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• Importance of b-tagging
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• b-tagging improvements
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• Calibration of efficiency
• Calibration of mis-tag rate
• Comparison

• Search for WZ�lvbb
• Selection
• Discrimination

• Conclusion & Future Plans



Electroweak Symmetry BreakingElectroweak Symmetry Breaking
E&M 

Interaction
0 GeV/c2

Weak 
Interaction

91 GeV/c2

• One of the main goals of 
particle physics is to 
understand electroweak 
symmetry breaking

• The Higgs mechanism 
breaks the electroweak 
symmetry, giving mass to 
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• Higgs boson mass isn’t predicted, and it hasn’t been observed yet, 
despite 40+ year hunt since 1968

• SM can predict very well possible production and decay mechanisms 
since we have measured masses of other particles in SM

Weak 
Interaction

80 GeV/c2

symmetry, giving mass to 
the W and Z bosons but 
not the photon



Standard Model and HiggsStandard Model and Higgs
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• Peter Higgs proposed that particles acquire mass by interacting with 
the Higgs field, which has non-zero vacuum expectation value

• Analogy: vacuum is like a party, celebrities (particles) passing 
through interact with groupies (Higgs field) and is slowed down 
(acquires mass)



FermilabFermilab TevatronTevatron and CDFand CDF
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• We collide protons(p) and anti-protons(pbar) accelerated to high 
energies with the Tevatron, collisions detected at the 3 stories tall CDF 

• Tevatron ring has radius of 1km
• Produces p-pbar collisions 1.7 million times per second, in 36 bunches 

with 250 billion protons and 50 billion antiprotons each
• Running since 2001 at center-of-mass of 1.96 TeV
• Projected to deliver 12fb-1 by end of 2011



Road to the HiggsRoad to the Higgs
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• Unfortunately, Higgs production is rare while backgrounds are huge
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Searching for Higgs @Searching for Higgs @TevatronTevatron
• Our sensitivity to the Higgs boson 

depends on how it decays in the detector
• Tevatron needs more sensitivity at low 

mass region (H�bb): important to 
increase b identification powerB
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Low 
mass 
region

High 
mass 
region



Higgs Status and ProspectsHiggs Status and Prospects
• Projection with all CDF channels, assuming that D0 has same sensitivity

Outlook for 
low mass 

Higgs search
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• My contributions are on the November 2009 line, only in one channel
�Will be usable for all low mass Higgs channels



My ChannelMy Channel
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• Standard Model Z boson produced in association with a W boson
�Identification of b-jets is important in this channel

lW
ν

_
q



Why Identify the bWhy Identify the b--jets?jets?

No b-jet 
identification

One b-jet 
identified

(SecVtx)

Two b-jets 
identified

(SecVtx)
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• Identification of b-jets improves the signal to 
background ratio

• Important to improve b-jet identification efficiency 
to gain more signal in the best signal to background 
channel

• If per-jet efficiency increases 10%, then the number 
of events with 2 identified b-jets increases 21%

WH Limit = 15x SM
WW: 76%, WZ: 23%, ZZ 1%

WH Limit = 4x SM
WW: 4%, WZ: 64%, ZZ 32%



WZ WZ vsvs WH SearchWH Search
• WZ search is an excellent test of WH search tools

– Same final state and similar topology
– WZ�lvbb has effective cross section 5x higher than that 

predicted for WH�lvbb (H @ 120 GeV/c2)

WZ WH

Production cross section 3.96pb 0.16pb

W->lv (e or µ) branching fraction 0.21 0.21

Z/H->bb branching fraction 0.15 0.7

ℓ

ν

b-jet
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• Set a limit WZ production in order to test the b-jet 
identification tools and sophisticated search techniques 
used for WH

Z/H->bb branching fraction 0.15 0.7

XSec x BR(W�lv) x BR(Z/H�bb) 0.125pb 0.024pbb-jet
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• Calibration of efficiency
• Calibration of mis-tag rate
• Comparison

• Search for WZ�lvbb
• Selection
• Discrimination

• Conclusion & Future Plans



JetsJets

• In proton-antiproton collisions, 
quarks and gluons are produced

• After quarks are produced, 
they hadronize into mesons and 
baryons
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• If the quark was produced with 
significant energy, the hadrons 
produced will be in a narrow 
cone

