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QHE: motivation
• Nobel prizes:
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d=2
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The quantum Hall effect

The origin for plateau formation and broad minima
lies in electron localization. In spite of the extreme care
with which the 2DES is prepared, there remain some
energetic valleys and hillocks along the interface, be
they due to residual defects, steps, or impurities. Each
Landau level is a reproduction of this uneven landscape.
As a Landau level is being filled with electrons, some of
the electrons get trapped (localized) and isolated. They
no longer participate in the electrical conduction
through the specimen, and these patches of localized
electrons become inert and act like a set of holes cut out
from the 2D sheet. As in a perforated metal sheet, such
isolated patches do not affect the measurements of the
density of mobile carriers in the flat part of the land-
scape, which are circumnavigating the hills and valleys.
As long as filling and emptying of a Landau level fills or
empties only the localized states at the energetic fringes,
while keeping the Landau level in the extended flat re-
gions full to capacity, the sample’s Hall resistance RH
and magnetoresistance R remain steady. Since, in the
conducting regions, the Landau level is full, the Hall
resistance remains fixed to its quantized value. Localized
electrons provide a reservoir of carriers that keep the
Landau levels in the energetically flat part of the sample
exactly filled for finite stretches of magnetic field, giving
rise to finite stretches of quantized Hall resistance and
vanishing resistance in the IQHE.

The precision of quantization does not depend on the
shape and size of the specimen, nor on the particular
care taken to define its contact regions. (Figure 8 shows
a particularly egregious example.) In a quirk of nature,
the existence and precision of the IQHE plateaus re-
quires the existence of imperfections in the sample.
Without such dirt there would be no IQHE. Instead,

even in a 2DES, one would revert to Edwin Hall’s
straight line.

In an ingenious thought experiment, Bob Laughlin
was able to deduce the existence and precision of the
IQHE from a set of very simple experimental ingredi-
ents (see his contribution to this volume). In his ap-
proach, the value of RH!h/(ie2)!(h/e)/(ie) emerges
as a ratio of the magnetic flux quantum !0!h/e and the
electronic charge e, together with the number of occu-
pied Landau levels i. Magnetic flux quanta are the el-
ementary units in which a magnetic field interacts with a
system of electrons. (The magnetic field itself is not
quantized. This is different from charge, which usually
comes in chunks of e. However, for the purposes of this
lecture, which deals with magnetic fields in the presence
of electrons, one may think of it as being quantized.)
Being the ratio of !0 to e, one can regard RH as being a
very precise measure of the electron charge when ex-
pressed as e!!0 /(iRH). From this purview, Klaus von
Klitzing’s experiment has provided a highly accurate
electrometer to determine the charge of the current-
carrying particle in a 2DES.

THE FRACTIONAL QUANTUM HALL EFFECT

Discovery

In the beginning of October, 1981, Dan Tsui and I,
both working at Bell Labs, had taken a specimen of a
new sample made from modulation-doped GaAs/
AlGaAs material to the Francis Bitter Magnet Lab at
MIT in Cambridge. The sample had been grown by Art
Gossard, also of Bell Labs, and his assistant Willie Wieg-
mann. Having gained increasing experience with modu-
lation doping over the course of a couple of years, they
had, for the first time, been able to fabricate a low-
electron-density sample (n!1.23"1011 cm#2) with an
exceedingly high mobility of "!90 000 cm2/V sec. Fig-
ure 8 is actually a photograph of this specimen. Given
the high magnetic fields available at the magnet lab, we
foresaw being able to venture into the so-called extreme
quantum limit, where the lowest Landau level is only
partially occupied with electrons. The goal was to inves-
tigate this regime for signs of the so-called Wigner solid,
an electron crystal in two dimensions. The formation of
such a regular array of electrons had been predicted
theoretically, but remained unobserved.

On October 7, a Hall measurement on this specimen
at the temperature of liquid He (4.2 K) produced the
data at the top of Fig. 9. The largely linear relationship
between Hall resistance RH and magnetic field B is evi-
dent. Deviations at low field indicate the emergence of
the IQHE. Knowledge of the electron density, as well as
the values of the resistance steps #RH!h/(ie2), i
!1,2,3 . . . ], clearly identify these features as the IQHE.
With the last (i!1) step occurring at B$5 T (%7 cm on
the mm paper), for all fields beyond this point the elec-
trons had to reside in the lowest Landau level, filling it
to only a fraction & of its capacity. As the sample was
cooled to 1.5 K, the IQHE features firmed up, develop-

FIG. 8. Photograph of a GaAs/AlGaAs sample. The size is
about 6"1.5 mm. Black area (in reality mirrorlike but reflect-
ing the black camera) is the original surface above the 2DES.
Gray areas have been scratched away to confine the current
path to the center of the sample. White areas are indium
blotches used to make contact with the 2DES. Gold wires are
attached. Specimens like this one, prepared with little atten-
tion to exact dimension or to tidiness, show quantization of the
Hall resistance to an accuracy of about 10 parts in a billion.
The specimen shown is the sample in which the fractional
quantum Hall effect (FQHE) was discovered in 1981.
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dard. Concomitant with the quantization of RH , the
magnetoresistance R drops to vanishingly small values.
This is another hallmark of the IQHE and both are di-
rectly related.

Why are two-dimensional systems (2DESs) so differ-
ent? And what is the origin of the steps and minima?
Classically, electrons in a high magnetic field are forced
onto circular orbits, following the Lorentz force. Quan-
tum mechanically, there exists only a discrete set of al-
lowed orbits at a discrete set of energies. The situation is

not unlike the discrete set of orbits that arise in an atom.
Energetically, these so-called Landau levels represent an
equally spaced ladder of states having energies, Ei!(i
" 1

2 )heB/(2!m) (i!1,2,3, . . . ), proportional to the
magnetic field B. Here m is the electron mass and h is
Planck’s constant. (Throughout this lecture we are ne-
glecting the effects due to the electron spin. It simplifies
the discussion without much loss of generality.) Elec-
trons can only reside at these energies, but not in the
large energy gaps in between. The existence of the gaps
is crucial for the occurrence of the IQHE. Here 2DESs
differ decisively from electrons in three dimensions. Mo-
tion in the third dimension, along the magnetic field, can
add any amount of energy to the energy of the Landau
levels. Therefore, in three dimensions, the energy gaps
are filled up and hence eliminated, preventing the quan-
tum Hall effect from occurring. In 2DESs, in addition to
the existence of energy gaps, the number of electrons
fitting into each Landau level is exactly quantized. It
reflects the number d of orbits that can be packed per
Landau level into each cm2 of the specimen. This turns
out to be d!eB/h . Notice that this capacity per Landau
level, also called its degeneracy, apart from natural con-
stants, depends only on the magnetic field B. None of
the materials parameters enters in any way. It is there-
fore a universal measure, independent of the material
employed.

Let the sample have a fixed 2D electron density n. At
low temperatures, where all electrons try to fall into the
energetically lowest available states, and in a sufficiently
high magnetic field, all electrons fit into the lowest Lan-
dau level, filling it only partially. As the field is lowered,
the capacity of the Landau levels shrink according to d
!eB/h . At B1!nh/e the lowest Landau level is exactly
full. Any further reduction of the field requires the first
electron to leave the lowest Landau level and jump
across the energy gap to the next higher Landau level at
an energy cost of heB1 /(2!m). Reducing the field to
B2!(nh/e)/2!B1/2 fills two Landau levels, and the first
electron has to move to the third level, etc. This creates
a sequence of fields Bi!(nh/e)/i , at which all electrons
fill up an exact number of Landau levels, keeping all
higher Landau levels exactly empty. At these special
points on the magnetic-field axis, the magnetoresistance
R drops momentarily and the Hall resistance RH as-
sumes a set of very special values. Using RH!B/(ne)
from the classical Hall resistance and inserting the val-
ues of the sequence of distinctive fields Bi into the equa-
tion results in a quantized Hall resistance of RH
!h/(ie2), i!1,2,3 . . . . While this is the desired result,
it does not account for the true hallmarks of the IQHE,
which are wide plateaus in RH and broad minima in R.

According to the above derivation, RH would take on
its quantized value only at very precise positions Bi of
magnetic field. This would be a poor basis for a stan-
dard, since the precision to which RH assumes one of the
quantized values would depend on the precision to
which one could determine B. In reality, in the IQHE,
the Hall resistance RH assumes the quantized values
over extended regions of B around Bi .

FIG. 6. Edwin Hall’s Hall data of 1878 as plotted from a table
in his publication. The vertical axis is proportional to the Hall
voltage VH of Fig. 5 and the horizontal axis is proportional to
the magnetic field of Fig. 5. A linear relationship between VH
and B and hence between RH and B is apparent. Since the
days of Edwin Hall, this strictly linear relationship has been
confirmed by many, much more precise experiments.

FIG. 7. The integral quantum Hall effect. Left panel: original
data of the discovery of the integral quantum Hall effect
(IQHE) by Klaus von Klitzing in 1980 in the two-dimensional
electron system of a silicon MOSFET transistor. Instead of a
smooth curve, he observed plateaus in the Hall voltage (UH)
and found concomitant deep minima in the magnetoresistance
(UPP). The horizontal axis represents gate voltage (VG),
which varies the carrier density n. The right panel shows
equivalent data taken on a two-dimensional electron system in
GaAs/AlGaAs. Since these data are plotted vs magnetic field,
they can directly be compared to Edwin Hall’s data of Fig. 6.
Rather than the linear dependence of the Hall resistance on
magnetic field of Fig. 6, these data show wide plateaus in RH
and in addition deep minima in R.
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dard. Concomitant with the quantization of RH , the
magnetoresistance R drops to vanishingly small values.
This is another hallmark of the IQHE and both are di-
rectly related.

