Dynamical Electroweak Symmetry Breaking with a Heavy 4th Generation

Nov 10th, 2010, University of Virginia, Charlottesville

Chi Xiong

(based on arXiv:0911.3890, 0911.3892, 1011.xxxx) with P.Q. Hung

University of Virginia, Charlottesville

Standard Model with four generations (SM4)

- Standard Model with four generations (SM4)
- Renormalization group equation (RGE) (2-loop)

- Standard Model with four generations (SM4)
- Renormalization group equation (RGE) (2-loop)
- Strong Yukawa couplings and Quasi-fixed point

- Standard Model with four generations (SM4)
- Renormalization group equation (RGE) (2-loop)
- Strong Yukawa couplings and Quasi-fixed point
- Bound states/condensates of the 4th generation

- Standard Model with four generations (SM4)
- Renormalization group equation (RGE) (2-loop)
- Strong Yukawa couplings and Quasi-fixed point
- Bound states/condensates of the 4th generation
- Schwinger-Dyson equation(SDE)

- Standard Model with four generations (SM4)
- Renormalization group equation (RGE) (2-loop)
- Strong Yukawa couplings and Quasi-fixed point
- Bound states/condensates of the 4th generation
- Schwinger-Dyson equation(SDE)
- Implications of RGE+SDE

Standard Model with 4 Generations is probably one of the simplest extensions to SM3

Why SM4?

- Standard Model with 4 Generations is probably one of the simplest extensions to SM3
- A sequential family of heavy quarks and leptons has not been ruled out yet G. D. Kribs, T. Plehn, M. Spannowsky and T. Tait, PRD 76, 075016(2007); P. Q. Hung and M. Sher, PRD 77, 037302 (2008); H. He, N. Polonsky and S. Su, PRD 64, 053004 (2001); M. Chanowitz, PRL 87, 231802 (2001) V. A. Novikov, L. B. Okun, A. N. Rozanov and M. I. Vysotsky, PLB 529 (2002);... B. Holdom, PLB 686(2010); J. Erler, P. Langacker, PRL 105,031801 (2010), ...

Why SM4?

- Standard Model with 4 Generations is probably one of the simplest extensions to SM3
- A sequential family of heavy quarks and leptons has not been ruled out yet G. D. Kribs, T. Plehn, M. Spannowsky and T. Tait, PRD 76, 075016(2007); P. Q. Hung and M. Sher, PRD 77, 037302 (2008); H. He, N. Polonsky and S. Su, PRD 64, 053004 (2001); M. Chanowitz, PRL 87, 231802 (2001) V. A. Novikov, L. B. Okun, A. N. Rozanov and M. I. Vysotsky, PLB 529 (2002);... B. Holdom, PLB 686(2010); J. Erler, P. Langacker, PRL 105,031801 (2010), ...
- A heavy 4th generation can alleviate the naturalness (hierarchy) problem of SM3

Why SM4?

- Standard Model with 4 Generations is probably one of the simplest extensions to SM3
- A sequential family of heavy quarks and leptons has not been ruled out yet G. D. Kribs, T. Plehn, M. Spannowsky and T. Tait, PRD 76, 075016(2007); P. Q. Hung and M. Sher, PRD 77, 037302 (2008); H. He, N. Polonsky and S. Su, PRD 64, 053004 (2001); M. Chanowitz, PRL 87, 231802 (2001) V. A. Novikov, L. B. Okun, A. N. Rozanov and M. I. Vysotsky, PLB 529 (2002);... B. Holdom, PLB 686(2010); J. Erler, P. Langacker, PRL 105,031801 (2010), ...
- A heavy 4th generation can alleviate the naturalness (hierarchy) problem of SM3
- Similar to the top-quark condensation models, the 4th generation might trigger the dynamical electroweak symmetry breaking.