• This spray of particles is called 
a jet

Hadronization ����



Bottom QuarksBottom Quarks

• The bottom quark is the second 
heaviest quark

• B-mesons have masses ~5.3GeV/c2

B-baryons have masses ~5.6GeV/c2

• B-hadrons have mean lifetime of 
~1.5ps

• Example: a 53 GeV b-jet has γ=10, 
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• Example: a 53 GeV b-jet has γ=10, 
and travels almost at c,
so on average it travels 4.5mm 
before decaying

• We want to identify those jets 
that have a B hadron within them

• This identification is called
“b-tagging”, or to “tag” the b-jet



Bottom Jets IdentificationBottom Jets Identification

• “Long”-lived and massive
• Secondary vertex significantly 

displaced from primary vertex
• More tracks with large impact 

parameters
• CDF Silicon detector has track 

hit resolution of 10um, impact 
parameter resolution is 30um
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parameter resolution is 30um

• Decays semileptonically
• 40% of b-jets has a µ/e within the 

jet (uses µ only)

• New algorithm RomaNN uses both of 
these characteristics



RomaNNRomaNN
• New algorithm, provides an indicator of how consistent the jet is with 

coming from a b-quark � performed well during initial testing
• I adapted it to perform b-tagging (binary mode), and commissioned it 

in order for it to become another standard CDF b-tagging algorithm
• Three cuts: UltraLoose/Loose/Tight, different b-purity and efficiency

Simulations
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bb--tagging Calibration: Efficiencytagging Calibration: Efficiency
• Measure b-tag efficiency in data, use lepton PT

rel to discriminate b from 
charm and light flavor jets

• To calibrate efficiency, we need a sample of b jets in the data: choose 
di-jet data sample 
1. Away-jet: tagged to improve b purity of the sample
2. Probe-jet: jet containing a lepton

e or µ
Jet axispT rel

Simulations
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PT
rel: lepton transverse momentum 

relative to jet axis

– Due to the large b mass, the PT
rel

is larger for bottom jets than 
for charm and light jets



• Split a sample of jets (with b/c/light fractions unknown) into 2 subsets
jets tagged (left),            ---and--- jets not-tagged (right)

Data Efficiency Measurement: ExampleData Efficiency Measurement: Example
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Nb
noTag= 3537 

=51.0%b x 6935 jets

Nb
Tag= 2978

=90.2%b x 3302 jets

in this example, εb=2978/(2978+3537)=46% 



• After measuring efficiency in data, it is time to compare it to simulation
• Scale factor (SF) corrects the simulation efficiency to Data efficiency

• Needed to predict yields
• SF clearly decreases as the number of z vertices increases

• # z vertices is a measure of multiple collisions per bunch crossing
� Produce extra tracks in the detector, important because our 

simulation does not model well its dependence

Data Efficiency ResultData Efficiency Result

UltraLoose
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bb--tagging Calibration: Misidentification Ratetagging Calibration: Misidentification Rate

• Misidentifications are due to spurious 
large impact parameter tracks
• From limited detector resolution, 

long-lived light particle decays, 
and material interactions

• For SecVtx (an algorithm that 
searches only for a secondary decay 
vertex), misidentification due to the 
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vertex), misidentification due to the 
limited detector resolution is 
expected to be symmetric in their L2d

• Signed 2D displacement of the 
vector separating the primary and 
secondary vertices



Misidentification Rate MeasurementMisidentification Rate Measurement
• For RomaNN, the misidentifications due to the limited detector 

resolutions cannot be expected to be symmetric in any single variable

• The strategy used is to measure the overall tag rate, then 
subtracting from it the tag rate due to real heavy jets
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• We characterize the misidentification rate using a matrix
• based on several of its parameters, 

such as its energy and location 
within the detector

UltraLoose



� SecVtx algorithm performs similar to new algorithm
� Improvements from initial studies by developers in 

simulation, not seen after calibration
� Use new b-tag in conjunction with default increases 

signal efficiency
� CDF WH search summer 2009: addition of 

UltraLooseRomaNN increased signal acceptance by 
20% in the double-tag category

bb--tagging Performance Comparisontagging Performance Comparison

All b jets

Algorithm 1 
Identified

Algorithms 
1&2 both
Identified

Algorithm 2 
Identified

0.06
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All b jets
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WZ/WHWZ/WH Event SelectionEvent Selection

