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Outlines

= Standard Model with four generations (SM4)

RGE. SD SM4 —-p. 2



Standard Model with four generations (SM4)
Renormalization group equation (RGE) (2-loop)

RGE . SD SM4 —-p. 2



Standard Model with four generations (SM4)
Renormalization group equation (RGE) (2-loop)
Strong Yukawa couplings and Quasi-fixed point

RGE . SD SM4 —-p. 2



Standard Model with four generations (SM4)

Renormalization group equation (RGE) (2-loop)
Strong Yukawa couplings and Quasi-fixed point
Bound states/condensates of the 4th generation

RGE . SD SM4 —-p. 2



Standard Model with four generations (SM4)
Renormalization group equation (RGE) (2-loop)
Strong Yukawa couplings and Quasi-fixed point
Bound states/condensates of the 4th generation
Schwinger-Dyson equation(SDE)

RGE . SD SM4 —-p. 2



Standard Model with four generations (SM4)
Renormalization group equation (RGE) (2-loop)
Strong Yukawa couplings and Quasi-fixed point
Bound states/condensates of the 4th generation
Schwinger-Dyson equation(SDE)

Implications of RGE+SDE
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Why SM4?

m Standard Model with 4 Generations is probably one of the &stp
extensions to SM3
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Standard Model with 4 Generations is probably one of the l&stp
extensions to SM3

A sequential family of heavy quarks and leptons has not beleial r
out yet —G. D. Kribs, T. Plehn, M. Spannowsky and T. Tait, PRD 76, 08§2007); P. Q.
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A sequential family of heavy quarks and leptons has not beleial r
out yet —G. D. Kribs, T. Plehn, M. Spannowsky and T. Tait, PRD 76, 08§2007); P. Q.
Hung and M. Sher, PRD 77, 037302 (2008); H. He, N. Polonsky&ar#u, PRD 64, 053004
(2001); M. Chanowitz, PRL 87, 231802 (2001) V. A. Novikov,R.. Okun, A. N. Rozanov and
M. I. Vysotsky, PLB 529 (2002);... B. Holdom, PLB 686(2010)Erler, P. Langacker, PRL
105,031801 (2010), ...

A heavy 4th generation can alleviate the naturalness (tcieya
problem of SM3

Similar to the top-quark condensation models, the 4th geioer
might trigger the dynamical electroweak symmetry breaking
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From our study with RGE+SDE, a heavy 4th generatic

drives the Yukawa couplings to the strong regierbinding
force for condensates
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From our study with RGE+SDE, a heavy 4th generatic

drives the Yukawa couplings to the strong regierbinding

force for condensates

brings the cutoff scale down tb ~ TeV = hierarchy problem

leads to a quasi-fixed point aroud
Landau pole, triviality

at two-loop leve

=N

suggests the restoration of scale invariance aldowe new

conformal theories?
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We begin with the RGE approach. The RG running of
gauge couplings and Higgs couplings (quartic and
Yukawa) iIn SM3 (1, = 120GeV ~ 180GeV)
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RGE in SM4

= We study the evolutions of gauge and Higgs
couplings (quartic and Yukawa) in SM4
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We study the evolutions of gauge and Higgs
couplings (quartic and Yukawa) in SM4

At two-loop level (i7s scheme)j6x2%: = 3,
e.g. the Higgs quartic coupling

Br= 24\% +4X(3g7 + 692 + 297 — 2.25g5 — 0.4547)
—12(3g} + 69" + 2g}) + (167%) 1 [180¢
+288¢8 + 9697 — (397 + 692 + 2¢ — 8093 (g7
+297))A — 607 (2497 + 48g; + 16g7) — 312X°
—19245 (g7 + 297)] + ...
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We study the evolutions of gauge and Higgs
couplings (quartic and Yukawa) in SM4

At two-loop level (i7s scheme)j6x2%: = 3,
e.g. the Higgs quartic coupling

Br= 24\% +4X(3g7 + 692 + 297 — 2.25g5 — 0.4547)
—12(3g} + 69" + 2g}) + (167%) 1 [180¢
+288¢8 + 9697 — (397 + 692 + 2¢ — 8093 (g7
+297))A — 607 (2497 + 48g; + 16g7) — 312X°
—19245 (g7 + 297)] + ...

other COUpIing$yq,ﬁyl,ﬁyt,ﬁgm:l,g,g ... (Machacek and Vaughn,
1983)
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Zerosof g-functions

These RGEs can be integrated numerically, but first wi
search for roots of,, — o with gauge couplings.
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These RGEs can be integrated numerically, but first w
search for roots of,, = o with

gauge couplings.