Why are two-dimensional systems (2DESs) so differ-
ent? And what is the origin of the steps and minima?
Classically, electrons in a high magnetic field are forced
onto circular orbits, following the Lorentz force. Quan-
tum mechanically, there exists only a discrete set of al-
lowed orbits at a discrete set of energies. The situation is

not unlike the discrete set of orbits that arise in an atom.
Energetically, these so-called Landau levels represent an
equally spaced ladder of states having energies, Ei!(i
" 1

2 )heB/(2!m) (i!1,2,3, . . . ), proportional to the
magnetic field B. Here m is the electron mass and h is
Planck’s constant. (Throughout this lecture we are ne-
glecting the effects due to the electron spin. It simplifies
the discussion without much loss of generality.) Elec-
trons can only reside at these energies, but not in the
large energy gaps in between. The existence of the gaps
is crucial for the occurrence of the IQHE. Here 2DESs
differ decisively from electrons in three dimensions. Mo-
tion in the third dimension, along the magnetic field, can
add any amount of energy to the energy of the Landau
levels. Therefore, in three dimensions, the energy gaps
are filled up and hence eliminated, preventing the quan-
tum Hall effect from occurring. In 2DESs, in addition to
the existence of energy gaps, the number of electrons
fitting into each Landau level is exactly quantized. It
reflects the number d of orbits that can be packed per
Landau level into each cm2 of the specimen. This turns
out to be d!eB/h . Notice that this capacity per Landau
level, also called its degeneracy, apart from natural con-
stants, depends only on the magnetic field B. None of
the materials parameters enters in any way. It is there-
fore a universal measure, independent of the material
employed.

Let the sample have a fixed 2D electron density n. At
low temperatures, where all electrons try to fall into the
energetically lowest available states, and in a sufficiently
high magnetic field, all electrons fit into the lowest Lan-
dau level, filling it only partially. As the field is lowered,
the capacity of the Landau levels shrink according to d
!eB/h . At B1!nh/e the lowest Landau level is exactly
full. Any further reduction of the field requires the first
electron to leave the lowest Landau level and jump
across the energy gap to the next higher Landau level at
an energy cost of heB1 /(2!m). Reducing the field to
B2!(nh/e)/2!B1/2 fills two Landau levels, and the first
electron has to move to the third level, etc. This creates
a sequence of fields Bi!(nh/e)/i , at which all electrons
fill up an exact number of Landau levels, keeping all
higher Landau levels exactly empty. At these special
points on the magnetic-field axis, the magnetoresistance
R drops momentarily and the Hall resistance RH as-
sumes a set of very special values. Using RH!B/(ne)
from the classical Hall resistance and inserting the val-
ues of the sequence of distinctive fields Bi into the equa-
tion results in a quantized Hall resistance of RH
!h/(ie2), i!1,2,3 . . . . While this is the desired result,
it does not account for the true hallmarks of the IQHE,
which are wide plateaus in RH and broad minima in R.

According to the above derivation, RH would take on
its quantized value only at very precise positions Bi of
magnetic field. This would be a poor basis for a stan-
dard, since the precision to which RH assumes one of the
quantized values would depend on the precision to
which one could determine B. In reality, in the IQHE,
the Hall resistance RH assumes the quantized values
over extended regions of B around Bi .

FIG. 6. Edwin Hall’s Hall data of 1878 as plotted from a table
in his publication. The vertical axis is proportional to the Hall
voltage VH of Fig. 5 and the horizontal axis is proportional to
the magnetic field of Fig. 5. A linear relationship between VH
and B and hence between RH and B is apparent. Since the
days of Edwin Hall, this strictly linear relationship has been
confirmed by many, much more precise experiments.

FIG. 7. The integral quantum Hall effect. Left panel: original
data of the discovery of the integral quantum Hall effect
(IQHE) by Klaus von Klitzing in 1980 in the two-dimensional
electron system of a silicon MOSFET transistor. Instead of a
smooth curve, he observed plateaus in the Hall voltage (UH)
and found concomitant deep minima in the magnetoresistance
(UPP). The horizontal axis represents gate voltage (VG),
which varies the carrier density n. The right panel shows
equivalent data taken on a two-dimensional electron system in
GaAs/AlGaAs. Since these data are plotted vs magnetic field,
they can directly be compared to Edwin Hall’s data of Fig. 6.
Rather than the linear dependence of the Hall resistance on
magnetic field of Fig. 6, these data show wide plateaus in RH
and in addition deep minima in R.
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The quantum Hall effect

The origin for plateau formation and broad minima
lies in electron localization. In spite of the extreme care
with which the 2DES is prepared, there remain some
energetic valleys and hillocks along the interface, be
they due to residual defects, steps, or impurities. Each
Landau level is a reproduction of this uneven landscape.
As a Landau level is being filled with electrons, some of
the electrons get trapped (localized) and isolated. They
no longer participate in the electrical conduction
through the specimen, and these patches of localized
electrons become inert and act like a set of holes cut out
from the 2D sheet. As in a perforated metal sheet, such
isolated patches do not affect the measurements of the
density of mobile carriers in the flat part of the land-
scape, which are circumnavigating the hills and valleys.
As long as filling and emptying of a Landau level fills or
empties only the localized states at the energetic fringes,
while keeping the Landau level in the extended flat re-
gions full to capacity, the sample’s Hall resistance RH
and magnetoresistance R remain steady. Since, in the
conducting regions, the Landau level is full, the Hall
resistance remains fixed to its quantized value. Localized
electrons provide a reservoir of carriers that keep the
Landau levels in the energetically flat part of the sample
exactly filled for finite stretches of magnetic field, giving
rise to finite stretches of quantized Hall resistance and
vanishing resistance in the IQHE.

The precision of quantization does not depend on the
shape and size of the specimen, nor on the particular
care taken to define its contact regions. (Figure 8 shows
a particularly egregious example.) In a quirk of nature,
the existence and precision of the IQHE plateaus re-
quires the existence of imperfections in the sample.
Without such dirt there would be no IQHE. Instead,

even in a 2DES, one would revert to Edwin Hall’s
straight line.

In an ingenious thought experiment, Bob Laughlin
was able to deduce the existence and precision of the
IQHE from a set of very simple experimental ingredi-
ents (see his contribution to this volume). In his ap-
proach, the value of RH!h/(ie2)!(h/e)/(ie) emerges
as a ratio of the magnetic flux quantum !0!h/e and the
electronic charge e, together with the number of occu-
pied Landau levels i. Magnetic flux quanta are the el-
ementary units in which a magnetic field interacts with a
system of electrons. (The magnetic field itself is not
quantized. This is different from charge, which usually
comes in chunks of e. However, for the purposes of this
lecture, which deals with magnetic fields in the presence
of electrons, one may think of it as being quantized.)
Being the ratio of !0 to e, one can regard RH as being a
very precise measure of the electron charge when ex-
pressed as e!!0 /(iRH). From this purview, Klaus von
Klitzing’s experiment has provided a highly accurate
electrometer to determine the charge of the current-
carrying particle in a 2DES.

THE FRACTIONAL QUANTUM HALL EFFECT

Discovery

In the beginning of October, 1981, Dan Tsui and I,
both working at Bell Labs, had taken a specimen of a
new sample made from modulation-doped GaAs/
AlGaAs material to the Francis Bitter Magnet Lab at
MIT in Cambridge. The sample had been grown by Art
Gossard, also of Bell Labs, and his assistant Willie Wieg-
mann. Having gained increasing experience with modu-
lation doping over the course of a couple of years, they
had, for the first time, been able to fabricate a low-
electron-density sample (n!1.23"1011 cm#2) with an
exceedingly high mobility of "!90 000 cm2/V sec. Fig-
ure 8 is actually a photograph of this specimen. Given
the high magnetic fields available at the magnet lab, we
foresaw being able to venture into the so-called extreme
quantum limit, where the lowest Landau level is only
partially occupied with electrons. The goal was to inves-
tigate this regime for signs of the so-called Wigner solid,
an electron crystal in two dimensions. The formation of
such a regular array of electrons had been predicted
theoretically, but remained unobserved.

On October 7, a Hall measurement on this specimen
at the temperature of liquid He (4.2 K) produced the
data at the top of Fig. 9. The largely linear relationship
between Hall resistance RH and magnetic field B is evi-
dent. Deviations at low field indicate the emergence of
the IQHE. Knowledge of the electron density, as well as
the values of the resistance steps #RH!h/(ie2), i
!1,2,3 . . . ], clearly identify these features as the IQHE.
With the last (i!1) step occurring at B$5 T (%7 cm on
the mm paper), for all fields beyond this point the elec-
trons had to reside in the lowest Landau level, filling it
to only a fraction & of its capacity. As the sample was
cooled to 1.5 K, the IQHE features firmed up, develop-

FIG. 8. Photograph of a GaAs/AlGaAs sample. The size is
about 6"1.5 mm. Black area (in reality mirrorlike but reflect-
ing the black camera) is the original surface above the 2DES.
Gray areas have been scratched away to confine the current
path to the center of the sample. White areas are indium
blotches used to make contact with the 2DES. Gold wires are
attached. Specimens like this one, prepared with little atten-
tion to exact dimension or to tidiness, show quantization of the
Hall resistance to an accuracy of about 10 parts in a billion.
The specimen shown is the sample in which the fractional
quantum Hall effect (FQHE) was discovered in 1981.
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dard. Concomitant with the quantization of RH , the
magnetoresistance R drops to vanishingly small values.
This is another hallmark of the IQHE and both are di-
rectly related.