■ drives the Yukawa couplings to the strong region ⇒ binding force for condensates

■ drives the Yukawa couplings to the strong region ⇒ binding force for condensates

• brings the cutoff scale down to $\Lambda \sim \text{TeV} \Rightarrow$ hierarchy problem

- drives the Yukawa couplings to the strong region ⇒ binding force for condensates
- brings the cutoff scale down to $\Lambda \sim \text{TeV} \Rightarrow$ hierarchy problem
- leads to a quasi-fixed point around Λ at two-loop level \Rightarrow Landau pole, triviality

- drives the Yukawa couplings to the strong region ⇒ binding force for condensates
- brings the cutoff scale down to $\Lambda \sim \text{TeV} \Rightarrow$ hierarchy problem
- leads to a quasi-fixed point around Λ at two-loop level \Rightarrow Landau pole, triviality
- suggests the restoration of scale invariance above $\Lambda \Rightarrow$ new conformal theories?

RG running of couplings in SM3

We begin with the RGE approach. The RG running of gauge couplings and Higgs couplings (quartic and Yukawa) in SM3 ($M_h = 120GeV \sim 180GeV$)

We study the evolutions of gauge and Higgs couplings (quartic and Yukawa) in SM4 We study the evolutions of gauge and Higgs couplings (quartic and Yukawa) in SM4

• At two-loop level (\overline{MS} scheme), $16\pi^2 \frac{dy_i}{dt} = \beta_{y_i}$

- We study the evolutions of gauge and Higgs couplings (quartic and Yukawa) in SM4
- At two-loop level (\overline{MS} scheme), $16\pi^2 \frac{dy_i}{dt} = \beta_{y_i}$
- e.g. the Higgs quartic coupling

$$\begin{split} \beta_{\lambda} = & 24\lambda^2 + 4\lambda(3g_t^2 + 6g_q^2 + 2g_l^2 - 2.25g_2^2 - 0.45g_1^2) \\ & -12(3g_t^4 + 6g_q^4 + 2g_l^4) + (16\pi^2)^{-1}[180g_t^6 \\ & +288g_q^6 + 96g_l^6 - (3g_t^4 + 6g_q^4 + 2g_l^4 - 80g_3^2(g_t^2 \\ & +2g_q^2))\lambda - 6\lambda^2(24g_t^2 + 48g_q^2 + 16g_l^2) - 312\lambda^3 \\ & -192g_3^2(g_t^4 + 2g_q^4)] + \dots \end{split}$$

- We study the evolutions of gauge and Higgs couplings (quartic and Yukawa) in SM4
- At two-loop level (\overline{MS} scheme), $16\pi^2 \frac{dy_i}{dt} = \beta_{y_i}$
- e.g. the Higgs quartic coupling

$$\begin{split} \beta_{\lambda} = & 24\lambda^2 + 4\lambda(3g_t^2 + 6g_q^2 + 2g_l^2 - 2.25g_2^2 - 0.45g_1^2) \\ & -12(3g_t^4 + 6g_q^4 + 2g_l^4) + (16\pi^2)^{-1}[180g_t^6 \\ & +288g_q^6 + 96g_l^6 - (3g_t^4 + 6g_q^4 + 2g_l^4 - 80g_3^2(g_t^2 \\ & +2g_q^2))\lambda - 6\lambda^2(24g_t^2 + 48g_q^2 + 16g_l^2) - 312\lambda^3 \\ & -192g_3^2(g_t^4 + 2g_q^4)] + \dots \end{split}$$

• other couplings $\beta_{y_q}, \beta_{y_l}, \beta_{y_t}, \beta_{g_i,i=1,2,3}$... (Machacek and Vaughn, 1983)

These RGEs can be integrated numerically, but first we search for roots of $\beta_{y_i} = 0$ with fixed gauge couplings.

These RGEs can be integrated numerically, but first we search for roots of $\beta_{y_i} = 0$ with fixed gauge couplings.

g_3^2	g_2^2	g_1^2	λ	g_t^2	g_q^2	g_l^2
1.478	0.425	0.213	17.561	31.407	52.298	56.583
1.225	0.413	0.217	17.457	31.200	52.185	55.664
1.003	0.404	0.223	17.376	31.073	52.147	54.934
0.902	0.396	0.226	17.339	31.014	52.126	54.604
0.815	0.386	0.230	17.308	30.963	52.107	54.321
0.652	0.366	0.239	17.249	30.866	52.066	53.792
0.565	0.354	0.245	17.218	30.814	52.042	53.511
0.304	0.284	0.304	17.125	30.655	51.966	52.661
0.999	0.666	0.333	17.339	31.039	52.089	54.817
0.500	0.500	0.500	17.164	30.754	51.990	53.152
0.000	0.000	0.000	17.059	30.488	51.902	51.902

