 1.92, Kt = 0.82
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Bound States/Condensates

The criteria is

Kf > 2 (variational method)

Kf > 1.68 (numerical method)

If we use the fixed-point values of the quartic and
Yukawa couplings, we find that the 4th generation may
form loosely bound state, while the top quark cannot.
Kq = 1.82, Kl = 1.92, Kt = 0.82

An interesting region is around the “dip”, i.e.λ ≈ 0, where
the Yukawa potential becomes a strong Coulomb-like
potential.→ formation of condensates(Rafelski, Fulcher and Klein,

1978).
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Bound States/Condensates
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Note: Neither technicolor nor other unkown interactions are
introduced for condensates.
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Bound States/Condensates
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Schwinger-Dyson Equation

In SM4 the Yukawa couplings become strong
around TeV
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Schwinger-Dyson Equation

In SM4 the Yukawa couplings become strong
around TeV

The perturbative approach becomes less reliable
when approachingΛFP

Lattice? Nielson-Ninomiya no-go theorem (chiral
gauge theory) mirror fermion

dispersion relation?π − N system

We use Schwinger-Dyson approach (Gap Equation,
mean field theory, Hartree-Fock approximation,...)
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Schwinger-Dyson Equation

Consider Yukawa couplings in SM4 (truncated to only
the 4th generation)

LY = −gb′ q̄LΦ b′R − gt′ q̄LΦ̃ t′R + h.c.

Φ̃ = iτ2Φ
∗, qL = (t′, b′)L as usually defined in the SM.

= + +

t′

φ0

Figure 1:Graphic representation of the Schwinger-Dyson equation

for the quark self-energy (quenched approximation)
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Gap Equation

For simplicity we only consider the 4th generation
quarks. From the SDE the quark self energy satisfies

Σ(p) =
+2g2

(2π)4

∫
d4q

1

(p − q)2
Σ(q)

q2 + Σ2(q)
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Gap Equation

For simplicity we only consider the 4th generation
quarks. From the SDE the quark self energy satisfies

Σ(p) =
+2g2

(2π)4

∫
d4q

1

(p − q)2
Σ(q)

q2 + Σ2(q)

which can be converted to a differential equation

�Σ(p) = − α

αc

Σ(q)

q2 + Σ2(q)

whereαc = π/2

compared withαc = π/3 in strong QED (Fukuda &
Kugo, Bardeen, Leung & Love)
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Gap Equation

Early work: K. Johnson, M. Baker and R. Willey.
PR136(1964), 163(1967)
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Early work: K. Johnson, M. Baker and R. Willey.
PR136(1964), 163(1967)

Numerical analysis: Fukuda and Kugo, Nucl. Phys.
B117(1976)
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Gap Equation

Early work: K. Johnson, M. Baker and R. Willey.
PR136(1964), 163(1967)

Numerical analysis: Fukuda and Kugo, Nucl. Phys.
B117(1976)

Analytic analysis: C.Leung, S. Love and W.
Bardeem, Nucl. Phys. B273(1986)
The SDEs are similar, but the boundary conditions
are different

lim
p→0

p4 dΣ

dp2
= 0

lim
p→Λ

p2 dΣ

dp2
+ Σ(p) = 0
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solutions

asymptotic solutions in the weak and strong
coupling regions:

Σ(p) ∼ p−1+
√

1− α
αc , for α ≤ αc

Σ(p) ∼ p−1 sin[

√
α

αc

− 1(ln p + δ)], for α > αc
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Condensates

One can compute the condensates

〈t̄′t′〉 = − 1

4π4

∫
d4q

Σ(q)

q2 + Σ2(q)
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Self energy, condensates and induced scalar mass depend on
the cutoff and the Yukawa couplings as

Σ(0) ∼ Λ e
−π√
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+1

, 〈t̄′t′〉 ∼ −Λ3 e
−2π√
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φ ∼ −Λ2 e

−π√
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Condensates

One can compute the condensates

〈t̄′t′〉 = − 1

4π4

∫
d4q

Σ(q)

q2 + Σ2(q)

Self energy, condensates and induced scalar mass depend on
the cutoff and the Yukawa couplings as

Σ(0) ∼ Λ e
−π√

α/αc−1
+1

, 〈t̄′t′〉 ∼ −Λ3 e
−2π√

α/αc−1 , δm2
φ ∼ −Λ2 e

−π√
α/αc−1

Miransky fixed-point? In our case the exponential factors
cannot suppress them simultaneously. To avoid fine-tuning,
one has to choose a cutoff at TeV scale.
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Cutoff vs. Yukawa couplings

α
αc

1.0 1.1 1.2 1.4 1.8 2.2 2.6 3.0 3.4
Λ

Σ(0)
∞ 7590 414 52.8 12.3 6.47 4.41 3.39 2.80

Λ (GeV) ∞ 106 105 104 6167 3237 2205 1696 1398

Table 1:The relation between the cutoff scale and the Yukawa coupling.
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Cutoff vs. Yukawa couplings

α
αc

1.0 1.1 1.2 1.4 1.8 2.2 2.6 3.0 3.4
Λ

Σ(0)
∞ 7590 414 52.8 12.3 6.47 4.41 3.39 2.80

Λ (GeV) ∞ 106 105 104 6167 3237 2205 1696 1398

Table 2:The relation between the cutoff scale and the Yukawa coupling.
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RGE vs. SDE

two figures from RGE and SDE respectively
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Multiple Higgs doublets

We might have three Higgs doublets: One
fundamental, two composite

H1 = (π+, π−, π0, σ)

H2 = (b̄′t′, t̄′b′, t̄′t′ − b̄′b′, t̄′t′ + b̄′b′)

H3 = (τ̄ ′ν′
τ , ν̄′

ττ ′, ν̄′
τν′

τ − τ̄ ′τ ′, ν̄′
τν′

τ + τ̄ ′τ ′)
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Multiple Higgs doublets

We might have three Higgs doublets: One
fundamental, two composite

H1 = (π+, π−, π0, σ)

H2 = (b̄′t′, t̄′b′, t̄′t′ − b̄′b′, t̄′t′ + b̄′b′)

H3 = (τ̄ ′ν′
τ , ν̄′

ττ ′, ν̄′
τν′

τ − τ̄ ′τ ′, ν̄′
τν′

τ + τ̄ ′τ ′)

Their effective mass terms are described by

(H†
1 , H†

2 , H†
3) M (H1, H2, H3)

T

The existence of the Nambu-Goldstone bosons leads
to detM = 0 –modified gap equation
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Summary

At 2-loop level, the Yukawa sector of SM4 has a
non-trivial quasi-fixed point
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Summary

At 2-loop level, the Yukawa sector of SM4 has a
non-trivial quasi-fixed point

A heavy 4th generation (mq > 400 GeV) can set
ΛFP to be order of TeV

A heavy 4th generation also drives Yukawa
couplings becomestrong at TeVscale

Bound states/condensatesof the 4th generation can
be formed by exchanging Higgs bosons

The perturbative (RGE) and non-perturbative (SDE)
approaches lead to consistent results.
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