WZ����lνbb

• High pT lepton
� pT > 20 GeV
� |η| < 1.1

• Missing Transverse Energy
� MET > 20 GeV

b_
b

l

W* Z/H

W
ν

q'

_
q
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� MET > 20 GeV

• Two b-jets
� ET > 20 GeV
� |η| < 2.0
� Jet cone size 0.4
� identification of b-jet

WZ % efficiency percent of initial
Fiducial Lepton 60.3 60.3
Lepton ET>20GeV 84.2 50.8
Reconstructed & Identified 58.7 29.8
MET > 20GeV 88.3 26.3
2 jets, both ET>20GeV and Fiducial 37.4 9.9
Both identified as b-jet (SecVtx) 11.6 1.1
Both identified as b-jet (RomaNN) 18.0 1.7

• Identify both jets using UltraLoose tag, increases 
acceptance 55% over SecVtx selection



lvbblvbb BackgroundsBackgrounds
• b-tagging applied to remove large W+light flavor background
• Unfortunately, many physics processes can lead us to the identification 

of a lepton, a neutrino, and two b-quark jets
• 70% is irreducible background
• top quark pair production, single top quark production, Wbb

Top Pair 
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Single Top
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• The other 30% of background: Wcc, Wc, Wlf, Zlf, QCD

Top Pair 
Production Wbb



Signal and Background ExpectationSignal and Background Expectation
• Expected WZ yield is 2% of all lvbb events

• Need to use additional information in the events to distinguish between 
signal and background

�We expect the invariant mass of the two b-jets (Mbb) from WZ to resemble 
the Z mass peak (91 GeV), whereas the background is more diffuse

• Performing a fit using the entire Mbb histogram, the expected 95% 
Confidence Level limit is 4.0x SM cross section with 4.3fb-1

2 UltraLoose tags data/MC 
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2 UltraLoose tags data/MC 
normalized to equal area



• Expected WZ yield is 2% of all lvbb events
• Need to use additional information in the events to distinguish between 

signal and background
�We expect the invariant mass of the two b-jets (Mbb) from WZ to resemble 

the Z mass peak (91 GeV), whereas the background is more diffuse
• Performing a fit using the entire Mbb histogram, the expected 95% 

Confidence Level limit is 4.0x SM cross section with 4.3fb-1

Signal and Background ExpectationSignal and Background Expectation

2 UltraLoose tags data/MC 
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2 UltraLoose tags data/MC 
normalized to equal area



Neural NetworkNeural Network
• Try to improve sensitivity by using a stronger discriminating variable

• Construct this using a TMVA Neural Network
� Combines information from several variables

• Train and test to search for the best neural network with the fewest 
input variables

Separation:
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• For the additional complexity involved in using more inputs, not much 
separation gain after three variables

Where PS , PB are signal and 
background probability distributions



Input to TMVA Neural NetInput to TMVA Neural Net
• Mbb : the invariant mass calculated 

from the two jets
• ptImbal : the difference between 

the scalar sum of the PT of all 
measured objects and the MET

• Specifically, it is calculated as 
PT(jet1)+PT(jet2)+PT(lep)-MET

• MetMag : |MET|
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Signal Limit Estimate With Neural NetworkSignal Limit Estimate With Neural Network

• Performing a fit using the Neural Network discriminant, expected 95% 
Confidence Level limit is now 3.8x standard model cross section

• Improvement from 4.0x with Mbb alone
• Apart from Mbb, other kinematical quantities contribute to a 5% 

improvement in limit
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Limit
-2σ -1σ Median +1σ +2σ Observed

2.0 2.7 3.8 5.3 7.1 3.6



Test StatisticsTest Statistics

�H1 is the model with signal
�H0 is the null hypothesis
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• large overlap between the results for experiments with signal and 
without signal present

• This analysis has little sensitivity to the presence of a signal
• P-value of 0.48
• There is 48% probability of the background fluctuating to give a value 

of -2lnQ lower than 0.33



SummarySummary
• Searched for WZ�lvbb, part of the Higgs search effort

• Improved b-jet identification
• Utilized Neural Network to improve signal sensitivity

• Using 4.3fb-1, expected a 95% Confidence Level limit of 
3.8x, and measured 3.6x standard model WZ cross 
section
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• Will publish in PRD