Why are two-dimensional systems (2DESs) so differ-
ent? And what is the origin of the steps and minima?
Classically, electrons in a high magnetic field are forced
onto circular orbits, following the Lorentz force. Quan-
tum mechanically, there exists only a discrete set of al-
lowed orbits at a discrete set of energies. The situation is

not unlike the discrete set of orbits that arise in an atom.
Energetically, these so-called Landau levels represent an
equally spaced ladder of states having energies, Ei!(i
" 1

2 )heB/(2!m) (i!1,2,3, . . . ), proportional to the
magnetic field B. Here m is the electron mass and h is
Planck’s constant. (Throughout this lecture we are ne-
glecting the effects due to the electron spin. It simplifies
the discussion without much loss of generality.) Elec-
trons can only reside at these energies, but not in the
large energy gaps in between. The existence of the gaps
is crucial for the occurrence of the IQHE. Here 2DESs
differ decisively from electrons in three dimensions. Mo-
tion in the third dimension, along the magnetic field, can
add any amount of energy to the energy of the Landau
levels. Therefore, in three dimensions, the energy gaps
are filled up and hence eliminated, preventing the quan-
tum Hall effect from occurring. In 2DESs, in addition to
the existence of energy gaps, the number of electrons
fitting into each Landau level is exactly quantized. It
reflects the number d of orbits that can be packed per
Landau level into each cm2 of the specimen. This turns
out to be d!eB/h . Notice that this capacity per Landau
level, also called its degeneracy, apart from natural con-
stants, depends only on the magnetic field B. None of
the materials parameters enters in any way. It is there-
fore a universal measure, independent of the material
employed.

Let the sample have a fixed 2D electron density n. At
low temperatures, where all electrons try to fall into the
energetically lowest available states, and in a sufficiently
high magnetic field, all electrons fit into the lowest Lan-
dau level, filling it only partially. As the field is lowered,
the capacity of the Landau levels shrink according to d
!eB/h . At B1!nh/e the lowest Landau level is exactly
full. Any further reduction of the field requires the first
electron to leave the lowest Landau level and jump
across the energy gap to the next higher Landau level at
an energy cost of heB1 /(2!m). Reducing the field to
B2!(nh/e)/2!B1/2 fills two Landau levels, and the first
electron has to move to the third level, etc. This creates
a sequence of fields Bi!(nh/e)/i , at which all electrons
fill up an exact number of Landau levels, keeping all
higher Landau levels exactly empty. At these special
points on the magnetic-field axis, the magnetoresistance
R drops momentarily and the Hall resistance RH as-
sumes a set of very special values. Using RH!B/(ne)
from the classical Hall resistance and inserting the val-
ues of the sequence of distinctive fields Bi into the equa-
tion results in a quantized Hall resistance of RH
!h/(ie2), i!1,2,3 . . . . While this is the desired result,
it does not account for the true hallmarks of the IQHE,
which are wide plateaus in RH and broad minima in R.

According to the above derivation, RH would take on
its quantized value only at very precise positions Bi of
magnetic field. This would be a poor basis for a stan-
dard, since the precision to which RH assumes one of the
quantized values would depend on the precision to
which one could determine B. In reality, in the IQHE,
the Hall resistance RH assumes the quantized values
over extended regions of B around Bi .

FIG. 6. Edwin Hall’s Hall data of 1878 as plotted from a table
in his publication. The vertical axis is proportional to the Hall
voltage VH of Fig. 5 and the horizontal axis is proportional to
the magnetic field of Fig. 5. A linear relationship between VH
and B and hence between RH and B is apparent. Since the
days of Edwin Hall, this strictly linear relationship has been
confirmed by many, much more precise experiments.

FIG. 7. The integral quantum Hall effect. Left panel: original
data of the discovery of the integral quantum Hall effect
(IQHE) by Klaus von Klitzing in 1980 in the two-dimensional
electron system of a silicon MOSFET transistor. Instead of a
smooth curve, he observed plateaus in the Hall voltage (UH)
and found concomitant deep minima in the magnetoresistance
(UPP). The horizontal axis represents gate voltage (VG),
which varies the carrier density n. The right panel shows
equivalent data taken on a two-dimensional electron system in
GaAs/AlGaAs. Since these data are plotted vs magnetic field,
they can directly be compared to Edwin Hall’s data of Fig. 6.
Rather than the linear dependence of the Hall resistance on
magnetic field of Fig. 6, these data show wide plateaus in RH
and in addition deep minima in R.
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The quantum Hall effect

The origin for plateau formation and broad minima
lies in electron localization. In spite of the extreme care
with which the 2DES is prepared, there remain some
energetic valleys and hillocks along the interface, be
they due to residual defects, steps, or impurities. Each
Landau level is a reproduction of this uneven landscape.
As a Landau level is being filled with electrons, some of
the electrons get trapped (localized) and isolated. They
no longer participate in the electrical conduction
through the specimen, and these patches of localized
electrons become inert and act like a set of holes cut out
from the 2D sheet. As in a perforated metal sheet, such
isolated patches do not affect the measurements of the
density of mobile carriers in the flat part of the land-
scape, which are circumnavigating the hills and valleys.
As long as filling and emptying of a Landau level fills or
empties only the localized states at the energetic fringes,
while keeping the Landau level in the extended flat re-
gions full to capacity, the sample’s Hall resistance RH
and magnetoresistance R remain steady. Since, in the
conducting regions, the Landau level is full, the Hall
resistance remains fixed to its quantized value. Localized
electrons provide a reservoir of carriers that keep the
Landau levels in the energetically flat part of the sample
exactly filled for finite stretches of magnetic field, giving
rise to finite stretches of quantized Hall resistance and
vanishing resistance in the IQHE.

The precision of quantization does not depend on the
shape and size of the specimen, nor on the particular
care taken to define its contact regions. (Figure 8 shows
a particularly egregious example.) In a quirk of nature,
the existence and precision of the IQHE plateaus re-
quires the existence of imperfections in the sample.
Without such dirt there would be no IQHE. Instead,

even in a 2DES, one would revert to Edwin Hall’s
straight line.

In an ingenious thought experiment, Bob Laughlin
was able to deduce the existence and precision of the
IQHE from a set of very simple experimental ingredi-
ents (see his contribution to this volume). In his ap-
proach, the value of RH!h/(ie2)!(h/e)/(ie) emerges
as a ratio of the magnetic flux quantum !0!h/e and the
electronic charge e, together with the number of occu-
pied Landau levels i. Magnetic flux quanta are the el-
ementary units in which a magnetic field interacts with a
system of electrons. (The magnetic field itself is not
quantized. This is different from charge, which usually
comes in chunks of e. However, for the purposes of this
lecture, which deals with magnetic fields in the presence
of electrons, one may think of it as being quantized.)
Being the ratio of !0 to e, one can regard RH as being a
very precise measure of the electron charge when ex-
pressed as e!!0 /(iRH). From this purview, Klaus von
Klitzing’s experiment has provided a highly accurate
electrometer to determine the charge of the current-
carrying particle in a 2DES.

THE FRACTIONAL QUANTUM HALL EFFECT

Discovery

In the beginning of October, 1981, Dan Tsui and I,
both working at Bell Labs, had taken a specimen of a
new sample made from modulation-doped GaAs/
AlGaAs material to the Francis Bitter Magnet Lab at
MIT in Cambridge. The sample had been grown by Art
Gossard, also of Bell Labs, and his assistant Willie Wieg-
mann. Having gained increasing experience with modu-
lation doping over the course of a couple of years, they
had, for the first time, been able to fabricate a low-
electron-density sample (n!1.23"1011 cm#2) with an
exceedingly high mobility of "!90 000 cm2/V sec. Fig-
ure 8 is actually a photograph of this specimen. Given
the high magnetic fields available at the magnet lab, we
foresaw being able to venture into the so-called extreme
quantum limit, where the lowest Landau level is only
partially occupied with electrons. The goal was to inves-
tigate this regime for signs of the so-called Wigner solid,
an electron crystal in two dimensions. The formation of
such a regular array of electrons had been predicted
theoretically, but remained unobserved.

On October 7, a Hall measurement on this specimen
at the temperature of liquid He (4.2 K) produced the
data at the top of Fig. 9. The largely linear relationship
between Hall resistance RH and magnetic field B is evi-
dent. Deviations at low field indicate the emergence of
the IQHE. Knowledge of the electron density, as well as
the values of the resistance steps #RH!h/(ie2), i
!1,2,3 . . . ], clearly identify these features as the IQHE.
With the last (i!1) step occurring at B$5 T (%7 cm on
the mm paper), for all fields beyond this point the elec-
trons had to reside in the lowest Landau level, filling it
to only a fraction & of its capacity. As the sample was
cooled to 1.5 K, the IQHE features firmed up, develop-

FIG. 8. Photograph of a GaAs/AlGaAs sample. The size is
about 6"1.5 mm. Black area (in reality mirrorlike but reflect-
ing the black camera) is the original surface above the 2DES.
Gray areas have been scratched away to confine the current
path to the center of the sample. White areas are indium
blotches used to make contact with the 2DES. Gold wires are
attached. Specimens like this one, prepared with little atten-
tion to exact dimension or to tidiness, show quantization of the
Hall resistance to an accuracy of about 10 parts in a billion.
The specimen shown is the sample in which the fractional
quantum Hall effect (FQHE) was discovered in 1981.
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Application of a magnetic field normal to the plane
further quantizes the in-plane motion into Landau levels
at energies Ei!(i"1/2)!"c , where "c!eB/m* repre-
sents the cyclotron frequency, B the magnetic field, and
m* the effective mass of electrons having charge e. The
number of available states in each Landau level, d
!2eB/h , is linearly proportional to B. The electron spin
can further split the Landau level into two, each holding
eB/h states per unit area. Thus the energy spectrum of
the 2D electron system in a magnetic field is a series of
discrete levels, each having a degeneracy of eB/h (Ando
et al., 1983).

At low temperature (T#Landau/spin splitting) and in
a B field, the electron population of the 2D system is
given simply by the Landau-level filling factor #!n/d
!n/(eB/h). As it turns out, # is a parameter of central
importance to 2D electron physics in high magnetic
fields. Since h/e!$0 is the magnetic-flux quantum, # de-
notes the ratio of electron density to magnetic-flux den-
sity, or more succinctly, the number of electrons per flux
quantum. Much of the physics of 2D electrons in a B
field can be cast in terms of this filling factor.