Zeros of β **-functions**

The fixed point values of the quartic and Yukawa couplings are approximately

 $\lambda^*/(4\pi)^2 \approx 0.11, \quad g_t^{2*}/(4\pi)^2 \approx 0.2, \quad g_q^{2*}/(4\pi)^2 \approx 0.33, \quad g_l^{2*}/(4\pi)^2 \approx 0.34$

The fixed point values of the quartic and Yukawa couplings are approximately

 $\lambda^*/(4\pi)^2 \approx 0.11, \quad g_t^{2*}/(4\pi)^2 \approx 0.2, \quad g_q^{2*}/(4\pi)^2 \approx 0.33, \quad g_l^{2*}/(4\pi)^2 \approx 0.34$

The gauge couplings contribute only small fluctuations. These correspond to naive \overline{MS} masses (using

 $\overline{m}_{H} = v\sqrt{2\lambda}, \overline{m}_{f} = vg_{f}/\sqrt{2}, v = 246 \text{ GeV}$)

 $\overline{m}_H^* = 1.44 \text{ TeV}, \overline{m}_t^* = 0.97 \text{ TeV}, \overline{m}_q^* = 1.26 \text{ TeV}, \overline{m}_l^* = 1.28 \text{ TeV}.$

The fixed point values of the quartic and Yukawa couplings are approximately

 $\lambda^*/(4\pi)^2 \approx 0.11, \quad g_t^{2*}/(4\pi)^2 \approx 0.2, \quad g_q^{2*}/(4\pi)^2 \approx 0.33, \quad g_l^{2*}/(4\pi)^2 \approx 0.34$

The gauge couplings contribute only small fluctuations. These correspond to naive \overline{MS} masses (using

$$\overline{m}_H = v\sqrt{2\lambda}, \overline{m}_f = vg_f/\sqrt{2}, \ v = 246 \text{ GeV}$$
)

 $\overline{m}_H^* = 1.44 \text{ TeV}, \overline{m}_t^* = 0.97 \text{ TeV}, \overline{m}_q^* = 1.26 \text{ TeV}, \overline{m}_l^* = 1.28 \text{ TeV}.$

Questions:

- Can this (quasi)fixed point be reached?
- If yes, at what energy scale?

RG running of Higgs couplings

The RG running of Higgs couplings (quartic and Yukawa), light mass cases $(M_q = 120GeV \sim 250GeV)$

RG running of Higgs couplings

The RG running of Higgs couplings (quartic and Yukawa), heavy mass case $(M_q = 300 GeV \sim 500 GeV)$

Landau Pole vs. Fixed Point

Compare 1-loop and 2-loop results

From the numerical calculations, we see that

- The evolution of Higgs couplings run into a quasi-fixed point at some scale Λ_{FP}
- Λ_{FP} decreases when the mass the 4th generation increases

From the numerical calculations, we see that

- The evolution of Higgs couplings run into a quasi-fixed point at some scale Λ_{FP}
- Λ_{FP} decreases when the mass the 4th generation increases

An interesting thing is, by increasing their masses just about 3 times, the 4th generation brings Λ_{FP} from $\approx 10^{16}$ GeV down to few TeV.

From the numerical calculations, we see that

- The evolution of Higgs couplings run into a quasi-fixed point at some scale Λ_{FP}
- Λ_{FP} decreases when the mass the 4th generation increases

An interesting thing is, by increasing their masses just about 3 times, the 4th generation brings Λ_{FP} from $\approx 10^{16}$ GeV down to few TeV.

The existence of a quasi-fixed point \Rightarrow the triviality problem;

The physical consequences of shifting the scale Λ_{FP} down to TeV level \Rightarrow provide an alternative solution to the hierarchy problem.

For the RGEs, the expansion parameters are $g_t^{2*}/16\pi^2 \approx 0.2$, $g_q^{2*}/16\pi^2 \approx 0.33$, $g_q^{2*}/16\pi^2 \approx 0.34$, $\lambda^*/16\pi^2 \approx 0.11$.