93 93 g A g7 9 g7
1.478 | 0.425 | 0.213 17.561 | 31.407 | 52.298 | 56.583
1.225 | 0.413 | 0.217 17.457 | 31.200 | 52.185 | 55.664
1.003 | 0.404 | 0.223 17.376 | 31.073 | 52.147 | 54.934
0.902 | 0.396 | 0.226 17.339 | 31.014 | 52.126 | 54.604
0.815 | 0.386 | 0.230 17.308 | 30.963 | 52.107 | 54.321
0.652 | 0.366 | 0.239 17.249 | 30.866 | 52.066 | 53.792
0.565 | 0.354 | 0.245 17.218 | 30.814 | 52.042 | 53.511
0.304 | 0.284 | 0.304 17.125 | 30.655 | 51.966 | 52.661
0.999 | 0.666 | 0.333 17.339 | 31.039 | 52.089 | 54.817
0.500 | 0.500 | 0.500 17.164 | 30.754 | 51.990 | 53.152
0.000 | 0.000 | 0.000 17.059 | 30.488 | 51.902 | 51.902
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Zerosof g-functions

The fixed point values of the quartic and Yukawa
couplings are approximately

A /(4m)? ~ 011, g¢7*/(4m)? = 0.2, g¢2*/(4m)* = 0.33, g7*/(4m)* ~ 0.34
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The gauge couplings contribute only small fluctuations
These correspond tmaiveirs masses (using
My = vV2\, M =vgr/V2, v = 246 GeV)

mi; = 1.44 TeV, m; = 0.97 TeV, m; = 1.26 TeV,m; = 1.28 TeV.
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The fixed point values of the quartic and Yukawa
couplings are approximately

A /(Am)* = 0.11, g7*/(4m)? = 0.2, g7*/(4m)? = 0.33, g7*/(4m)* = 0.34

The gauge couplings contribute only small fluctuations
These correspond tmaiveirs masses (using
My = vV2\, M =vgr/V2, v = 246 GeV)

my; = 1.44 TeV,m; = 0.97 TeV, m; = 1.26 TeV,m; = 1.28 TeV.

Can this (quasi)fixed point be reached?
If yes, at what energy scale?
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RG running of Higgs couplings

The RG running of Higgs couplings (quartic and
Yukawa), light mass cases/ (= 120GeV ~ 250GeV)
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RG running of Higgs couplings

The RG running of Higgs couplings (quartic and
Yukawa), heavy mass case, (= 300GeV ~ 500GeV)
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L andau Pole vs. Fixed Point

Compare 1-loop and 2-loop results
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From the numerical calculations, we see that

The evolution of Higgs couplings run into a
guasi-fixed point at some scalg.-p

A pp decreases when the mass the 4th generation
INncreases

RGE. SD SM4 —-p. 12



From the numerical calculations, we see that

The evolution of Higgs couplings run into a
guasi-fixed point at some scalg.-p

A pp decreases when the mass the 4th generation
INncreases

An interesting thing is, by increasing their masses just
about 3 times, the 4th generation bringsp from ~ 10
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From the numerical calculations, we see that

The evolution of Higgs couplings run into a
guasi-fixed point at some scalg.-p

A pp decreases when the mass the 4th generation
INncreases

An interesting thing is, by increasing their masses just
about 3 times, the 4th generation bringsp from ~ 10
GeV down tofew TeV.