Most of the experiments performed on 2D electron
systems are electrical resistance measurements, although
in recent years several more sophisticated experimental
tools have been successfully employed. In electrical
measurements, two characteristic voltages are measured
as a function of B, which, when divided by the applied
current, yield the magnetoresistance Rxx and the Hall
resistance Rxy (see insert Fig. 1). While the former, mea-
sured along the current path, reduces to the regular re-
sistance at zero field, the latter, measured across the cur-
rent path, vanishes at B!0 and, in an ordinary
conductor, increases linearly with increasing B. This
Hall voltage is a simple consequence of the Lorentz
force’s acting on the moving carriers, deflecting them
into the direction normal to current and magnetic field.
According to this classical model, the Hall resistance is
Rxy!B/ne , which has made it, traditionally, a conve-
nient measure of n.

It is evident that in a B field current and voltage are
no longer collinear. Therefore the resistivity %̂ which is
simply derived from Rxx and Rxy by taking into account
geometrical factors and symmetry, is no longer a num-
ber but a tensor. Accordingly, conductivity &̂ and resis-
tivity are no longer simply inverse to each other, but
obey a tensor relationship &̂! %̂$1. As a consequence,
for all cases of relevance to this review, the Hall conduc-
tance is indeed the inverse of the Hall resistance, but the
magnetoconductance is under most conditions propor-
tional to the magnetoresistance. Therefore, at vanishing
resistance (%→0), the system behaves like an insulator
(&→0) rather than like an ideal conductor. We hasten
to add that this relationship, although counterintuitive,
is a simple consequence of the Lorentz force’s acting on
the electrons and is not at the origin of any of the phe-
nomena to be reviewed.

Figure 1 shows a classical example of the characteris-
tic resistances of a 2D electron system as a function of
an intense magnetic field at a temperature of 85 mK.

The striking observation, peculiar to 2D, is the appear-
ance of steps in the Hall resistance Rxy and exception-
ally strong modulations of the magnetoresistance Rxx ,
dropping to vanishing values. These are the hallmarks of
the quantum Hall effects.

III. THE INTEGRAL QUANTUM HALL EFFECT

Integer numbers in Fig. 1 indicate the position of the
integral quantum Hall effect (IQHE) (Von Klitzing,
et al., 1980). The associated features are the result of the
discretization of the energy spectrum due to confine-
ment to two dimensions plus Landau/spin quantization.

At specific magnetic fields Bi , when the filling factor
#!n/(eB/h)!i is an integer, an exact number of these
levels is filled, and the Fermi level resides within one of
the energy gaps. There are no states available in the
vicinity of the Fermi energy. Therefore, at these singular
positions in the magnetic field, the electron system is
rendered incompressible, and its transport parameters
(Rxx ,Rxy) assume quantized values (Laughlin, 1981).
Localized states in the tails of each Landau/spin level,
which are a result of residual disorder in the 2D system,
extend the range of quantized transport from a set of
precise points in B to finite ranges of B, leading at inte-
ger filling factors to the observed plateaus in the Hall

FIG. 1. Composite view showing the Hall resistance Rxy
!Vy /Ix and the magnetoresistance Rxx!Vx /Ix of a two-
dimensional electron system of density n!2.33%1011 cm$2 at a
temperature of 85 mK, vs magnetic field. Numbers identify the
filling factor #, which indicates the degree to which the se-
quence of Landau levels is filled with electrons. Instead of ris-
ing strictly linearly with magnetic field, Rxy exhibits plateaus,
quantized to h/(#e2) concomitant with minima of vanishing
Rxx . These are the hallmarks of the integral (#!i!integer)
quantum Hall effect (IQHE) and fractional (#!p/q) quantum
Hall effect (FQHE). While the features of the IQHE are the
results of the quantization conditions for individual electrons
in a magnetic field, the FQHE is of many-particle origin. The
insert shows the measurement geometry. B!magnetic field,
Ix!current, Vx!longitudinal voltage, and Vy!transverse or
Hall voltage. From Eisenstein and Stormer, 1990.
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The origin for plateau formation and broad minima
lies in electron localization. In spite of the extreme care
with which the 2DES is prepared, there remain some
energetic valleys and hillocks along the interface, be
they due to residual defects, steps, or impurities. Each
Landau level is a reproduction of this uneven landscape.
As a Landau level is being filled with electrons, some of
the electrons get trapped (localized) and isolated. They
no longer participate in the electrical conduction
through the specimen, and these patches of localized
electrons become inert and act like a set of holes cut out
from the 2D sheet. As in a perforated metal sheet, such
isolated patches do not affect the measurements of the
density of mobile carriers in the flat part of the land-
scape, which are circumnavigating the hills and valleys.
As long as filling and emptying of a Landau level fills or
empties only the localized states at the energetic fringes,
while keeping the Landau level in the extended flat re-
gions full to capacity, the sample’s Hall resistance RH
and magnetoresistance R remain steady. Since, in the
conducting regions, the Landau level is full, the Hall
resistance remains fixed to its quantized value. Localized
electrons provide a reservoir of carriers that keep the
Landau levels in the energetically flat part of the sample
exactly filled for finite stretches of magnetic field, giving
rise to finite stretches of quantized Hall resistance and
vanishing resistance in the IQHE.

The precision of quantization does not depend on the
shape and size of the specimen, nor on the particular
care taken to define its contact regions. (Figure 8 shows
a particularly egregious example.) In a quirk of nature,
the existence and precision of the IQHE plateaus re-
quires the existence of imperfections in the sample.
Without such dirt there would be no IQHE. Instead,

even in a 2DES, one would revert to Edwin Hall’s
straight line.

In an ingenious thought experiment, Bob Laughlin
was able to deduce the existence and precision of the
IQHE from a set of very simple experimental ingredi-
ents (see his contribution to this volume). In his ap-
proach, the value of RH!h/(ie2)!(h/e)/(ie) emerges
as a ratio of the magnetic flux quantum !0!h/e and the
electronic charge e, together with the number of occu-
pied Landau levels i. Magnetic flux quanta are the el-
ementary units in which a magnetic field interacts with a
system of electrons. (The magnetic field itself is not
quantized. This is different from charge, which usually
comes in chunks of e. However, for the purposes of this
lecture, which deals with magnetic fields in the presence
of electrons, one may think of it as being quantized.)
Being the ratio of !0 to e, one can regard RH as being a
very precise measure of the electron charge when ex-
pressed as e!!0 /(iRH). From this purview, Klaus von
Klitzing’s experiment has provided a highly accurate
electrometer to determine the charge of the current-
carrying particle in a 2DES.

THE FRACTIONAL QUANTUM HALL EFFECT

Discovery

In the beginning of October, 1981, Dan Tsui and I,
both working at Bell Labs, had taken a specimen of a
new sample made from modulation-doped GaAs/
AlGaAs material to the Francis Bitter Magnet Lab at
MIT in Cambridge. The sample had been grown by Art
Gossard, also of Bell Labs, and his assistant Willie Wieg-
mann. Having gained increasing experience with modu-
lation doping over the course of a couple of years, they
had, for the first time, been able to fabricate a low-
electron-density sample (n!1.23"1011 cm#2) with an
exceedingly high mobility of "!90 000 cm2/V sec. Fig-
ure 8 is actually a photograph of this specimen. Given
the high magnetic fields available at the magnet lab, we
foresaw being able to venture into the so-called extreme
quantum limit, where the lowest Landau level is only
partially occupied with electrons. The goal was to inves-
tigate this regime for signs of the so-called Wigner solid,
an electron crystal in two dimensions. The formation of
such a regular array of electrons had been predicted
theoretically, but remained unobserved.

On October 7, a Hall measurement on this specimen
at the temperature of liquid He (4.2 K) produced the
data at the top of Fig. 9. The largely linear relationship
between Hall resistance RH and magnetic field B is evi-
dent. Deviations at low field indicate the emergence of
the IQHE. Knowledge of the electron density, as well as
the values of the resistance steps #RH!h/(ie2), i
!1,2,3 . . . ], clearly identify these features as the IQHE.
With the last (i!1) step occurring at B$5 T (%7 cm on
the mm paper), for all fields beyond this point the elec-
trons had to reside in the lowest Landau level, filling it
to only a fraction & of its capacity. As the sample was
cooled to 1.5 K, the IQHE features firmed up, develop-

FIG. 8. Photograph of a GaAs/AlGaAs sample. The size is
about 6"1.5 mm. Black area (in reality mirrorlike but reflect-
ing the black camera) is the original surface above the 2DES.
Gray areas have been scratched away to confine the current
path to the center of the sample. White areas are indium
blotches used to make contact with the 2DES. Gold wires are
attached. Specimens like this one, prepared with little atten-
tion to exact dimension or to tidiness, show quantization of the
Hall resistance to an accuracy of about 10 parts in a billion.
The specimen shown is the sample in which the fractional
quantum Hall effect (FQHE) was discovered in 1981.
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FQHE trial wavefunctions

Problem: Landau levels are macroscopically 
degenerate; can’t set up perturbation theory 
around non-interacting system!

FQH state is an incompressible electron fluid

FQH droplet
(in plane)

Quasi-hole
excitation

Quasi-electron
excitation

(chiral) edge
excitation

Symmetric gauge & 
lowest Landau level  
⇒ wavefunctions ≅ 
analytic polynomials

ψm(z) ∝ zm

"m+1
B

e
− 1

4
|z|2

!2
B

Ψ(z1, . . . , zN ) ∝ det [ψm(zn)]m,n



FQHE trial wavefunctions
Problem: Landau levels are macroscopically 
degenerate; can’t set up perturbation theory!

Laughlin: Account for Coulomb repulsion by extra 
Jastrow factors

(Validity established by exact diagonalization) 

ν =
1
m

ΨL(z1, . . . , zN ) ∝
∏

i<j

(zi − zj)m · e−
1
4

P
i |zi|2

Jm
N

Quasiholes have anyonic statistics: 
braiding phase of

ΨL,w ∝
∏

i

(zi − w) ·
∏

i<j

(zi − zj)m · e−
1
4

P
i |zi|2Quasihole:

θ = π/m

4

time

σ1 σ2

!=

=

FIG. 1 Top: The two elementary braid operations σ1 and σ2 on

three particles. Middle: Here we show σ2σ1 != σ1σ2, hence the

braid group is Non-Abelian. Bottom: The braid relation (Eq. 3)

σiσi+1σi = σi+1σiσi+1.

of the corresponding trajectories, i.e. the vertical stacking of

the two drawings. (As may be seen from the figure, the order

in which they are multiplied is important because the group

is non-Abelian, meaning that multiplication is not commuta-

tive.)

