The Structure of the Nucleon (with a HERMES bias)

Morgan J Murray, University of Glasgow

Overview

- History of the Field
 Notable Results
- Future Highlights

Where were we?

Where are we?

Where are we going?

Nucleons

- All matter made of atoms; subatomic structure is nucleons
- Protons and Neutrons
- Look at form factors to determine electric and magnetic distribution inside the nucleon

Quarks and Gluons

- Division between quarks and gluons
- Division between sea and valence quarks
- Concerned only with up, down and strange

Exploration

OF

VIRGINIA

THE

SOV'T'H

FART

The Motivation

Spin Crisis!!!

How do we explain the EMC result? Quark spin Gluon spin Quark Orbital Angular Momentum Gluon Orbital Angular Momentum

The Motivation

Consolidation

Structure Functions & TMDs Quark Polarization

Semi-Inclusive DIS

$$d\sigma = d\sigma_{UU}^{0} + d\sigma_{UU}^{1} \cos(2\phi) + \frac{1}{Q} (d\sigma_{UU}^{2} \cos\phi + \lambda_{e} d\sigma_{LU}^{3} \sin\phi)$$

$$+S_{L} \left\{ d\sigma_{UL}^{4} + \frac{1}{Q} (d\sigma_{UL}^{5} \sin + \lambda_{e} [Q d\sigma_{LL}^{6} + d\sigma_{UL}^{7} \cos\phi]) \right\}$$
Sivers Function
Collins Effect
$$S_{T} \left\{ d\sigma_{UT}^{8} \sin(\phi - \phi_{s}) + d\sigma_{UT}^{9} \sin(\phi + \phi_{s}) + d\sigma_{UT}^{10} \sin(3\phi - \phi_{s})$$

$$+ \frac{1}{Q} [d\sigma_{UT}^{11} \sin(2\phi - \phi_{s}) + d\sigma_{UT}^{12} \sin\phi_{s}]$$

$$+ \lambda_{e} \left[d\sigma_{LT}^{13} \cos(\phi - \phi_{s}) + \frac{1}{Q} d\sigma_{LT}^{14} \cos\phi_{s} + \frac{1}{Q} d\sigma_{LT}^{15} \cos(2\phi - \phi_{s})] \right\}$$

Semi-Inclusive DIS

 \vec{k}'

k

Sivers moment allows access to Sivers function \Rightarrow quark OAM

> Collins moment allows extraction of transversity

$$d\sigma_{UT}^8 \propto |S_T| \left[\frac{\vec{P}_T \cdot \hat{P}_{h,\perp}}{M_h} f_{1T}^{\perp q}(x, p_T^2) * D_1^q(z, k_T^2) \right]$$
$$d\sigma_{UT}^9 \propto |S_T| \left[\frac{\vec{k}_T \cdot \hat{P}_{h,\perp}}{M_h} h_1(x, p_T^2) * H_1^{\perp q}(z, k_T^2) \right]$$

Generalised Parton Distributions

t - Mandelstam variable (squared momentum transfer to nucleon)

x - Fraction of nucleon's longitudinal momentum carried by active quark

 ξ - half the change in the longitudinal momentum of the active quark.

"Ji's Relation"

Four GPDs: H, H, E, E

Constrained by PDFs and Form Factors

Offer a possible solution to the spin crisis!

 $\Delta \Sigma + \mathcal{L}_{\mathcal{Q}} = \mathcal{J}_{\mathcal{Q}} = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} \left[\mathcal{H}(x,\xi,t) + \mathcal{E}(x,\xi,t) \right] x \, \mathrm{d}x$ $Phys. \, \textit{Rev. Lett. 78:610, 1997}$

Exclusive Physics

$$\mathcal{A}_{\rm LL}(\phi) \equiv \frac{[\sigma^{\to \Rightarrow}(\phi) + \sigma^{\leftarrow \Leftarrow}(\phi)] - [\sigma^{\leftarrow \Rightarrow}(\phi) + \sigma^{\to \Leftarrow}(\phi)]}{[\sigma^{\to \Rightarrow}(\phi) + \sigma^{\leftarrow \Leftarrow}(\phi)] + [\sigma^{\leftarrow \Rightarrow}(\phi) + \sigma^{\to \Leftarrow}(\phi)]}$$

Wigner Distributions & GTMDs

- Holy grail is WDs and GTMDs; not currently accessible through experiment
- Can access TMDs and GPDs experimentally
- WDs and GTMDs reduce to 'ordinary distributions' as limits and moments

Experimental Access

"Current" Experiments

Form Factors

Can a 2γ exchange correction explain the difference between Rosenbluth and Polarization transfer methods?

Form Factors

"Dirty" e⁺/e⁻ beam at CLAS has high 1.10 statistical precision 1.05 across many bins e+ 1.00 Novel beam 0.95 technique presents 0.2 0.0 challenges to the calculation of systematic errors

Form Factors

OLYMPUS transported BLAST to DORIS@DESY and plan to take data next year

Reuse of understood equipment \Rightarrow quick

analysis and simple uncertainty calculations

Structure Functions

Deep Inelastic Scattering (DIS)

$$\frac{d^2\sigma}{d\Omega \, dE'} = \frac{\alpha^2}{2MQ^4} \frac{E'}{E} L_{\mu\nu} W^{\mu\nu}$$

