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Why cold atoms?

Advantages

� Control
� Isolation and tunability

� Well-understood Hamiltonian

� Real-time dynamics accessible

� New probes (interference, 
single-site imaging…)

New parameter space

Drawbacks

� Short-lived systems

� “Slow” dynamics harder

� Destructive measurement 
(time-of-flight imaging)

� Fewer probes

� Transport, spectroscopy hard
� New parameter space

� Bosons, Bose-Fermi mixtures,
unitary Fermi gases

Greiner et al 2002

� Transport, spectroscopy hard

� System size, inhomogeneity

Nevertheless, worth seeing what 
one can realize…

Weitenberg et al. 2011



What Hamiltonians are realizable?

� Standard (effective) Hamiltonian:

� K.E. tunable via lattices, gauge fields, etc.

� V characterized by tunable scattering length(s)� V characterized by tunable scattering length(s)
� Less tunable structure; always delta-function pseudopotential

� Adequate as systems are dilute

� Cf. structured potentials such as Lennard-Jones, RKKY, etc.

� One consequence: no roton minimum in atomic BEC’s

� Generally: no tendency towards spatial ordering (except FFLO)

� How to move beyond this
� Intrinsic methods: Use strong dipole-dipole interactions 

(e.g., Cr, Dy, Rydberg atoms, molecules…)

� Extrinsic methods: Light-mediated interactions (cavity QED), 
bipolarons with auxiliary atomic species, etc.



Optical vs. emergent lattices

Optical lattices

No lattice 
dynamics

Emergent lattices

Phonons,
defects

The physics of emergent spatial ordering
� Liquid crystals, glasses, soft matter

� Supersolidity

� Topological defects, domains

� Electron-phonon coupling, polarons, superconductors

Our objective: to realize these phenomena in cold-atom 
physics



Outline

� Preliminaries

� Atom-light interactions and cavity QED

� Many atoms in a single-mode cavity

� What are multimode cavities?

� Single atom in a multimode cavity

� Crystallization of a BEC in a multimode cavity

� Setup and approximations

� Structure of effective low-energy theory

� Character of phase transition

� Properties of ordered states

� Excitations, supersolidity

� Extensions and prospects

� Glassiness

� Magnetism



Preliminaries

One atom, one modeOne atom, one mode

Many atoms, one mode

One atom, many modes



� a.c. Stark shift/dipole force [~ intensity / detuning]:
� Assume two-level atoms, red-detuned laser
� Rotating-wave approximation (ωL >> ∆A) , atom and field can 

be described as a two-level system in the “dressed-state”
picture

� Level repulsion leads to spatially varying potential

Atom-light interactions 

e

� Scattering force [~ linewidth x intensity / (detuning)2]

� Coupling to continuum leads to decoherence, heating (sets 
experiment lifetime)

� Less important at large detunings

g

V(x)



Laser-atom-cavity systems

� Consider a high-finesse cavity

� Usually only one relevant mode

� Polarizable atom scatters light 
coherently, generates laser-cavity 
matrix element

� Make rotating-wave approximation 
in laser-cavity space

pump laser
in laser-cavity space

� Two aspects to resulting force
1. Level repulsion (max. for atom at 

antinode) ~ 1 / ∆C

2. Scattering force due to cavity 
photon leakage ~ 1 / ∆C

2

� Mobile atom (1) drawn to 
antinode, (2) given random kicks

� Reinforces high-field-seeking [total 
field intensity ~ (EL + EC)

2]

� At large ∆C, ignore decay



Many atoms, self-organization

� Scattering from multiple atoms adds coherently [black – white]

Domokos, Ritsch (PRL, 2002)

λ

0

π

� Scattering from multiple atoms adds coherently [black – white]

� Hence, effective matrix element

� Optical energy gain:

� Cavity mediates infinite-range interatomic interaction

� Interaction tends to localize atoms at even/odd sites and break 
discrete even/odd symmetry

� Competes with atomic K.E., repulsion, etc. → phase transition



Phase transition for a BEC

� Consider the Hamiltonian:

� Can solve in Bogoliubov approximation for 
mode K (hybridized with –K)

� Excitation of wavenumber K goes soft at 
sufficient γ; phase transition

� Spontaneous breaking of Z2 symmetry
� Inadequate if one wants to model crystallization

� Analogous to Dicke model, second-order 
quantum phase transition



Nonequilibrium aspects

� Prima facie a damped driven system

� Appearances are deceptive:
� If laser detuned from cavity and atoms, and loss rates low, 

few real transitions occur [need: γ << ∆A κ << ∆C]

� Adiabatic switching holds, equilibrium path integral works

� This can be shown via Schwinger-Keldysh

� More intuitively: cavity decay is analogous to spontaneous � More intuitively: cavity decay is analogous to spontaneous 
emission in standard AMO experiments

� Equivalent ground-state problem
� Diagonalize H in manifold of fixed total photon number

� For laser red-detuned from cavity, noninteracting ground state 
in this manifold is all photons in laser