The braid group can be represented algebraically in terms of

generators σi, with 1 ≤ i ≤ N−1. We choose an arbitrary or-
dering of the particles 1, 2, . . . , N .2 σi is a counter-clockwise

exchange of the ith and (i + 1)th particles. σ−1
i is, therefore, a

clockwise exchange of the ith and (i + 1)th particles. The σis

satisfy the defining relations (see Fig. 1),

σiσj = σjσi for |i − j| ≥ 2
σiσi+1σi = σi+1σi σi+1 for 1 ≤ i ≤ n − 1 (3)

The only difference from the permutation group SN is that

σ2
i != 1, but this makes an enormous difference. While
the permutation group is finite, the number of elements in

the group |SN | = N !, the braid group is infinite, even for
just two particles. Furthermore, there are non-trivial topolog-

ical classes of trajectories even when the particles are distin-

guishable, e.g. in the two-particle case those trajectories in

2 Choosing a different ordering would amount to a relabeling of the elements

of the braid group, as given by conjugation by the braid which transforms

one ordering into the other.

which one particle winds around the other an integer num-

ber of times. These topological classes correspond to the ele-

ments of the ‘pure’ braid group, which is the subgroup of the

braid group containing only elements which bring each parti-

cle back to its own initial position, not the initial position of

one of the other particles. The richness of the braid group is

the key fact enabling quantum computation through quasipar-

ticle braiding.

To define the quantum evolution of a system, we must now

specify how the braid group acts on the states of the system.

The simplest possibilities are one-dimensional representations

of the braid group. In these cases, the wavefunction acquires

a phase θ when one particle is taken around another, analo-
gous to Eqs. 1, 2. The special cases θ = 0, π are bosons
and fermions, respectively, while particles with other values

of θ are anyons (Wilczek, 1990). These are straightforward
many-particle generalizations of the two-particle case consid-

ered above. An arbitrary element of the braid group is rep-

resented by the factor eimθ where m is the total number of

times that one particle winds around another in a counter-

clockwise manner (minus the number of times that a particle

winds around another in a clockwise manner). These repre-

sentations are Abelian since the order of braiding operations

in unimportant. However, they can still have a quite rich struc-

ture since there can be ns different particle species with pa-

rameters θab, where a, b = 1, 2, . . . , ns, specifying the phases

resulting from braiding a particle of type a around a particle of
type b. Since distinguishable particles can braid non-trivially,
i.e. θab can be non-zero for a != b as well as for a = b,
anyonic ‘statistics’ is, perhaps, better understood as a kind of

topological interaction between particles.

We now turn to non-Abelian braiding statistics, which

are associated with higher-dimensional representations of the

braid group. Higher-dimensional representations can occur

when there is a degenerate set of g states with particles at fixed
positionsR1, R2, . . ., Rn. Let us define an orthonormal basis

ψα, α = 1, 2, . . . , g of these degenerate states. Then an ele-
ment of the braid group – say σ1, which exchanges particles 1

and 2 – is represented by a g × g unitary matrix ρ(σ1) acting
on these states.

ψα → [ρ(σ1)]αβ ψβ (4)

On the other hand, exchanging particles 2 and 3 leads to:

ψα → [ρ(σ2)]αβ ψβ (5)

Both ρ(σ1) and ρ(σ2) are g × g dimensional unitary matri-
ces, which define unitary transformation within the subspace

of degenerate ground states. If ρ(σ1) and ρ(σ1) do not com-
mute, [ρ(σ1)]αβ [ρ(σ2)]βγ != [ρ(σ2)]αβ [ρ(σ1)]βγ , the parti-

cles obey non-Abelian braiding statistics. Unless they com-

mute for any interchange of particles, in which case the par-

ticles’ braiding statistics is Abelian, braiding quasiparticles

will cause non-trivial rotations within the degenerate many-

quasiparticle Hilbert space. Furthermore, it will essentially be

true at low energies that the only way to make non-trivial uni-

tary operations on this degenerate space is by braiding quasi-

particles around each other. This statement is equivalent to a

w1 w2
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Projection Hamiltonians

Trial wavefunctions ↔ Projection Hamiltonians 

Rest of talk: FQHE of bosonic particles (w/log)
⇒ LLL Hilbert space ≅ symmetric polynomials

Ψ(z1, . . . , zN ) =
∑

a

ψa(z1, z2)Ψ′
a(z3, . . . , zN )

Pseudopotentials

ψa(z1, z2) =
∑

b,c

Cb,c
a ψCM

b

(
1
2 (z1 + z2)

)
ψrel

c (z1 − z2)e−
1
4 (|z1|2+|z2|2)

Haldane: Laughlin state is unique, exact highest-
density eigenstate of projection Hamiltonian

H =
∑

i<j

1/ν∑

"

V" Pi,j [!]



FQHE and CFT
Moore & Read: FQHE trial wavefunctions from 
“conformal blocks” of conformal field theory

Opens door for non-Abelian statistics! 
(Willett, Pfeiffer & West): Experimentally observed?

Why? Fractional 
quasiparticle statistics 
⇒ Chern-Simons TQFT 
⇒ wavefunctions are 
CFT amplitudes (Witten)

t

w1w2

(Read: d=1+1 
edge excitation 
CFT same as 
d=2+0 bulk 
wavefunction 
CFT)



“CFT for pedestrians”
Infinite number of local conformal transformations 
in d=2 ⇒ finite amount of data to specify theory

|φ〉
L−1|φ〉

L−2|φ〉, L2
−1|φ〉

L−3|φ〉, L−2L−1|φ〉, L3
−1|φ〉

· · ·

Rational theories have a finite 
number of primary fields 
(descendants may be singular)
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Ward identity (4.27) and the OPE (4.28). We obtain

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 (4.33)

and analogously for [Lm, Ln], with [Lm, Ln] = 0. The relations (4.33) define the Virasoro algebra

[138]. Because T (z) is a hermitian field, we also have

L†
n = L−n. (4.34)

Inspection of (4.33) shows that L0, L1, L−1 form a closed subalgebra, which generates the global

conformal transformations. The full group of local conformal transformations is generated by the

direct product of two copies of the Virasoro algebra (the Ls and the Ls), so it will be productive to

express the Hilbert space of our theory in terms of irreducible representation of this algebra. Since

the Ls and Ls commute, all such representations will be tensor products of two representations of

the Virasoro algebra, so in what follows we may restrict our attention to just the holomorphic half.

Representations of the Virasoro algebra

Scale transformations in the plane are generated by L0 + L0, which therefore plays the role

of Hamiltonian (generator of infinitesimal time translations) for our theory. Because [L0, Ln] =

−nLn, we may regard the half of the Virasoro algebra with n < 0 as raising operators and the half

with n > 0 as lowering operators. We label eigenstates |h〉 of L0 by their eigenvalues, or weights,

h. These states are lowest-weight states if Ln|h〉 = 0 for all n > 0: the entire Hilbert space of the

theory is generated by acting on the lowest-weight states with combinations of the raising operators

L−n (analogously to the treatment of representations of su(2) in ordinary quantum mechanics).
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Virasoro algebra

Operator product expansion (OPE)

CHAPTER 4. FRACTIONAL QUANTUM HALL WAVEFUNCTIONS

transformation as being generated by the stress tensor (as a consequence of its definition), via

δε,εφ(w,w) =
1

2πi

∮

w
[dz T (z)ε(z),φ(w,w)] + CC, (4.25)

where the contour in the z plane is a small circle around w. Equating these two expressions gives

the OPE for any conformal field and the stress tensor,

T (z)φ(w,w) ∼ hφ(w,w)
(z − w)2

+
∂φ(w,w)

z − w
(4.26)

and analogously for T (z)φ(w,w). This holds at the level of the integrand of (4.25), since the equal-

ity must hold for arbitrary transformations. Repeating this argument for an infinitesimal conformal

transformation of a bounded region containing a number of primary fields, we obtain

〈T (z)φ1(w1, w1) · · · φn(wn, wn)〉

∼
n∑

i=1

[
hi

(z − wi)2
+

∂wi

z − wi

]
〈φ1(w1, w1) · · · φn(wn, wn)〉. (4.27)

This is the conformal Ward identity, which may be taken as axiomatic when dealing with CFTs

that are not defined by a classical action.