 $L_{\mu\nu} = 2[k_{\mu}k_{\nu}' + k_{\mu}'k_{\nu} - g_{\mu\nu}(k \cdot k' - m^2) - i\epsilon_{\mu\nu\alpha\beta}s_l^{\alpha}q^{\beta}]$

$$W_{\mu\nu} = F_1(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{p \cdot q}) + \frac{F_2}{p \cdot q}(p_{\mu} - \frac{p \cdot q q_{\mu}}{q^2})(p_{\nu} - \frac{p \cdot q q_{\mu}}{q^2})$$
$$+ \frac{i g_1}{p \cdot q} \epsilon_{\mu\nu\lambda\sigma} q^{\lambda} s_h^{\sigma} + \frac{i g_2}{(f \cdot q)^2} \epsilon_{\mu\nu\lambda\sigma} q^{\lambda} (p \cdot q s_h^{\sigma} - s_h \cdot q p^{\sigma})$$

Structure Functions

Deep Inelastic Scattering (DIS)

$$\frac{d^2\sigma}{d\Omega\,dE'} = \frac{\alpha^2}{2MQ^4} \frac{E'}{E} L_{\mu\nu} W^{\mu\nu}$$

$$\begin{split} L_{\mu\nu} &= 2[k_{\mu}k_{\nu}' + k_{\mu}'k_{\nu} - g_{\mu\nu}(k \cdot k' - m^2) - i\epsilon_{\mu\nu\alpha\beta}s_l^{\alpha}q^{\beta}] \\ W_{\mu\nu} &= F_1(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{p \cdot q}) + \frac{F_2}{p \cdot q}(p_{\mu} - \frac{p \cdot q q_{\mu}}{q^2})(p_{\nu} - \frac{p \cdot q q_{\mu}}{q^2}) \\ &+ \frac{ig_1}{p \cdot q}\epsilon_{\mu\nu\lambda\sigma}q^{\lambda}s_h^{\sigma} + \frac{ig_2}{(f \cdot q)^2}\epsilon_{\mu\nu\lambda\sigma}q^{\lambda}(p \cdot qs_h^{\sigma} - s_h \cdot q p^{\sigma}) \end{split}$$

Structure Functions

Quark Polarization

f₂ is well mapped-out at a large x-range by fixed-target and collider experiments

f₂ is easily the best understood structure function!

g_I(x) measured in the valence region and into the sea

Measurements imply an unpolarized sea

Collins moments for pions allows access to h_1

Use meson charges as quark flavor filters!

Significant differences between quark flavors shows that $h_{1(u)}!=h_{1(d)}$

Quark Polarization

Quark Polarization

Unpolarized, helicity, transversity and Sivers distributions are familiar to most!

Quark Polarization

Indications of Boer-Mulders from unpolarized leptonnucleon scattering

Quark Polarization

The x-dependence may be known, but the k_T -dependence almost never is!

Semi-Inclusive Deep Inelastic Scattering

- Sivers moment \Rightarrow quark OAM
- Different meson-types provide a flavor-filter

Results from COMPASS

Results from COMPASS confirm HERMES observations

SIDIS

- Results indicate that $h_{Iu}(x)!=h_{Id}(x)$ and $f_{I\perp}(x,k_T)!=0$ for up-quarks or sea quarks
- Gives rise to a picture of the nucleon as having up quarks with transverse momentum but "stationary" down quarks
- Results are not thorough: cannot extract a picture of nucleon structure (valence, sea and glue) from these alone!

GPDs

Up Quarks

"Hadron Tomography" is the phrase du jour

Simple models trained with meson data already illustrate the intuitive picture offered by GPDs

Not simple to get to GPD information: go through CFFs first!

Exclusive Physics Results

- DVCS allows the cleanest access to GPDs
- Mesons allow access to GPDs that would otherwise be difficult to access through DVCS
- HERMES has the most diverse set of DVCS measurements in the world

Both beam charges allows access to both the interference and DVCS terms of the amplitudes

Polarized targets are very important: allow access to both real and imaginary parts of 3 out of 4 CFFs

Sensitivity to Im(E)

Sensitivity to Re(E)

Where is the next measurement coming from?

Data lacks the precision to differentiate between model flavours

Results from CLAS

DVCS A_{LU} asymmetries measured in bins of $x_B \& Q^2$

Very precise measurements over a wide range in x_B

GPDs

Models trained on JLab data (Liuti, Goldstein & Hernandez) have predictive power for HERMES asymmetry amplitudes!

Future @ HERMES

Still 9 papers in draft status

Almost 20 analyses ongoing!

Experiment currently under analysis should allow access to A_{LU} , A_{UL} and A_{LL}

Future @ COMPASS

COMPASS GPD Program aims to access Im(H) and Re(H)

<u>10</u> -3

B (GeV⁻²)

2

-2

10

HERMES			(c) R.Kaiser 2008
	COMPASS		
		PANDA	
JLAB	JLAB 12 Ge		
			EIC
2010	2015	2020	2025

 \mathcal{O}

COMPASS	
PANDA	A
JLAB JLAB 12 GeV	
Best Chance at Accessing Nucleon Structur	
EIC	EIC

 \mathcal{O}

JLab @ 12 GeV

Expanded kinematic coverage allows expanded physics program

Ambitious plans to do DVCS on neutron at Halls A and B; help map out Sivers moments with precision enough to distinguish models

CLAS 12

Summary

- One message of nucleon structure physics is that the first thought is invariably incorrect
- Theoretical calculations from 15 years ago are still beyond the grasp of current experiments - but getting closer all the time!
- Two-way street: a lot of experimental data is not yet used by theorists either!

Summary

• TMDs and GPDs currently offer the best route to understanding nucleon structure

- We can access those through SIDIS and DVCS and DVMP
- Look to JLab@I2GeV and EIC for precise measurements