The existence of a quasi-fixed pomst the triviality
problem;

The physical consequences of shifting the sdgle
down to TeV level=- provide an alternative solution to
the hierarchy problem
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Comments

= For the RGESs, the expansion parameters are
g7 /1672 ~ 0.2, g2 /167> ~ 0.33, g2*/167% ~ 0.34, \*/1672 ~ 0.11.
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For the RGEs, the expansion parameters are
g7 /16m* =~ 0.2, ¢2*/167° ~ 0.33, g2*/167% ~ 0.34, \*/167* =~ 0.11.

These represent strong qguartic and Yukawa
couplings. The exact location dfzp and the values
of Higgs couplings af\ pp» should be studied
non-perturbatively, e.g. put on lattice

g-leor(gr) = 0 May give a clue in finding(y*) = o where
the scale invariance Is restored at some energy

~? An order of one expansion parameter? We
have seen similar situations before, e.g., the
Wilson-Fishere-expansionyg, = 16x2¢/3 for the
physical value =1, =4 — 4.
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Wilson-Fisher e-expansion

d 395 (1)

u@gzx(u) = —egaw) + =5 +Ogi()
M%gm) - QQ(M)[—2+91‘L6(:2)+O(94(M))]

wheree = 4 — ¢ andg, andg, come from terms,¢2,/2, g.¢*/4!
respectively.
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Wilson-Fisher e-expansion

d 395 (1)

u@gzl(u) = —egaw) + =5 +Ogi()
M%QQ(M) - QQ(M)[—2+9146(:2)+0(94(M))]

wheree = 4 — ¢ andg, andg, come from terms,¢2,/2, g.¢*/4!
respectively.
Solving sy, 8(g2) = 0 equations, one finds a non-trivial
fixed point at

. 1672

, g5 =0.
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i) = —eastn) + LW 4 o(gh )
udi!m(u) = go(p)[-2+ 9146(7’:2) + O(g4(1))]

wheree = 4 — ¢ andg, andg, come from terms.¢2/2, g.¢* /4!

respectively.
Solving sy, 8(g2) = 0 equations, one finds a non-trivial

fixed point at

. 1672¢ .
g4 — 3 g5 = 0.

For d=3, it corresponds 9 = 16x2/3 ~ 52.64 OF ¢; /1672 = 1/3
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Wilson-Fisher e-expansion

The critical exponent Is then given by the-expansion

v=1/24+¢/12 + 7¢* /162 — 0.01904€> + O(e*)
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—(Weinberg, QFT II)
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The critical exponent is then given by the-expansion

v=1/2+4¢/12 4 7¢* /162 — 0.01904¢> + O(e*)

At 1-loop level,. = 058, at 2-loop level, = 0.63, at 3-loop
level, » = 0.61 while the experimental value is-0.63

—* It Is fortunate though still somewhat mysterious that
an expansion in powers of 1 should work so well.”
—(Weinberg, QFT II)

We do not expect such a precise calculation, but
hopefully inclusion of higher order terms will not shift
the location and the values of the quasi-fixed point by :
order of magnitude.
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The Yukawa couplings become strong aroung. Can
the 4th generation fermions form bound states or
condensates by the Yukawa coupling?
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The Yukawa couplings become strong aroung. Can
the 4th generation fermions form bound states or
condensates by the Yukawa coupling?

We perform a non-relativistic analysis at quantum
mechanics level, with a Higgs-exchange potential

e~ MH (r)r

V(r) = —ay(r)

r

Whereozy = myma /4>,
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The Yukawa couplings become strong aroung. Can
the 4th generation fermions form bound states or
condensates by the Yukawa coupling?

We perform a non-relativistic analysis at quantum
mechanics level, with a Higgs-exchange potential

e~ MH (r)r

V(r) = —ay(r)

r

Whereozy = myma /4>,
The possiblility of forming bound states is characterize
by

9y

K = :
/ 16TV )\

RGE.SD SM4 —p. 16



Bound States/Condensates

The criteria Is

m Ky > 2 (variational method)

Kf > 1.68

(numerical method)
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The criteria is

K > 2 (variational method)

K; > 1.68 | (numerical method)

If we use the fixed-point values of the quartic and
Yukawa couplings, we find that the 4th generation may
form loosely bound state, while the top quark cannot.