� Treat laser as a BEC of photons

� Analyze phase structure in this approximation, introduce 
departures from equilibrium afterwards
� Cavity photon decay sets an effective temperature



Experimental realization

� Experimental realization: Baumann et al., Nature 464, 1301 
(2010) [see also: Physics Today (July 2010)]

� Satellite Bragg peaks in time-of-flight demonstrate: (a) 
emergence of lattice, (b) phase coherence

� Experimental lifetime now ~1 sec. (limited by atom loss)

Baumann et al., Nature 464, 1301 (2010)

Momentum distributions
(time-of-flight)



Relevant energy scales

ω

1015 Hz: optical frequencies (of order eV)

1011 – 1012 Hz: atom-laser detuning, cavity mode spacing

109 Hz: atom-laser coupling Ω, laser-cavity detuning

F
a
s
t

106 – 107 Hz: atom-cavity coupling g

105 – 106 Hz: each of the competing energy scales involved 
in crystallization [recoil energy]

103 Hz: system temperature (20-30 nK, < TBEC.)

1-100 Hz: lifetime of experiment (set by loss/heating rates)

S
lo

w



Self-organization (II)

� P.E. favors atoms being one wavelength apart, and 
“digging themselves into wells”

� Symmetry under n(x) → n(x + ½ λ)
� i.e., under moving atoms from even to odd antinodes

� Thus, this term tends to spontaneously break even-odd � Thus, this term tends to spontaneously break even-odd 
symmetry

� P.E. maximal when atoms localized precisely at antinodes

� Competes with thermal effects, kinetic energy, and/or 
interactions
� All these effects favor spreading out of atoms

� Thus, have phase transition as one increases laser strength

� Limitations: mean-field, infinite-range interaction
� Also: discrete symmetry; would prefer continuous



Single- and multi-mode cavities

Single-mode cavity
Standing wave between two mirrors Ring cavity

Sliding
antinodes

Confocal cavity
All even TEM modes degenerate

Concentric cavity
Rotational invariance

Many degenerate modes

Standing wave between two mirrors
All modes non-degenerate Two counter-propagating modes

Translational symmetry

Ring cavity



Atomic motion in multimode cavities

Sliding antinodes

pump

λ

� Atom scatters light from pump to 
cavity

� High-field-seeking atom(s)
� Antinode forms near atom
� Atom drags antinode with it
� Different characteristic speeds
� More “local” coupling with many 

modes (i.e., can build wavepackets)
� Atom, intensity bump constitute 

“polaron”
Salzburger et al, 2002

Sliding antinodes

Atomic position

λ



Loading a BEC into a cavity

� Cool atoms 
elsewhere

� Optical lattice 
“conveyor belt”—
two lasers at 
slightly different 
frequenciesfrequencies

� Potential maxima 
drift downwards

� Reflectivity for 
probe light 
changes when the 
BEC lands in the 
cavity

� Turn off conveyor 
belt at this point Brennecke et al, Nature (2007)



Connection with polarons
� Polarons are slow electrons in ionic crystals

� Electron dressed by lattice distortion

� Strong coupling, perturbation theory inapplicable

� Variational approaches (Feynman, Lee/Pines)

� Cavity QED problem maps onto polaron

� Eliminate excited state; effective Hamiltonian:

� Cross-fertilization between CM techniques, AMO systems

� E.g. variational effective masses at strong coupling:

� Can also compute mobility, terminal velocity, self-trapping etc.Ring: Confocal:



Crystallization of a BEC in 

a multimode cavity

Microscopic modelMicroscopic model

Coarse-grained action

Theory of the crystallization 
transition



Model – Setup and Assumptions

� ωP << ωC << ωA

� Atoms strongly trapped in 
2D layers at pump 
antinodes

� First consider single 
layer at equatorlayer at equator

+ coupling to environment



Effective action (I)

Atomic K.E.

Laser-cavity-laser scattering Scattering via cavity photon exchange
and contact repulsion

propagator

� Integrate out atomic excited state, all photon states

� Derive action in terms of atomic motional states

and contact repulsion

To proceed, must exploit cavity mode structure…



Cavity Mode Structure

� Specialize to concentric cavity

� Laser breaks spherical symmetry

� 2D rotation symmetry in-plane

� Dirichlet b.c. on r and θ (approximate!)

