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At very low Q2, GSE/M relates to the strange matrix elements of
the nucleon (strange radius ps and strange magnetic moment ps)

neutron charge distribution proton flavor distribution
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neutron "pion cloud" proton "kaon cloud"

The bare mass of the three quarks only makes up ~ 1% of the proton
mass, the rest is a sea of gluons, quarks and anti-quarks, which 1s
dominated by the up, down and strange quarks.

Do the strange quarks contribute to the electric and magnetic
structure of the proton?



HAPPEX

Precision

spectrometer,
integrating

SAMPLE

open geometry,
integrating

G, (G,) at Q% = 0.1 GeV?

G +0.39 G,,° at Q? = 0.48 GeV?
G, +0.08 G,,;° at Q2 = 0.1 GeV?2
G at Q% =0.1 GeV? (*He)

G +0.48 G, at Q% = 0.62 GeV?

World Data

A4

Open geometry

Fast counting calorimeter for
background rejection

G5 +0.23G,° at Q2 = 0.23 GeV?
G5 +0.10 G, at Q? = 0.1 GeV?

G, G,°at Q? = 0.23 GeV?

Open geometry

Fast counting with magnetic spectrometer + timing for
background rejection

G.*+ n G, over Q?=[0.12,1.0] GeV?
G, G,°at Q% =0.23, 0.62 GeV?



Present Data

Fit to “leading order” in Q?,
(only for Q% < 0.3 GeV?)
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Present Data

Fit to “leading order” in Q?,
(only for Q% < 0.3 GeV?)
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Parity Violating Measurements

Left/Right handed longitudinally polarized electrons have different cross
sections, which can vary by as much as 0.1 %

Weak amplitude is 10° smaller than the Electromagnetic amplitude,
but its interference to EM makes it accessible.
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Experimental Method
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Systematics

> Helicity Correlated Beam Parameters
> Detector Non-linearity/Alignment

> Background Corrections

> Polarimeters

~ Radiative Corrections

> () Measurement



Helicity Correlated Beam Parameters



Helicity Correlated Beam Asymmetries
(HCBA)

* The differential cross-section 1s sensitive to the
energy and angle of beam, so any HC change 1n
average position, angle or energy 1s reflected in the
detected scattering rate asymmetry.,

* Left unchecked, HCBA are the dominant source of
systematic uncertainty.

* HC first-order effects result in HC position
differences

* HC second-order effects result in HC spot
size/shape differences



Source Setup

o She Packels Cell
Light Polarizer

GaAs
Photocathode

+A/4 retardation produces
+circular polarization

® The polarized electrons are generated by photoemission from a GaAs photocathode using
Right(R)/Left(L) circularly polarized laser beam.

® The electron polarization states are determined by the laser polarization.
® The laser light polarization is prepared using an electro-optic Pockels cell.

* =+ Quarterwave phase differences are generated from + voltages.



Polarization Effects
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® A common retardation offset (A) leads to too much
phase shift in one helicity state, and too little in the

other.

e T o ® The QE anisotropy of the photocathode couples with
‘ the residual A linear polarization to produce an
intensity asymmetry, AQ.
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Phase Gradients

Big charge
asymmetry

Medium
charge
asymmetr

y

Small charge
asymmetry

* A spatial gradient in the A-phase
shift results in a relative linear
polarization gradient across the
beam spot, which causes helicity-
correlated beam centroid shifts.

Phase shift

Horizontal Position (mm)

\

\\ Left - helicity intensity

Horizontal Position (mm)

* Beam divergence also causes position differences and higher order effects, which result in
helicity-correlated spot size and shape variations.



Sources of A-phases

Residual birefringence in the Pockels Cell
(PC)

Birefringence of any optical element
between the PC and the photocathode,
such as the vacuum window
Birefringence due to misalignment of the
PC

Birefringence due to incorrect PC
Voltages.



A-phases across the beam spot

Intensity Asymmetry, AQ, is proportional to
the A-phase offset.

Position difference is proportional to the first
derivative of AQ. i.e. the position difference
is due to the A-phase gradient

Spot Size difference is proportional to the
second derivative of AQ. i.e. the spot size
difference is due to variations in A-phase
gradients.
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Data taken on laser table on a linear-array photodiode
with 100% analyzing power.
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Source Setup

o She Packels Cell
Light Polarizer

GaAs
Photocathode

+A/4 retardation produces
+circular polarization

® The polarized electrons are generated by photoemission from a GaAs photocathode using
Right(R)/Left(L) circularly polarized laser beam.

® The electron polarization states are determined by the laser polarization.
® The laser light polarization is prepared using an electro-optic Pockels cell.