K, =182 K, =192, K,=0.82
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The criteria is

K > 2 (variational method)

K; > 1.68 | (numerical method)

If we use the fixed-point values of the quartic and
Yukawa couplings, we find that the 4th generation may
form loosely bound state, while the top quark cannot.
K,=182, K, =192 K,=0.82

An interesting region is around the “dip”, I.e~ 0, where
the Yukawa potential becomes a strong Coulomb-like
potential. — formation of condensat@sieisi, Fuicher and Kiein,
1978).
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25, |
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1 ’ 't
0.5

2 4 6 8 10

t=log(E/91.2GeV
Region I: Condensates v.s. Region Il: Fixed Point

Note: Neither technicolor nor other unkown interactiorss ar
Introduced for condensates.
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10 |

Ki—Ko

2 Knr—Ko=1.5

2 2.5 3 3.5 4 4,5 5 5.5
t=log(E/91.2GeV

(mq = 450 GeV andm; = 350 GeV) Ky — K, with Ky = g3 /16mv/ X and

Ky = 1.68. The horizontal dotted line indicates an estimaté&gfwhere the
non-relativistic method is still applicable and the veatidotted lines enclose the
region where a fully relativistic approach is needed.
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Schwinger-Dyson Equation

= In SM4 the Yukawa couplings become strong
around TeV
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In SM4 the Yukawa couplings become strong
around TeV

The perturbative approach becomes less reliable
when approaching rp

Lattice”? Nielson-Ninomiya no-go theorem (chiral
gauge theory) mirror fermion

dispersion relation? — N system

We use Schwinger-Dyson approach (Gap Equatio
mean field theory, Hartree-Fock approximation,...)

RGE.SD . SM4 —pn. 20



Consider Yukawa couplings in SM4 (truncated to only
the 4th generation)

Ly = —qgy qr,P b}{ — Qy/ QLCT) t}{ + h.c.

~

O = i ®*, qr, = (t',0");, as usually defined in the SM.

— + A
> W

Figure 1:Graphic representation of the Schwinger-Dyson equati

for the quark self-energy (quenched approximation)

RGE. SD SM4 —p. 21



For simplicity we only consider the 4th generation
guarks. From the SDE the quark self energy satisf

B +2g° 4 1 ¥(q)
=(p) = (2m)4 /d =02+
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For simplicity we only consider the 4th generation
guarks. From the SDE the quark self energy satisf

B +2g° 4 1 ¥(q)
=(p) = (2m)4 /d =02+

which can be converted to a differential equation

a  Y(q)

HEp) == > + 32(q)

wherea, = /2
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For simplicity we only consider the 4th generation
guarks. From the SDE the quark self energy satisf

B +2g° 4 1 ¥(q)
=(p) = (2m)4 /d =02+

which can be converted to a differential equation

a  Y(q)

HEp) = - a. ¢ + X2(q)

wherea, = /2

compared withv, = 7/3 Iin strong QED (Fukuda &
Kugo, Bardeen, Leung & Love)

RGE. SD SM4 —p. 22



Gap Equation

= Early work: K. Johnson, M. Baker and R. Willey.
PR136(1964), 163(1967)
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Early work: K. Johnson, M. Baker and R. Willey.
PR136(1964), 163(1967)

Numerical analysis: Fukuda and Kugo, Nucl. Phys
B117(1976)
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Early work: K. Johnson, M. Baker and R. Willey.
PR136(1964), 163(1967)

Numerical analysis: Fukuda and Kugo, Nucl. Phys
B117(1976)

Analytic analysis: C.Leung, S. Love and W.
Bardeem, Nucl. Phys. B273(1986)
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Early work: K. Johnson, M. Baker and R. Willey.
PR136(1964), 163(1967)

Numerical analysis: Fukuda and Kugo, Nucl. Phys
B117(1976)

Analytic analysis: C.Leung, S. Love and W.
Bardeem, Nucl. Phys. B273(1986)

The SDEs are similar, but the boundary conditions

are different

d>
1 4 e E—
;m%) P 2 0

d>.

. 2 W& _
lim p dp2+2(p) 0

RGE.SD SM4 —p. 23



solutions

= asymptotic solutions in the weak and strong
coupling regions:

S(p) ~p TV I Tee, for a < a.