� Mode functions [α = (m,n)]:

� High-m modes have diffractive losses so truncate at (say) m < n/5

� Treat f(l) as peaked at some value of l



Induced Atomic Mode Structure

� Write action in (m,n) basis
� Primary diagram: L-C scattering
� Effective “momentum conservation”
� Laser has no momentum;

cavity mode has momentum K

� Two kinds of modes: m

slow

slowfast

fast

� Two kinds of modes:
� (m,n) small
� |m| + |n| ≈ Λ

� Order parameter for crystallization 
(use ODLRO):

� Integrate out “green” modes
� Remaining modes analogous to 

nested Fermi surface

m

n



Effective Action

� Effective free energy/action (T > 0):

m < n constraint no cubic term

Convection

“dispersion” along z-axis

� m < n constraint → no cubic term

� Realizes Brazovskii’s (1975) model 
(common in soft matter)
[modulo nesting-related subtleties]

� MF: 2nd order transition when τ = 0
(physically: K.E. + repulsion = optical 
potential energy)

� Fluctuation-driven 1st order transition

� At T = 0: z = 1, action acquires ω2 term

� Physics qualitatively similar to T > 0 case

Diblock copolymers



Brazovskii’s transition

Self-consistent 1-loop, T > 0
� Self-energy r:

� Always positive: no criticality
� Generic vertex correction (b)

renormalized
bare

� Vertex correction 
when (mn) = (m’n’)
[sum both (b) and (c)]

� Changes sign: hence 
1st order transition

� Stabilizing higher-order terms
� Consistent with 1-loop RG



Brazovskii’s transition (II)

� Ignore nesting
� Interactions only couple sets of opposite 

pairs of momenta
� Diagram A is O(n) invariant if n = number of 

Fermi surface directions (or modes)
� Analogy with O(n) model in 1 or (1+1) 

dimensions
� Renormalization of 2-point fn. by A prevents 

instability

A

instability
� Diagram B breaks O(n) symmetry but does 

not renormalize 2-point fn. (only important in 
1/n cases)
� More generally, the O(n) symmetric part of the 

theory has a closed RG flow to leading order.

� However, the four-point fn changes sign 
when all four modes are the same

� Therefore, can have a first-order transition

B



Significance of nesting

A

B
nested non-nested

� Diagram B triggers first-order transition

� Without nesting (circle): momenta must be equal, opposite
� Diagram A outweighs diagram B by a factor = # of modes

� Diagram B only contributes when all four modes are the same

� With nesting (lines): all four modes must lie on manifold
� Diagram B contributes less as length (m – m’, n – n’) increases

� Diagram B always contributes, but most when all modes the same

� Instability still first arises in channel with four equal momenta

nested non-nested



Structure of coarse-grained theory

� Integrating RG equations 
gives coarse-grained 
couplings

� Can use these to plot 
coarse-grained free-energy 
landscape as a function of 
bare R (i.e., laser strength)bare R (i.e., laser strength)

� Overall phase structure
� Near transition, lattice weak 

enough to preserve ODLRO

� Deep in ordered state, 
transition into Mott state

� Discontinuous jump in 
lattice depth permits 
coincident Mott and 
Brazovskii transitions



Implications

� Large phase space for fluctuations

� Fluctuations change order of phase transition (2nd in MF, 
1st with fluctuations) and threshold

� At T = 0: quantum Brazovskii transition



Properties of the 

ordered states

Excitations and defectsExcitations and defects

Supersolidity



Ripple and splay modes

� Types of symmetry-
breaking
� Large mirrors: phase 

between ±m modes

� Always: choice of modes
(analogous to rotation)

� Two Goldstone-like modes
“Ripple” mode� “Ripple” mode

� “Splay” mode

� Two classes of defects
� Edge dislocations
� Closed lamellae

� Domain wall-like defects 
possible, not topological

� Hints of nucleation seen in 
simulations (Ritsch)

� Mermin-Wagner effects?



Detecting supersolidity

� Idea 
(Mekhov et al, 2007):
� Consider Bragg 

scattering off “crystal”
� Deep in MI: site 

occupation fixed, 
well-defined Bragg minima
Deep in SF: occupation � Deep in SF: occupation 
fluctuates, transmission at 
minima

� Adaptation to present 
context:
� Consider transmission into 

higher-order modes along z
� Same principle applies

� Spatially resolved probe of 
supersolidity



Extensions

GlassinessGlassiness

Magnetism



Multilayered systems, frustration

Orange: TEM2n, blue: TEM1n

Orange: 2 + m + n = K
Blue: 1 + m + n = K

K fixed



Magnetism in cavities

� Idea: use 3-level atoms with two ground 
states, ring cavity

� State-selective dressing

� Couple laser to 0 – e transition

� Couple cavity to 1 – e transition

� Scattering photons from laser to cavity 
changes internal statechanges internal state

� Integrating out excited state, cavity 
modes generates long-range state-
dependent coupling

� In the spin language, effective 
Hamiltonian for stationary atoms:

� Possible application: mean-field spin 
glasses, Sherrington-Kirkpatrick model

1

0 1

0



Summary

� Cavity photons can be used to mediate 
interatomic interactions
� Infinite-ranged in the case of a single-mode cavity

� More local for a multimode cavity

� Interactions favor atoms integer cavity wavelengths 
apart, cause crystallization

Crystallization occurs via a Brazovskii transition� Crystallization occurs via a Brazovskii transition
� Fluctuation-driven first-order transition both at T = 0 

(quantum) and T > 0 (thermal)

� Low-energy physics described by surface of excitations

� Prospects for further work
� Structural glassiness

� Magnetism via atoms with internal structure

� Fermions (superconductivity?)
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