We now consider the special case where the transformation in question is a global transforma-

tion. This means ε(z) will be a polynomial of degree less than or equal to two in z, and we can take

the domain of the transformation to be the entire complex plane and send z →∞ in the integrated

form of (4.27). We require all correlation functions to be invariant under these transformations, so

in order for the right-hand side of (4.27) to vanish we need T (z) to fall off at least as fast as z−4

as z → ∞. Note that this is a stronger constraint than the z−2 behavior dictated by its scaling di-

mension. This means that the stress tensor is not a primary field; it must instead have the following

OPE with itself:

T (z)T (w) ∼
1
2c

(z − w)4
+

2T (w)
(z − w)2

+
∂T (w)
z − w

, (4.28)

and likewise for T , with T (z)T (w) being nonsingular. This is a consequence of the above behavior
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•φ
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Chiral Bose Vertex: (c = 1)

∆

eiαφ α2/2

× eiαφ

eiβφ ei(α+β)φ

Ising CFT: (c = 1/2)

∆

ψ 1/2

σ 1/16

× ψ σ

ψ 1

σ σ 1 + ψ

Z3 Parafermion CFT: (c = 4/5)

∆

ψ1 2/3

ψ2 2/3

σ1 1/15

σ2 1/15

ε 2/5

× ψ1 ψ2 σ1 σ2 ε

ψ1 ψ2

ψ2 1 ψ1

σ1 ε σ2 σ2 + ψ1

σ2 σ1 ε 1 + ε σ1 + ψ2

ε σ2 σ1 σ1 + ψ2 σ2 + ψ1 1 + ε

TABLE II Conformal data for three CFTs. Given is the list of pri-

mary fields in the CFT with their conformal dimension∆, as well as
the fusion table. In addition, every CFT has an identity field 1 with

dimension ∆ = 0 which fuses trivially with any field (1 × φi = φi

for any φi). Note that fusion tables are symmetric so only the lower

part is given. In the Ising CFT the field ψ is frequently notated as

ε. This fusion table indicates the nonzero elements of the fusion ma-
trix Nc

ab. For example in the Z3 CFT, since σ1 × σ2 = 1 + ε,
N1

σ1σ2
= Nε

σ1σ2
= 1 and Nc

σ1σ2
= 0 for all c not equal to 1 or ε.

fuse σ(w3) and σ(w4) to form 1. Alternately, one can fuse
σ(w1) and σ(w2) to form ψ and fuse σ(w3) and σ(w4) to
form ψ then fuse the two resulting ψ fields together to form

1. The correlator generally gives a linear combination of the
possible resulting conformal blocks. We should thus think

of such a correlator as living in a vector space rather than

having a single value. (If we instead choose to fuse 1 with 3,
and 2 with 4, we would obtain two blocks which are linear
combinations of the ones found by fusing 1 with 2 and 3 with

4. The resulting vectors space, however, is independent of the

order of fusion). Crucially, transporting the coordinates wi

around each other makes a rotation within this vector space.

To be more clear about the notion of conformal blocks, let

us look at the explicit form of the Ising CFT correlator

lim
w→∞

〈σ(0)σ(z)σ(1)σ(w)〉 = a+ F+ + a− F− (A4)

F±(z) ∼ (wz(1 − z))−1/8

√

1 ±
√

1 − z (A5)

where a+ and a− are arbitrary coefficients. (Eqs. A4-A5

are results of calculations not given here (Di Francesco et al.,

1997)). When z → 0 we have F+ ∼ z−1/8 whereas

F− ∼ z3/8. Comparing to Eq. A3 we conclude that F+ is

the result of fusing σ(0)× σ(z) → 1 whereas F− is the result
of fusing σ(0) × σ(z) → ψ. As z is taken in a clockwise
circle around the point z = 1, the inner square-root changes
sign, switching F+ and F−. Thus, this “braiding” (or “mon-
odromy”) operation transforms

(
a+

a−

)

→ e2πi/8
(
0 1
1 0

)(
a+

a−

)

(A6)

Having a multiple valued correlator (I.e., multiple conformal

blocks) is a result of having such branch cuts. Braiding the

coordinates (w’s) around each other results in the correlator
changing values within its allowable vector space.

A useful technique for counting conformal blocks is the

“Bratteli diagram.” In Fig. 22 we give the Bratteli diagram

for the fusion of multiple σ fields in the Ising CFT. Starting
with 1 at the lower left, at each step moving from the left to
the right, we fuse with one more σ field. At the first step, the
arrow points from 1 to σ since 1× σ = σ. At the next step σ
fuses with σ to produce either ψ or 1 and so forth. Each con-
formal block is associated with a path through the diagram.

Thus to determine the number of blocks in 〈σσσσ〉 we count
the number of paths of four steps in the diagram starting at the

lower left and ending at 1.

!!"
1

σ
!!"

##$

1

ψ
!!"

##$
σ
!!"

##$

ψ

1
!!"

##$
σ
!!"

##$
. . .

FIG. 22 Bratteli diagram for fusion of multiple σ fields in the Ising
CFT.

(c) Changing Bases: As mentioned above, the space

spanned by the conformal blocks resulting from the fusion

of fields is independent of the order of fusion (which field is

fused with which field first). However, fusing fields together

in different orders results in a different basis for that space.

A convenient way to notate fusion of fields is a particular or-

der is using fusion tree diagrams as shown in Fig. 23. Both

diagrams in this figure show the fusion of three initial fields

φi, φj , φk. The diagram on the left shows φj and φk fusing

together first to form φp which then fuses with φi to form φm.

One could equally well have chosen to fuse together φi and φj

together first before fusing the result with φk, as shown on the

right of Fig. 23. The mathematical relation between these two

bases is given in the equation shown in Fig. 23 in terms of

the so-called F -matrix (for “fusion”), which is an important
property of any given CFT or TQFT. An example of using the

F -matrix is given in section IV.B.

(d) The Chiral Boson: A particularly important CFT is

obtained from a free Bose field theory in 1+1 dimension

by keeping only the left moving modes (Di Francesco et al.,

1997). The free chiral Bose field φ(z), which is a sum of

left moving creation and annihilation operators, has a correla-

tor 〈φ(z)φ(z′)〉 = − log(z − z′). We then define the normal
ordered “chiral vertex operator” : eiαφ(z) : , which is a con-
formal field. Note that we will typically not write the normal

ordering indicators ‘: :’. Since φ is a free field, Wick’s theo-

φkφjφi

φp

φm

=
∑

[F ijk
m ]pq

q

φi φj φk

φq

φm

FIG. 23 The basis states obtained by fusing fields together depends

on the order of fusion (although the space spanned by these states

is independent of the order). The F -matrix converts between the
possible bases.

Fusion 
rules:

⇒ vector space of 
conformal blocks

〈σ(z1)σ(z2)σ(z3)σ(z4)〉



Steps towards relating 
the CFT and Hamiltonian 

descriptions



{
(zi − zj)!

}
,

Basis:

! even

Projection Hamiltonians

Trial wavefunctions ↔ Projection Hamiltonians 

Rest of talk: FQHE of bosonic particles (w/log)
⇒ LLL Hilbert space ≅ symmetric polynomials

Ψ(z1, . . . , zN ) =
∑

a

ψa(z1, z2)Ψ′
a(z3, . . . , zN )

ψa(z1, z2) =
∑

b,c

Cb,c
a ψCM

b

(
1
2 (z1 + z2)

)
ψrel

c (z1 − z2)e−
1
4 (|z1|2+|z2|2)

Haldane: Laughlin state is unique, exact highest-
density eigenstate of projection Hamiltonian

H =
∑

i<j

1/ν∑

"

V" Pi,j [!]



Few-body Hamiltonians
Simon, Rezayi & Cooper: Systematic study of 
multiparticle pseudopotential Hamiltonians

r = 0 1 2 3 4 5 6 7 8 9 10 11 12
k = 1 1 0 1 0 1 0 1 0 1 0 1 0 1
k = 2 1 0 1 1 1 1 2 1 2 2 2 2 3
k = 3 1 0 1 1 2 1 3 2 4 3 5 4 7
k = 4 1 0 1 1 2 2 3 3 5 5 7 7 10
k = 5 1 0 1 1 2 2 4 3 6 6 9 9 14

D(k,r) = Dimension of space spanned by these polynomials

LaughlinRead-
Rezayi

(k = 2, r = 2) : ẽ2 = z2
1 + z2

2 + z2
3 − z1z2 − z2z3 − z1z3

⇒ Basis: translationally-invariant symmetric  
     polynomials of degree r in k+1 variables

(
ν = k

r

)



• Thin torus limit (Seidel, Lee et. al., Bergholtz, 
Karlhede, Hansson, Hermanns et. al.; Ardonne): CDW 
orbital filling only specifies integer data; limit 
not unique

Q: What if the Hamiltonian penalizes all but 
one k+1-particle behavior at given r?

Hamiltonian will contain continuous free 
parameters selecting direction in subspace 

Why? Important limitation of existing methods!

From A. Seidel



• Jack polynomials (Bernevig, Haldane et. al.):           
(k,r) fix state for single Jacks; correspond to        
Mk(k+1,k+r) CFTs (Estienne & Santachiara)

Q: What if the Hamiltonian penalizes all but 
one k+1-particle behavior at given r?

Hamiltonian will contain continuous free 
parameters selecting direction in subspace 

Why? Important limitation of existing methods!

Model Fractional Quantum Hall States and Jack Polynomials

B. Andrei Bernevig1,2 and F. D. M. Haldane2

1Princeton Center for Theoretical Physics, Princeton, New Jersey 08544, USA
2Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

(Received 20 August 2007; published 19 June 2008)

We describe an occupation-number-like picture of fractional quantum Hall states in terms of poly-
nomial wave functions characterized by a dominant occupation-number configuration. The bosonic
variants of single-component Abelian and non-Abelian fractional quantum Hall states are modeled by
Jack symmetric polynomials (Jacks), characterized by dominant occupation-number configurations
satisfying a generalized Pauli principle. In a series of well-known quantum Hall states, including the
Laughlin, Read-Moore, and Read-Rezayi, the Jack polynomials naturally implement a ‘‘squeezing rule’’
that constrains allowed configurations to be restricted to those obtained by squeezing the dominant
configuration. The Jacks presented in this Letter describe new trial uniform states, but it is yet to be
determined to which actual experimental fractional quantum Hall effect states they apply.

DOI: 10.1103/PhysRevLett.100.246802 PACS numbers: 73.43.!f, 11.25.Hf

The Laughlin wave function [1] has provided the key to
understanding the physics of the fractional quantum Hall
(FQH) effect: It accurately models the simplest Abelian
FQH states and is the building block of model wave
functions for more general states, both Abelian and (using
cluster projections) non-Abelian ones, such as the Moore-
Read [2] and Read-Rezayi [3] states. Apart from trivial
(Gaussian) factors which we will drop, such model wave
functions are conformally invariant multivariable polyno-
mials  "z1; . . . ; zN#; despite their explicit availability, ana-
lytic calculations of correlation functions and other
physical properties have not so far been possible because
of the intractability of their expansions in the noninteract-
ing basis of occupation-number states (Slater determinants
or monomials). The simplest physically relevant model
FQH states are antisymmetric polynomials, describing
spin-polarized electrons in a partially filled Landau level
with no internal ‘‘pseudospin’’ degrees of freedom, but it is
also useful to study symmetric (bosonic) FQH wave func-
tions from which they are obtained by multiplication by
odd powers of the Vandermonde determinant.