- For the RGEs, the expansion parameters are $g_t^{2*}/16\pi^2 \approx 0.2$, $g_q^{2*}/16\pi^2 \approx 0.33$, $g_q^{2*}/16\pi^2 \approx 0.34$, $\lambda^*/16\pi^2 \approx 0.11$.
- These represent strong quartic and Yukawa couplings. The exact location of Λ_{FP} and the values of Higgs couplings at Λ_{FP} should be studied non-perturbatively, e.g. put on lattice

- For the RGEs, the expansion parameters are $g_t^{2*}/16\pi^2 \approx 0.2$, $g_q^{2*}/16\pi^2 \approx 0.33$, $g_q^{2*}/16\pi^2 \approx 0.34$, $\lambda^*/16\pi^2 \approx 0.11$.
- These represent strong quartic and Yukawa couplings. The exact location of Λ_{FP} and the values of Higgs couplings at Λ_{FP} should be studied non-perturbatively, e.g. put on lattice
- $\beta^{2-loop}(g^*) = 0$ may give a clue in finding $\beta(g^*) = 0$ where the scale invariance is restored at some energy

- For the RGEs, the expansion parameters are $g_t^{2*}/16\pi^2 \approx 0.2$, $g_q^{2*}/16\pi^2 \approx 0.33$, $g_q^{2*}/16\pi^2 \approx 0.34$, $\lambda^*/16\pi^2 \approx 0.11$.
- These represent strong quartic and Yukawa couplings. The exact location of Λ_{FP} and the values of Higgs couplings at Λ_{FP} should be studied non-perturbatively, e.g. put on lattice
- $\beta^{2-loop}(g^*) = 0$ may give a clue in finding $\beta(g^*) = 0$ where the scale invariance is restored at some energy
- $\frac{\alpha}{\pi}$ or $\frac{\alpha}{4\pi}$? An order of one expansion parameter? We have seen similar situations before, e.g., the Wilson-Fisher ϵ -expansion, $g_4 = 16\pi^2 \epsilon/3$ for the physical value $\epsilon = 1, \epsilon = 4 d$.

Wilson-Fisher ϵ **-expansion**

$$\mu \frac{d}{d\mu} g_4(\mu) = -\epsilon g_4(\mu) + \frac{3g_4^2(\mu)}{16\pi^2} + \mathcal{O}(g_4^3(\mu))$$
$$\mu \frac{d}{d\mu} g_2(\mu) = g_2(\mu) \left[-2 + \frac{g_4(\mu)}{16\pi^2} + \mathcal{O}(g_4(\mu))\right]$$

where $\epsilon = 4 - d$ and g_2 and g_4 come from terms $g_2\phi^2/2, g_4\phi^4/4!$ respectively.
Wilson-Fisher ϵ **-expansion**

$$\mu \frac{d}{d\mu} g_4(\mu) = -\epsilon g_4(\mu) + \frac{3g_4^2(\mu)}{16\pi^2} + \mathcal{O}(g_4^3(\mu))$$
$$\mu \frac{d}{d\mu} g_2(\mu) = g_2(\mu) \left[-2 + \frac{g_4(\mu)}{16\pi^2} + \mathcal{O}(g_4(\mu))\right]$$

where $\epsilon = 4 - d$ and g_2 and g_4 come from terms $g_2\phi^2/2, g_4\phi^4/4!$ respectively. Solving $\beta(g_4), \beta(g_2) = 0$ equations, one finds a non-trivial fixed point at

$$g_4^* = \frac{16\pi^2\epsilon}{3}, \quad g_2^* = 0.$$

$$\mu \frac{d}{d\mu} g_4(\mu) = -\epsilon g_4(\mu) + \frac{3g_4^2(\mu)}{16\pi^2} + \mathcal{O}(g_4^3(\mu))$$
$$\mu \frac{d}{d\mu} g_2(\mu) = g_2(\mu) \left[-2 + \frac{g_4(\mu)}{16\pi^2} + \mathcal{O}(g_4(\mu))\right]$$

where $\epsilon = 4 - d$ and g_2 and g_4 come from terms $g_2\phi^2/2, g_4\phi^4/4!$ respectively. Solving $\beta(g_4), \beta(g_2) = 0$ equations, one finds a non-trivial fixed point at

$$g_4^* = \frac{16\pi^2\epsilon}{3}, \quad g_2^* = 0.$$

For d=3, it corresponds to $g_4^* = 16\pi^2/3 \approx 52.64$ or $g_4^*/16\pi^2 = 1/3$