Y(p) ~ p~tsin] 2 I(Inp+6)], fora > a.

C
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asymptotic solutions in the weak and strong
coupling regions:

S(p) ~p TTVITEC for a < a,
Y(p) ~ p~tsin] 2 I(Inp+6)], fora > a.

Numerical Solutions

0.1f § 0. 177
0.08! 0. 08
0.06!

0.06! |
- Z 0.04]
> 0. 04} 1> 0. 02}
0. 02/ ] 0
-0. 02}

0. ‘ ‘ ‘ ‘ : ] ‘ ‘ ‘
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3
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Condensates

= One can compute the condensates

1

)= %(q)

q° +X%(q)

({t't d*q
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Condensates

= One can compute the condensates

1

<t_/t/> L 47T d4 Z(Q)

2 +32%(q)

= Self energy, condensates and induced scalar mass depend
the cutoff and the Yukawa couplings as

— 27

$(0) ~ A eVareeT ()~ —AB eVaTee T Gm2 ~ —A% eValee
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One can compute the condensates

1 d4 Y(q)

(tt') =  4qt q° + X%(q)

Self energy, condensates and induced scalar mass depend
the cutoff and the Yukawa couplings as

—27

$(0) ~ A eVareeT ()~ —AB eVaTee T Gm2 ~ —A% eValee

Miransky fixed-point? In our case the exponential factors
cannot suppress them simultaneously. To avoid fine-tuning,
one has to choose a cutoff at TeV scale.

RGE.SD.SM4 — p. 25



Cutoff vs. Yukawa couplings

< 1.0 11 | 12| 14 | 18 | 22 | 26 | 30 | 34
% oo | 7590 | 414 | 52.8 | 12.3 | 6.47 | 4.41 | 3.39 | 2.80
A(GeV) | co | 10% | 10° | 10* | 6167 | 3237 | 2205 | 1696 | 1398

Table 1:The relation between the cutoff scale and the Yukawa cogplin
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Cutoff vs. Yukawa couplings

- 1.0 | 1.1 1.2 1.4 1.8 2.2 2.6 3.0 3.4
% oo | 7590 | 414 | 52.8 | 12.3 | 6.47 | 441 | 3.39 | 2.80
A(GeV) | co | 10% | 10° | 10* | 6167 | 3237 | 2205 | 1696 | 1398
Table 2:The relation between the cutoff scale and the Yukawa cogplin

oc o
NFP [ 1 AFP
= Cutoff scaleAqytorf VS Yukawa couplingy
o !
:
2(0) 12(0)
oc of

RGE.SD . SM4 —p. 26



RGE vs. SDE

two flgures from RGE and SDE respectlvely

4

Regionll Region | Region |

2,
\dn
1,
2 3 4 5 6 7 8
t=log(E/91.2GeY t=Iog(E/91. 2GeV)
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Multiple Higgs doublets

= We might have three Higgs doublets: One
fundamental, two composite

H, = (7T+,7T_,7TO,O')

Hy = (Ut Y, ¢t — b0 ¢/t + D)

7.7 2 A A | Y A !
Hs = (t'v ,vir' viv, — 7' viv_ 4+ 1'71")

RGE.SD SM4 —p. 28



We might have three Higgs doublets: One
fundamental, two composite
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We might have three Higgs doublets: One
fundamental, two composite

Hl — ( +77T_77T070-)
Hy = (Ut Y, ¢t — b0 ¢/t + D)

7./ 2 A A | Y A 7 !
Hs = (t'v ,vir' viv, — 7' viv_ 4+ 1'71")

Their effective mass terms are described by

(HT,HI, HI) M (H,, Hy, H3)"

The existence of the Nambu-Goldstone bosons le:
to detM = 0 —modified gap equation
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At 2-loop level, the Yukawa sector of SM4 has a
non-trivial quasi-

A heavy 4th generation( ) can set
Arp to be order of TeV

A heavy 4th generation also drives Yukawa
couplings become Scale

Bound states/ of the 4th generation can
be formed by exchanging Higgs bosons

The perturbative (RGE) and non-perturbative (SDI
approaches lead to consistent results.
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