* =+ Quarterwave phase differences are generated from + voltages.



A-phase dependence on beam
iIncidence angle

60000 i

The HC parameters has a strong dependence ~_ somo
on the beam incidence angle on the Pockels

Cell (PC) € 20000
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The position difference is linearly

dependent on the angle of incidence. 1.e. 2
the A-phase gradient depends linearly on
the beam incidence angle.
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The spot size difference scales in
quadrature with the incidence angle. i.e.

0.2
0.4
0.6
0.8

variations in the A-phase gradient is
related in quadrature to the incidence
angle.
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Spot Size Difference (Lm)
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Pockels Cell Rotation (mrad)

When observed along one of the

Pockels cell birefringent axis, there
is a constant non-zero offset term in Data taken on laser table on a linear-array photodiode

spot size differences even when the with 100% analyzing power. Measurement is along
PC is well aligned rotationally. the PC birefringent axis.

100 % Analyzer



Suppressing Source Systematics

With 100 % analyzing power:
1. Optimize the beam incidence angle with PC yaw/pitch scans
2. Optimize the A-phases across the beam spot with PC translation
scans
3. Optimize the PC voltages

Without any analyzer:
1. Setup point-to-point focusing, if needed.

With electron-beam:
1. Optimize the photocathode orientation, to cancel the A-phases
due to the vacuum window



HAPPEX III / PREX Setup

RHWP scan, Run 1239, THWP IN, bpm1102, PITA=0

RHWP scan, Run 1841, IHWP IN, bpm1102, PITA=0

bpm1102, Asymmetry vs. 6

Aq = 496.42 + -1458.75 sin (20 + 38.68) + -523.42 sin (46 + 140.16)|

bpm1102, diff_x vs. 6

Dx= 129+ -0.29sin (20 + 38.02) + 0.48 sin (46 + 159.12) |

Tio
bpm1l02, diff_y vs. 6

Dy= 1.16+ -0.80sin(20+ 33.33) + -0.65 sin (46 + 157.04) |

Before Optimization
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bpm1102, Asymmetry vs. 6

Aq = -68.34 + -1121.38 sin (2 + 54.95) + -71.91 sin (40 + 49.84)

bpm1102, diff_x vs. 0

Dx= 0.18+ 0.46sin (20 + 53.55) + 0.16 sin (40 + 165.46) |

Tio
bpm1102, diff_y vs. o

Dy= 011+ 0.17sin(2+ 65.89)+ 0.12sin (40 + 16.98)|

After Optimization

* A-phases due to the vacuum window (the offset-term) is minimized by judicious

cathode orientation adjustment.

* A-phases due to the PC (40-term) is minimized by PC orientation and voltages

optimization.

Electron Beam Data



Source Setup

o She Packels Cell
Light Polarizer

GaAs
Photocathode

+A/4 retardation produces
+circular polarization

® The polarized electrons are generated by photoemission from a GaAs photocathode using
Right(R)/Left(L) circularly polarized laser beam.

® The electron polarization states are determined by the laser polarization.
® The laser light polarization is prepared using an electro-optic Pockels cell.

* =+ Quarterwave phase differences are generated from + voltages.



Intensity Feedback

Laser

With passive
measures optimized,
Feedback zeroes the
helicity-correlated
effects even further
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Low jitter and high accuracy allows sub-ppm
Cumulative charge asymmetry in ~ 1 hour

Scales as o/N, not 6/7N as one might naively expect.
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Beam Modulation

FEile Edit Miew Options Inspect Classes Help

; i * Helicity Correlated fluctuations in the

e\{\é # M N physical properties of the beam introduce
: ¥ e substantial false asymmetries.

* Response of the detectors to these

fluctuations can be calibrated by

intentionally varying the beam parameters

concurrently with data taking.

* Relevant parameters: beam position x

and y at the target, angle x and y at the

target, and beam energy.

*The energy of the beam is varied by
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Beam Position Fluctuations

<x position> = 0.0020 +- 0.0024 2= 3.578 <y position> = 0.0030 +- 0.0031 %2 =1.209
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HAPPEX lll, Fall 2009



Beam Energy Fluctuations

<diff_bpm12x> = -0.0049 +- 0.0035 2= 10.349

Dispersion ~4 :
4x larger than dE/E

..... { PREX jitter requirement

injector configuration
fixed to reduce MS
4 u ey interception




Is this good enough?

For HAPPEX 111, yes.