Wilson-Fisher ϵ **-expansion**

The critical exponent ν is then given by the ϵ -expansion

 $\nu = 1/2 + \epsilon/12 + 7\epsilon^2/162 - 0.01904\epsilon^3 + \mathcal{O}(\epsilon^4)$

Wilson-Fisher ϵ **-expansion**

The critical exponent ν is then given by the ϵ -expansion

 $\nu = 1/2 + \epsilon/12 + 7\epsilon^2/162 - 0.01904\epsilon^3 + \mathcal{O}(\epsilon^4)$

At 1-loop level, $\nu = 0.58$, at 2-loop level, $\nu = 0.63$, at 3-loop level, $\nu = 0.61$ while the experimental value is $\nu = 0.63$

The critical exponent ν is then given by the ϵ -expansion

 $\nu = 1/2 + \epsilon/12 + 7\epsilon^2/162 - 0.01904\epsilon^3 + \mathcal{O}(\epsilon^4)$

At 1-loop level, $\nu = 0.58$, at 2-loop level, $\nu = 0.63$, at 3-loop level, $\nu = 0.61$ while the experimental value is $\nu = 0.63$ -" It is fortunate though still somewhat mysterious that an expansion in powers of 1 should work so well." -(Weinberg, QFT II) The critical exponent ν is then given by the ϵ -expansion

 $\nu = 1/2 + \epsilon/12 + 7\epsilon^2/162 - 0.01904\epsilon^3 + \mathcal{O}(\epsilon^4)$

At 1-loop level, $\nu = 0.58$, at 2-loop level, $\nu = 0.63$, at 3-loop level, $\nu = 0.61$ while the experimental value is $\nu = 0.63$ -" It is fortunate though still somewhat mysterious that an expansion in powers of 1 should work so well."

-(Weinberg, QFT II)

We do not expect such a precise calculation, but hopefully inclusion of higher order terms will not shift the location and the values of the quasi-fixed point by an order of magnitude.

The Yukawa couplings become strong around Λ_{FP} . Can the 4th generation fermions form bound states or condensates by the Yukawa coupling?

The Yukawa couplings become strong around Λ_{FP} . Can the 4th generation fermions form bound states or condensates by the Yukawa coupling? We perform a non-relativistic analysis at quantum mechanics level, with a Higgs-exchange potential

$$V(r) = -\alpha_Y(r) \frac{e^{-m_H(r)r}}{r}$$

where $\alpha_Y = m_1 m_2 / 4 \pi v^2$.

The Yukawa couplings become strong around Λ_{FP} . Can the 4th generation fermions form bound states or condensates by the Yukawa coupling? We perform a non-relativistic analysis at quantum mechanics level, with a Higgs-exchange potential

$$V(r) = -\alpha_Y(r) \frac{e^{-m_H(r)r}}{r}$$

where $\alpha_Y = m_1 m_2 / 4\pi v^2$. The possibility of forming bound states is characterized by

$$K_f = \frac{g_f^3}{16\pi\sqrt{\lambda}}.$$

The criteria is

- $K_f > 2$ (variational method)
- $K_f > 1.68$ (numerical method)

The criteria is

- $K_f > 2$ (variational method)
- $K_f > 1.68$ (numerical method)

If we use the fixed-point values of the quartic and Yukawa couplings, we find that the 4th generation may form loosely bound state, while the top quark cannot. $K_q = 1.82, \ K_l = 1.92, \ K_t = 0.82$

The criteria is

• $K_f > 2$ (variational method)

• $K_f > 1.68$ (numerical method)

If we use the fixed-point values of the quartic and Yukawa couplings, we find that the 4th generation may form loosely bound state, while the top quark cannot.

 $K_q = 1.82, \ K_l = 1.92, \ K_t = 0.82$

An interesting region is around the "dip", i.e. $\lambda \approx 0$, where the Yukawa potential becomes a strong Coulomb-like potential. \rightarrow formation of condensates (Rafelski, Fulcher and Klein, 1978).