In this Letter, we describe a unified occupation-basis
framework for the description of many model one-
component FQH states in terms of the Jack symmetric
polynomial(s) [‘‘Jack(s)’’] [4]. The Jacks naturally imple-
ment a type of ‘‘generalized Pauli principle’’ on a general-
ization of Fock spaces for Abelian and non-Abelian
fractional statistics [5]. We note that (bosonic) Laughlin,
Moore-Read, and Read-Rezayi wave functions (as well as
others, such as the state that Simon et al. [6] have called the
‘‘Gaffnian’’) can be explicitly written as Jack symmetric
polynomials, which have known (recursively defined) ex-
pansions in monomials (free-boson occupation-number
states), and have rich algebraic properties. These uniform
FQH condensate wave functions can be obtained by requir-
ing that a Jack simultaneously obeys highest-weight (HW,
absence of quasiholes) and lowest-weight (LW, absence of
quasiparticles) conditions. The Jacks described in the

present Letter also provide new FQH wave functions at
arbitrary fillings ! $ k

r , with k and r integers. The gener-
alized Pauli principle and the wave functions introduced
here allow for: counting of the dimension of n-quasihole
Hilbert space; degeneracy on the torus; specific heat cal-
culations; and electron and quasihole propagators on the
edge of the liquid. It is now known [7] that some of the
Jacks (e.g., at filling ! $ 2=5 or 3=7) have very good
overlap >0:95 with the Coulomb ground state and the
composite Fermion wave function [8] for up to 15 particles.

Jacks J"# "z# are symmetric polynomials in z %
fz1; z2; . . . ; zNg, labeled by a partition # with length ‘# &
N, and a parameter "; # can be represented as a (bosonic)
occupation-number configuration n"## $ fnm"##; m $
0; 1; 2; . . .g of each of the lowest Landau level orbitals
"2$m!2m#!1=2zm exp"!jzj2=4# with angular momentum
Lz $ m@ (see Fig. 1), where, for m> 0, nm"## is the
multiplicity of m in #. When " ! 1, J"# ! m#, which is
the monomial wave function of the free-boson state with

Squeezing Rule

FIG. 1 (color online). Upper half: The Landau problem on a
disk. The occupation basis provides for the number of particles
nm in the orbital of angular momentum m. Lower half: Examples
of occupation to monomial basis conversion and squeezing rule.

PRL 100, 246802 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
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0031-9007=08=100(24)=246802(4) 246802-1  2008 The American Physical Society

From Bernevig and Haldane, 
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• “Pattern of zeros” (Wen, Wang et. al.): also discrete; 
not unique and sufficient conditions not known; 
(later papers) additional CFT data must be 
added a priori

Q: What if the Hamiltonian penalizes all but 
one k+1-particle behavior at given r?

Hamiltonian will contain continuous free 
parameters selecting direction in subspace 

Why? Important limitation of existing methods!

• z1

• z2

• z3

• z4 • z5

• z6
· · · • zN

4

Then we let z3 → z(2) in P ′(z(2), z3, · · · , zN):

P ′(z(2), z3, · · · , zN) ∼ (z3 − z(2))D12P ′′(z(3), z4, · · · , zN),

where z(3) = z(2). In this way, we obtain a new polyno-

mial P ′′(z(3), z4, · · · , zN). In general we obtain P ({z(a)
i })

where z(a) is a type-a variable obtained by fusing a zi-

variables together. Note that z(1)
i = zi is the original

variable. If we view zi = z(1)
i as coordinates of electrons,

then z(a)
i are coordinates of bound states of a electrons.

We will call such a bound state a type-a particle.

P ({z(a)
i }) is a symmetric polynomial that is symmetric

between variables of the same type. It satisfies certain
local conditions and form a Hilbert space. The polyno-

mial P ({z(a)
i }) is also called a derived polynomial since

it is obtained from Φ({zi}) by fusing variables together.
The general local conditions on Φ({zi}) are specified

by pattern of zeros in its derived polynomial P ({z(a)
i }):

P (z(a)
1 , z(b)

1 , · · · )
∣

∣

z(a)
1 →z(b)

1 ≡z(a+b) (4)

∼ (z(a)
1 − z(b)

1 )Dab P̃ (z(a+b), · · · ) + o((z(a)
1 − z(b)

1 )Dab)

where Dab satisfy

Dab = Dba ∈ Z, Daa = even, Dab ≥ 0. (5)

{Dab} is the set of data that specifies the local condition
that Φ({zi})’s must satisfy. Such a set of data is called
a pattern of zeros.

We note that there are many different ways to fuse a zi-
variables into a z(a) variable. The different ways of fusion
may lead to different derived polynomials which are lin-
early independent. Here we will impose a unique-fusion
condition on the symmetric polynomial Φ({zi}): The de-
rived polynomials obtained from different ways of fusions
are always linearly dependent, ie the derived polynomi-
als form a one-dimensional linear space. In this paper,
we will study symmetric polynomials Φ({zi}) that satisfy
this unique-fusion condition and are characterized by the
data Dab.

Not all possible choices of {Dab} are consistent. Only
certain choices of {Dab} correspond to symmetric poly-
nomials Φ({zi}). The key is to find those {Dab}’s that
can be realized by some polynomials Φ({zi}).

To get a feeling what a consistent set of {Dab} may look
like, let us consider the following symmetric polynomials
(the Laughlin state3)

Φ1/q({zi}) =
∏

i<j

(zi − zj)
q (6)

where q is an even integer. Such a symmetric polynomial
leads to the following derived polynomial

P1/q({z
(a)
i }) (7)

=
{

∏

a<b

[

∏

i,j

(z(a)
i − z(b)

j )qab
]

}{

∏

a

[

∏

i<j

(z(a)
i − z(a)

j )qa2]
}

So the symmetric polynomial Φ1/q is specified by the
pattern of zeros:

Dab = qab, a, b ∈ {1, 2, 3, · · · }

where q is a positive even integer.

B. Sa characterization of polynomials

There is another way to implement local conditions
on a translation invariant symmetric polynomial Φ({zi}).
We introduce a sequence of integers Sa, a = 0, 1, 2, · · ·
and require that the minimal total powers of z1, · · · , za

in Φ({zi}) is given by Sa.19 (Here S0 is defined to be
0.) Thus, in addition to {Dab}, we can also use {Sa} to
characterize a symmetric polynomial. For a translation
invariant symmetric polynomial, Φ(0, z2, · · · , zN) &= 0.
Thus S1 = 0.

The two characterizations, {Dab} and {Sa}, are closely
related. One way to see the relation is to put the sym-
metric polynomial Φ(z1, · · · , zN) on a sphere as discussed
in Appendix A. Let Nφ be the maximum power of z1

in Φ(z1, · · · , zN). Then Φ(z1, · · · , zN ) can be put on a
sphere with Nφ flux quanta and each variable zi carries
an angular momentum J = Nφ/2.

From the discussion near the end of Appendix A,

We find that each type-a particle described by z(a)
i in

P ({z(a)
i }) carries a definite angular momentum, which is

denoted as Ja. Since the lowest total power of z1, · · · , za

is Sa, the minimal total Lz quantum number for those
variables is −aJ +Sa. Therefore the angular momentum

of the z(a)
i variable is

Ja = aJ − Sa. (8)

Since z(1)
i = zi, we find that J1 = J .

Again, according to the discussion near the end of Ap-
pendix A, if we fuse two variables z(a) and z(b) into z(a+b),
the type-(a+ b) particle described by z(a+b) will carry an
angular momentum

Ja+b = Ja + Jb − Dab. (9)

We see that Dab can be expressed in terms of Sa:

Dab = Sa+b − Sa − Sb. (10)

The conditions on Dab, (5), can be translated into the
conditions on Sa:

S2a = even, Sa+b ≥ Sa + Sb. (11)

From the recursive relation Ja+1 = Ja + J1 −Da,1, we
find Sa+1 = Sa +Da,1. Using S1 = 0, we see that Sa can
also be calculated from Dab:

Sa =
a−1
∑

b=1

Db,1. (12)

Due to the one-to-one correspondence between {Dab}
and {Sa}, we will also call the sequence {Sa} a pattern
of zeros.



Q: What if the Hamiltonian penalizes all but 
one k+1-particle behavior at given r?

r = 0 1 2 3 4 5 6 7 8 9 10 11 12
k = 1 1 0 1 0 1 0 1 0 1 0 1 0 1
k = 2 1 0 1 1 1 1 2 1 2 2 2 2 3
k = 3 1 0 1 1 2 1 3 2 4 3 5 4 7
k = 4 1 0 1 1 2 2 3 3 5 5 7 7 10

D(k,r):

This work

Two linearly-independent ways for 
wavefunction to vanish as r=6 powers 
as k+1=3 particles coincide:

ẽ2(z1, z2, z3)3 ∝
(
z2
1 + z2

2 + z2
3 − z1z2 − z1z3 − z2z3

)3

ẽ3(z1, z2, z3)2 ∝ (z1 + z2 − 2z3)
2 (z1 − 2z2 + z3)

2

× (−2z1 + z2 + z3)
2



r = 0 1 2 3 4 5 6 7 8 9 10 11 12
k = 1 1 0 1 0 1 0 1 0 1 0 1 0 1
k = 2 1 0 1 1 1 1 2 1 2 2 2 2 3
k = 3 1 0 1 1 2 1 3 2 4 3 5 4 7
k = 4 1 0 1 1 2 2 3 3 5 5 7 7 10

D(k,r):

Simon, Rezayi & Regnault, 
GS ↔ S3 CFTs

〈G(z1) · · ·G(z2n)〉 ∝ J−3
2n S

[
∏

1≤i<j≤n

χc(z2i−1, z2i; z2j−1, z2j)