For PREX, almost there...
Need:
<(2, 4) nm (x,y) position differences
<(0.3,1.0) nrad (x,y) angle differences



HAPPEX 111 Detectors



Detectors

Acrylic : Lead Aluminum Frame —

@AT

VeV ekt

Electrons

A
[
o)
=

Lead-Acrylic sandwich calorimeters
Cherenkov light from each detector stack 1s collected by a PMT
Segmentation chosen to provide sufficiently good energy resolution (~15% sigma)

Dimensions chosen to contain the image of elastically scattered electrons, and much
of the radiative tail, yet not events from the inelastic scattering.

Detector orientation adjusted so that the part of the Cherenkov cone is pointed directly
at the PMT.



Detector Efficiency

<10° HAPPEX Det Study, ADC Mean vs. Position
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Signal output is a strong function of the particle's position along the detector's length.
Characterizing this dependence is important for calibrating asymmetry measurements.

Measured 50%/m decrease in light output.

Solution: Install a single sheet of Plexiglass directly in front of the PMT to filter out UV radiation.

Total signal size reduced, but the dependence of light out along the detector decreased to about
17%/m



Detector Alignment

RHRS x (HAFPEX Optics Tune) RHRS y (HAPPEX Optics Tune)
cH Bt v . Entire image of the elastic peak in
d : the focal plane is contained in the
detector.
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Detector Linearity test setup

Acrylic : Lead Aluminum Frame —

LEDs — ( ) PMT
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DIFF ‘ . A pair of blue LEDS is mounted in the middle

0 acrylic layer opposite to the PMT

. DIFF LED: toggled at a constant freq.
BASELINE . BASELINE LED: driven at varying freq. of up
| to 800 KHz (observed electron rate (@ 100 uA)
. . The pulses of both LEDs are adjusted to be

. . about the size of the electron pulses
LED operation schematic



Detector Linearity

Daffy Duck linearity test @ -1180 V with Joe/H-C (7-T15 KHz), both LEDs INSIDE the det, Mo BEAM, run # 13571 I
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HAPPEX Il Error Budget

0.50% 0.0013

Linearity 0.60% 0.0016

False Asymmetries 0.30% 0.0008




Questions??



EXTRA SLIDES



PREX Error Budget



Luminosity Monitor

A source of
extremely high
rate

- establish
noise floor,
and check
boiling widths



Compton Polarimeter

1-2% Polarization Measurement



Non-Polarization Effects

High voltage positive

—

High voltage negative

=

* Mechanical pulsing of the HV at high/low causes the Pockels cell to behave as a Voltage
activated lens, resulting in helicity-correlated beam steering.

Left unchecked, these effects are huge, and can result in HC position differences on the
order of couple of microns, and fractional spot size asymmetry as big as do/c ~ 102.



Controlling Non-Polarization Effects

= M
= =
]

* The HC asymmetry, position and spot
size differences are much smaller, but
non-zero, indication of the HC lensing
effect.

=

Asymmetry (ppm}
£ 2
=3 =
"'|IIII|IIII|IIII|IIII|IIII|IIII|II
e

I ++{
bl '+‘M

[23
=
=

Lo

* Point-to-point focusing by a lens
(placed between the Pockels cell and
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the detector) can reduce the position
differences by as much as ~ 5-10.
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* Point-to-point focusing can also
decrease the spot size differences by a
much smaller amount of ~ 2.
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*  With point-to-point focusing, beam
spot size asymmetry can be
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4x10%.
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Data taken on laser table on a linear-array photodiode
with no analyzing power.



Slow Reversal

* Flip the sign of the physics effects relative to the electron polarization to cancel the false

asymmetries.

* This can be done through either laser beam polarization reversal or electron spin

manipulation.

* Does not filp the sign of non-physics effects such as the lensing effects and cross-talk.

“Slow Reversal” will help cancel some of
the higher order effects due to non-
polarization effects.

Spot size asymmetry can be constrained to
within do/c ~ 10* with slow reversal.
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Data taken on laser table on a linear-array photodiode
with no analyzing power. The /2 @ 0 deg is sign-filpped.




Preliminary Data

raw det1 raw det2
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Q2 Spread

RHRS Q7 vs. Det. Plane x RHRS Q7 vs. Det. Plane y
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RHWP Position Optimization

Charge Asymmetry, PITA=0, bpm1102, run 1841

Charge Asymmetry, PITA=120, run 1844

Charge Asym slope

Charge asym zero correction
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High Resolution Spectrometers

Spectrometer Concept:

Resolve Elastic

Elastic
Inelastic
\
Left-Right symmetry to
control transverse
polarization systematic
target Dipole
S ————

detector
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PREX Beam Summary
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® Mominnl Yaloe: This is the wsuol desieed centrol vilue of the beam propeny.,

'H:umiq cureni will he aptimiad during commessoning, in the mnge oo S0 HHpA,
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