Region I: Condensates v.s. Region II: Fixed Point

Note: Neither technicolor nor other unkown interactions are introduced for condensates.

 $(m_q = 450 \text{ GeV and } m_l = 350 \text{ GeV}) K_f - K_0 \text{ with } K_f = g_f^3/16\pi\sqrt{\lambda} \text{ and}$ $K_0 = 1.68$. The horizontal dotted line indicates an estimate of K_f where the non-relativistic method is still applicable and the vertical dotted lines enclose the region where a fully relativistic approach is needed.

In SM4 the Yukawa couplings become strong around TeV

- In SM4 the Yukawa couplings become strong around TeV
- The perturbative approach becomes less reliable when approaching Λ_{FP}

- In SM4 the Yukawa couplings become strong around TeV
- The perturbative approach becomes less reliable when approaching Λ_{FP}
- Lattice? Nielson-Ninomiya no-go theorem (chiral gauge theory) mirror fermion

- In SM4 the Yukawa couplings become strong around TeV
- The perturbative approach becomes less reliable when approaching Λ_{FP}
- Lattice? Nielson-Ninomiya no-go theorem (chiral gauge theory) mirror fermion
- dispersion relation? πN system

- In SM4 the Yukawa couplings become strong around TeV
- The perturbative approach becomes less reliable when approaching Λ_{FP}
- Lattice? Nielson-Ninomiya no-go theorem (chiral gauge theory) mirror fermion
- dispersion relation? πN system
- We use Schwinger-Dyson approach (Gap Equation, mean field theory, Hartree-Fock approximation,...)

Consider Yukawa couplings in SM4 (truncated to only the 4th generation)

$$\mathcal{L}_Y = -g_{b'} \,\bar{q}_L \Phi \,b'_R - g_{t'} \,\bar{q}_L \widetilde{\Phi} \,t'_R + h.c.$$

 $\widetilde{\Phi} = i\tau_2 \Phi^*, q_L = (t', b')_L$ as usually defined in the SM.

Figure 1: Graphic representation of the Schwinger-Dyson equation for the quark self-energy (quenched approximation)

For simplicity we only consider the 4th generation quarks. From the SDE the quark self energy satisfies

$$\Sigma(p) = \frac{+2g^2}{(2\pi)^4} \int d^4q \frac{1}{(p-q)^2} \frac{\Sigma(q)}{q^2 + \Sigma^2(q)}$$

For simplicity we only consider the 4th generation quarks. From the SDE the quark self energy satisfies

$$\Sigma(p) = \frac{+2g^2}{(2\pi)^4} \int d^4q \frac{1}{(p-q)^2} \frac{\Sigma(q)}{q^2 + \Sigma^2(q)}$$

which can be converted to a differential equation

$$\Box \Sigma(p) = -\frac{\alpha}{\alpha_c} \frac{\Sigma(q)}{q^2 + \Sigma^2(q)}$$

where $\alpha_c = \pi/2$

For simplicity we only consider the 4th generation quarks. From the SDE the quark self energy satisfies

$$\Sigma(p) = \frac{+2g^2}{(2\pi)^4} \int d^4q \frac{1}{(p-q)^2} \frac{\Sigma(q)}{q^2 + \Sigma^2(q)}$$

which can be converted to a differential equation

$$\Box \Sigma(p) = -\frac{\alpha}{\alpha_c} \frac{\Sigma(q)}{q^2 + \Sigma^2(q)}$$

where $\alpha_c = \pi/2$

• compared with $\alpha_c = \pi/3$ in strong QED (Fukuda & Kugo, Bardeen, Leung & Love)

Gap Equation

Early work: K. Johnson, M. Baker and R. Willey. PR136(1964), 163(1967)

Gap Equation

- Early work: K. Johnson, M. Baker and R. Willey. PR136(1964), 163(1967)
- Numerical analysis: Fukuda and Kugo, Nucl. Phys. B117(1976)

- Early work: K. Johnson, M. Baker and R. Willey. PR136(1964), 163(1967)
- Numerical analysis: Fukuda and Kugo, Nucl. Phys. B117(1976)
- Analytic analysis: C.Leung, S. Love and W. Bardeem, Nucl. Phys. B273(1986)