]
χc

χc(z1, z2; z3, z4) = 3z4
1,3z

2
1,4z

2
2,3z

4
2,4 + (c− 3)z3

1,3z
3
1,4z

3
2,3z

3
2,4

Simon: Supercurrent amplitudes at arbitrary c

χc

This work,
 SCFTs

+(− 81
2 + 27c)ẽ3(z1, z2, z3)2

S
[

lim
z4→∞

z−6
4 χc

]
= −(6 + 5c)ẽ2(z1, z2, z3)3χc

Three-particle behavior:

Connection to CFTs



SCFT wavefunctions
Obtain basis for all zero-energy edge excitations, 
explicitly, via filtration method (Ardonne, Kedem, Stone; Read)

Set of zero-energy edge excitations = polynomial ideal IN

Clustering map
Cm: make m 
clusters of k=2 
particles CmΨ(z1, . . . , zN ) =

Ψ(Z1, Z1, Z2, Z2, . . . , Zm, Zm, z2m+1, . . . , zN )

• z1

• z2

• z3

• z4 • z5

• z6
· · · • zN



SCFT wavefunctions
Obtain basis for all zero-energy edge excitations, 
explicitly, via filtration method (Ardonne, Kedem, Stone; Read)

Set of zero-energy edge excitations = polynomial ideal IN

Clustering map
Cm: make m 
clusters of k=2 
particles CmΨ(z1, . . . , zN ) =

Ψ(Z1, Z1, Z2, Z2, . . . , Zm, Zm, z2m+1, . . . , zN )

• z5

• z6
· · · • zN!Z1

!Z2

Im Cm ∩ IN ∝
∏

2m<i

∏

j≤m

(zi − Zj)6 ·
∏

i<j≤m

(Zi − Zj)12

Fm = ker Cm ∩ IN ; F0 = 0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ FN/2 = IN



Charge 
excitations

Irreducibility of three-
body interaction

Cluster-cluster and 
cluster-particle factors

SCFT wavefunctions
Obtain basis for all zero-energy edge excitations, 
explicitly, via filtration method (Ardonne, Kedem, Stone; Read)

Fm = ker Cm ∩ IN ; F0 = 0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ FN/2 = IN

Im Cm|Fm+1/ker Cm ⊆
∏

2m<i

∏

j≤m

(zi − Zj)6 ·
∏

i<j≤m

(Zi − Zj)12

×
∏

2m<i<j

(zi − zj)2 · IMR
N−2m ⊗ Λm

“residue”

Show this is an equality by construction of basis



SCFT wavefunctions
Obtain basis for all zero-energy edge excitations, 
explicitly, via filtration method (Ardonne, Kedem, Stone; Read)

· · ·

· · ·

...
m3

m2

m1

α = 1

α = 2

α = 3

← z(α)
i,j

m =

∏

pairs
of rows

ϑ{1,1}

∏

pairs
of rows

ϑ{1,1}

×

...

· · ·

· · ·

×

D2

ΨSCFT= S
∏

all
entries

ϑ{1,1}

×

eλ(1)

eλ(2)

eλ(3)

charge
excitations

unpaired
particles

“half-broken”
pairs

paired
particles

∏

all
entries

χc

∏

pairs
of rows

χc

α = 1 α = 2 α = 3

∈ IMR
N−2m1{



SCFT wavefunctions
Obtain basis for all zero-energy edge excitations, 
explicitly, via filtration method (Ardonne, Kedem, Stone; Read)
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m3
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SCFT wavefunctions
Obtain basis for all zero-energy edge excitations, 
explicitly, via filtration method (Ardonne, Kedem, Stone; Read)
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SCFT wavefunctions
Obtain basis for all zero-energy edge excitations, 
explicitly, via filtration method (Ardonne, Kedem, Stone; Read)
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SCFT wavefunctions
Obtain basis for all zero-energy edge excitations, 
explicitly, via filtration method (Ardonne, Kedem, Stone; Read)
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Counting wavefunctions
• # edge excitations at given angular momentum = 

character of edge excitation CFT (Wen)

• State counting gives character for generic SCFT — 
independent of c !

1
(q)∞

χ±Kac =
(1− q)

(1± q1/2)

∏∞
r=1(1± qr−1/2)

(q)2∞

lim
N→∞

q−
3
2 N(N−2)ch IN =

∑

m2,m3≥0:
2m2+m3≤N,

(−1)m3=(−1)N

q2m2+ 1
2 m3(m3+2)

(q) 1
2 (N−2m2−m3)(q)m2(q)m3(plane)

(
(q)m ≡

∏m
k=1(1− qk)

)



Counting wavefunctions
• # edge excitations at given angular momentum = 

character of edge excitation CFT (Wen)

• State counting gives character for generic SCFT — 
independent of c !

• Generic SCFT nonrational ⇒ Hamiltonian is 
gapless for all c

1
(q)∞

χ±Kac =
(1− q)

(1± q1/2)

∏∞
r=1(1± qr−1/2)

(q)2∞

q−
3
2 N(N−2)ch IN =

∑

m2,m3≥0:
2m2+m3≤N,

(−1)m3=(−1)N

q2m2+ 1
2 m3(m3+2)

(q) 1
2 (N−2m2−m3)(q)m2(q)m3

lim
N→∞

(plane)



Recap

(k,r) do not uniquely 
specify clustered state SCFT blocks interpolate 

between (k=2,r=6) 
behaviors as function of c

Generated basis for 
edge excitations of 

(k=2,r=6,c) Hamiltonian Edge theory is generic 
SCFT, for any value of c  

in Hamiltonian
Hamiltonian is 
gapless for all c

Hamiltonians CFTs

Want gapped (stable) state = 
unitary, rational CFT (Read); 
project out singular vectors 



“Improved” 
Hamiltonians and 

rational SCFTs



• Use results of Feigin, Jimbo & Miwa for 
Virasoro M(3,p), a.k.a. k = 2 series of Jacks

• Only three-body constraints (interactions) required

• Recursive structure: polynomial ideal of zero-energy 
wavefunctions for M(3,p) related to that of M(3,p-3)

• Completely solved instance: SM(2,8) = M(3,8)

• Project out additional three-particle state at degree 8

• Manifest as extra couplings between “half-broken” 
excited pairs (built from Gaffnian wavefunctions)

“Improving” the Hamiltonian
Obtain (unitary) minimal SCFTs by projecting 
out additional states: How many? Which ones?



SM(2,8) wavefunctions

· · ·

· · ·

...
m3

m2

m1

α = 1

α = 2

α = 3

← z(α)
i,j

m =

∏

pairs
of rows

ϑ{1,1}

∏

pairs
of rows

ϑ{1,1}

×

...

· · ·

· · ·

×

D2

ΨSCFT= S
∏

all
entries

ϑ{1,1}

×

eλ(1)

eλ(2)

eλ(3)

charge
excitations

unpaired
particles

“half-broken”
pairs

paired
particles

∏

all
entries

χc

∏

pairs
of rows

χc

α = 1 α = 2 α = 3

∈ IMR
N−2m1{



∏

pairs
of rows

ϑ{1,1}

×

...

· · ·

· · ·

×

D2

= S ×

eλ(1)

eλ(2)

eλ(3)

charge
excitations

unpaired
particles

“half-broken”
pairs

paired
particles

∏

all
entries

χc

∏

pairs
of rows

χc

α = 1 α = 2 α = 3

{
ΨM(3,8)

∈ IGaff
N−2m1

∏

all
entries

ϑ{2,1}

∏

pairs
of rows

ϑ{2,1}

SM(2,8) wavefunctions

· · ·

· · ·

...
m3

m2

m1

α = 1

α = 2

α = 3

← z(α)
i,j

m =



SM(2,8) wavefunctions
1

(q)∞
χ̂±Kac =

∑

m2,m3≥0:
(−1)m3=±1

q2m2+ 1
2 m3(m3+2)

(q)∞(q)m2(q)m3Confirm basis is 
correct: recover 
known character 
for SM(2,8)

1
(q)∞

χ̂[2,8]
1,1 =

∑

m2,m3≥0

qm2
2+m2m3+ 1

2 m2
3+m2+m3

(q)∞(q)m2(q)m3

Hamiltonian: need to project out one additional 
behavior at degree eight (geometry-dependent)

∝ 9ẽ3(z1, z2, z3)2ẽ2(z1, z2, z3)− ẽ2(z1, z2, z3)4Keep behavior 

∝ 54ẽ3(z1, z2, z3)2ẽ2(z1, z2, z3) + 11ẽ2(z1, z2, z3)4
In plane, 
remove 
behavior



• Would like a unitary minimal SCFT, i.e. 
gapped, stable FQH state

• These appear to require significant 
modifications to our formalism!

• Simplest ex: Tricritical Ising model, SM(3,5) = M(4,5)

• Manual construction of Verma module ⇒ must have 
seven-particle interaction: clusters of clusters?

Other minimal SCFTs?

1
(q)∞

χ̂[3,5]
1,1 =

∑

!m≥0

q !mA!m

∏7
i=1(q)mi

A =





3
2 1 3

2 2 2 5
2 3

1 2 2 2 3 3 4
3
2 2 7

2 3 4 9
2 6

2 2 3 4 4 5 6
2 3 4 4 6 6 8
5
2 3 9

2 5 6 15
2 9

3 4 6 6 8 9 12





1
(q)∞

χ̂[3,5]
1,1 =

∑

n1,n2≥0:
n2≥n1

q
1
2 n2

1+2n2
2−n1n2(q)n2

(q)∞(q)2n2(q)n1(q)n2−n1



• Take-home points:

• (k,r) alone are insufficient to uniquely specify a 
clustered quantum Hall state

• Must consider entire zero-energy edge excitation 
spectrum before identifying eigenspace of Hamiltonian 
with CFT, not just densest (ground) state

• This work (so far):

• Constructed and counted complete set of zero-energy 
eigenstates of projection Hamiltonian with continuous 
free parameter 

• Found complete set of states and modified Hamiltonian 
corresponding to SM(2,8) minimal SCFT, a.k.a. 
(k=2,r=6) Jack state

Summary