- Early work: K. Johnson, M. Baker and R. Willey. PR136(1964), 163(1967)
- Numerical analysis: Fukuda and Kugo, Nucl. Phys. B117(1976)
- Analytic analysis: C.Leung, S. Love and W. Bardeem, Nucl. Phys. B273(1986)
- The SDEs are similar, but the boundary conditions are different

$$\lim_{p \to 0} p^4 \frac{d\Sigma}{dp^2} = 0$$
$$\lim_{p \to \Lambda} p^2 \frac{d\Sigma}{dp^2} + \Sigma(p) = 0$$

solutions

asymptotic solutions in the weak and strong coupling regions:

$$\Sigma(p) \sim p^{-1+\sqrt{1-\frac{\alpha}{\alpha_c}}}, \qquad \text{for } \alpha \le \alpha_c$$

$$\Sigma(p) \sim p^{-1} \sin[\sqrt{\frac{\alpha}{\alpha_c}} - 1(\ln p + \delta)], \quad \text{for } \alpha > \alpha_c$$

solutions

asymptotic solutions in the weak and strong coupling regions:

$$\Sigma(p) \sim p^{-1+\sqrt{1-\frac{\alpha}{\alpha_c}}}, \qquad \text{for } \alpha \le \alpha_c$$

$$\Sigma(p) \sim p^{-1} \sin[\sqrt{\frac{\alpha}{\alpha_c}} - 1(\ln p + \delta)], \quad \text{for } \alpha > \alpha_c$$

Numerical Solutions

Condensates

One can compute the condensates

$$\langle \bar{t'}t' \rangle = -\frac{1}{4\pi^4} \int d^4q \frac{\Sigma(q)}{q^2 + \Sigma^2(q)}$$

One can compute the condensates

$$\langle \bar{t'}t' \rangle = -\frac{1}{4\pi^4} \int d^4q \frac{\Sigma(q)}{q^2 + \Sigma^2(q)}$$

Self energy, condensates and induced scalar mass depend on the cutoff and the Yukawa couplings as

$$\Sigma(0) \sim \Lambda \ e^{\frac{-\pi}{\sqrt{\alpha/\alpha_c - 1}} + 1}, \quad \langle \bar{t'}t' \rangle \sim -\Lambda^3 \ e^{\frac{-2\pi}{\sqrt{\alpha/\alpha_c - 1}}}, \quad \delta m_{\phi}^2 \sim -\Lambda^2 \ e^{\frac{-\pi}{\sqrt{\alpha/\alpha_c - 1}}}$$

One can compute the condensates

$$\langle \bar{t'}t'\rangle = -\frac{1}{4\pi^4}\int d^4q \frac{\Sigma(q)}{q^2 + \Sigma^2(q)}$$

Self energy, condensates and induced scalar mass depend on the cutoff and the Yukawa couplings as

$$\Sigma(0) \sim \Lambda \ e^{\frac{-\pi}{\sqrt{\alpha/\alpha_c - 1}} + 1}, \quad \langle \bar{t'}t' \rangle \sim -\Lambda^3 \ e^{\frac{-2\pi}{\sqrt{\alpha/\alpha_c - 1}}}, \quad \delta m_{\phi}^2 \sim -\Lambda^2 \ e^{\frac{-\pi}{\sqrt{\alpha/\alpha_c - 1}}}$$

Miransky fixed-point? In our case the exponential factors cannot suppress them simultaneously. To avoid fine-tuning, one has to choose a cutoff at TeV scale.

Cutoff vs. Yukawa couplings

$\frac{\alpha}{\alpha_c}$	1.0	1.1	1.2	1.4	1.8	2.2	2.6	3.0	3.4
$rac{\Lambda}{\Sigma(0)}$	8	7590	414	52.8	12.3	6.47	4.41	3.39	2.80
Λ (GeV)	∞	10^{6}	10^{5}	10^{4}	6167	3237	2205	1696	1398

Table 1: The relation between the cutoff scale and the Yukawa coupling.

Cutoff vs. Yukawa couplings

-	$\frac{\alpha}{\alpha_c}$	1.0	1.1	1.2	1.4	1.8	2.2	2.6	3.0	3.4
	$rac{\Lambda}{\Sigma(0)}$	∞	7590	414	52.8	12.3	6.47	4.41	3.39	2.80
-	Λ (GeV)	∞	10^{6}	10^{5}	10^{4}	6167	3237	2205	1696	1398

Table 2: The relation between the cutoff scale and the Yukawa coupling.

two figures from RGE and SDE respectively

We might have three Higgs doublets: One fundamental, two composite

 $H_1 = (\pi^+, \pi^-, \pi^0, \sigma)$

 $H_2 = (\bar{b'}t', \bar{t'}b', \bar{t'}t' - \bar{b'}b', \bar{t'}t' + \bar{b'}b')$

 $H_3 = (\bar{\tau'}\nu'_{\tau}, \bar{\nu'_{\tau}}\tau', \bar{\nu'_{\tau}}\nu'_{\tau} - \bar{\tau'}\tau', \bar{\nu'_{\tau}}\nu'_{\tau} + \bar{\tau'}\tau')$
We might have three Higgs doublets: One fundamental, two composite

 $H_1 = (\pi^+, \pi^-, \pi^0, \sigma)$

 $H_{2} = (\bar{b'}t', \bar{t'}b', \bar{t'}t' - \bar{b'}b', \bar{t'}t' + \bar{b'}b')$ $H_{3} = (\bar{\tau'}\nu'_{\tau}, \bar{\nu'_{\tau}}\tau', \bar{\nu'_{\tau}}\nu'_{\tau} - \bar{\tau'}\tau', \bar{\nu'_{\tau}}\nu'_{\tau} + \bar{\tau'}\tau')$

• Their effective mass terms are described by $(H_1^{\dagger}, H_2^{\dagger}, H_3^{\dagger}) \mathcal{M} (H_1, H_2, H_3)^T$ We might have three Higgs doublets: One fundamental, two composite

 $H_1 = (\pi^+, \pi^-, \pi^0, \sigma)$

 $H_2 = (\bar{b'}t', \bar{t'}b', \bar{t'}t' - \bar{b'}b', \bar{t'}t' + \bar{b'}b')$ $H_3 = (\bar{\tau'}\nu'_{\tau}, \bar{\nu'_{\tau}}\tau', \bar{\nu'_{\tau}}\nu'_{\tau} - \bar{\tau'}\tau', \bar{\nu'_{\tau}}\nu'_{\tau} + \bar{\tau'}\tau')$

• Their effective mass terms are described by $(H_1^{\dagger}, H_2^{\dagger}, H_3^{\dagger}) \mathcal{M} (H_1, H_2, H_3)^T$

The existence of the Nambu-Goldstone bosons leads to $\det \mathcal{M} = 0$ –modified gap equation

At 2-loop level, the Yukawa sector of SM4 has a non-trivial quasi-fixed point

At 2-loop level, the Yukawa sector of SM4 has a non-trivial quasi-fixed point

• A heavy 4th generation ($m_q > 400 \text{ GeV}$) can set Λ_{FP} to be order of TeV

- At 2-loop level, the Yukawa sector of SM4 has a non-trivial quasi-fixed point
- A heavy 4th generation ($m_q > 400 \text{ GeV}$) can set Λ_{FP} to be order of TeV
- A heavy 4th generation also drives Yukawa couplings become strong at TeV scale

- At 2-loop level, the Yukawa sector of SM4 has a non-trivial quasi-fixed point
- A heavy 4th generation ($m_q > 400 \text{ GeV}$) can set Λ_{FP} to be order of TeV
- A heavy 4th generation also drives Yukawa couplings become strong at TeV scale
- Bound states/condensates of the 4th generation can be formed by exchanging Higgs bosons

- At 2-loop level, the Yukawa sector of SM4 has a non-trivial quasi-fixed point
- A heavy 4th generation ($m_q > 400 \text{ GeV}$) can set Λ_{FP} to be order of TeV
- A heavy 4th generation also drives Yukawa couplings become strong at TeV scale
- Bound states/condensates of the 4th generation can be formed by exchanging Higgs bosons
- The perturbative (RGE) and non-perturbative (SDE) approaches lead to consistent results.