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Motivations

 Superfluidity: atomic BEC <-> Helium (critical velocity, vortices, QT regime, ...)
 Single order parameter: macroscopic coherence (interference, Josephson junctions..)
 Quantum Statistics at demand: Fermi & Bose systems
 Interactions at demand: weakly and strongly correlated regimes 
 BCS-BEC crossover: connecting superfluidity and superconductivity
 Designing crystals with light: perfect lattices (Bloch oscillations, band insulators...)
 Implementing quantum hamiltonians: quantum phase transitions (Mott, Tonks, BKT, quantum 

magnetism)

YeS, atomic gases are a definitively nice tool for simulating nature...

But, so far, only a pretty perfect nature....

Ultracold atoms as quantum simulator ???



An example:

Real crystals are not standing waves, so full of vacancies and impurities and of course electrons like to 
interact a lot

In fact, nature is not so perfect as we like to pretend...

Disorder is ubiquitous in nature, since nature is disordered !!! 
And many phenomena depends critically by the presence of disorder.

High Tc granular 
superconductors 
(image from J. C. 
Davis, Berkeley USA) 
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 Anderson model: weakly interacting electrons hopping on a lattice with random on-site energies

 Single particle tight binding model with random on-site energies

 The eigenstates are spatially localized with exponentially decreasing tails.



- localization of waves in a random medium 

- extended states become localized in the presence of disorder

- general phenomenon, from condensed matter (electrons)...
   Kramer & MacKinnon, Localization: theory and experiment, Rep. Prog. Phys. 56, 
1469–1564 (1993).
     Lee & Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985)

...to:

 - light waves
D.S.  Wiersma et al, Localization of light in a disordered medium, Nature 390, 671-673 (1997).
F. Scheffold et al, Localization or classical diffusion of light?, Nature 398, 206-270 (1999).
M. Störzer et al, Observation of the critical regime near Anderson localization of light, Phys. Rev. 
Lett. 96, 063904 (2006).
T. Schwartz et al, Transport and Anderson localization in disordered twodimensional photonic 
lattices, Nature 446, 52-55 (2007).
Y. Lahini et al,  Anderson Localization and Nonlinearity in One-Dimensional Disordered Photonic 
Lattices, Phys. Rev. Lett. 100, 01390 (2008).

- microwaves
R. Dalichaouch et al, Microwave localization by 2-dimensional random scattering, Nature 354, 
53-55 (1991).
A. A. Chabanov et al, Statistical signatures of photon localization, Nature 404, 850-853 (2000).

- sound waves 
R.L  Weaver, Anderson localization of ultrasound, Wave Motion 12, 129-142 (1990).

- matter waves (BECs)
J. Billy et al., Direct observation of Anderson localization of matter waves in a controlled 
disorder, Nature 453, 891 (2008).
G. Roati el al., Anderson localization of a non-interacting Bose-Einstein condensate, Nature 453, 
895 (2008).



Still, this is an “approximate” model: in fact electrons are highly interacting quantum objects!

..and many phenomena, as superfluidity and 
superconductivity, rely on the interactions 
between the particles.

-> interactions vs disorder 

Despite many efforts, the interplay between 
interact ions and disorder remains a 
challenging task (very difficult to control 
interactions and disorder at will!!)



Quantum gases: quantum simulators ? 

?

J. E. Lye et al. PRL 95, 070401 (2005)
D. Clément et al. PRL 95 170409 (2005)
C. Fort et al. PRL 95, 170410 (2005)
T. Schulte et al. PRL 95, 170411 (2005)

J. Billy et al., Nature 453, 891 (2008)

G. Roati et al. Nature 453, 895,898 (2008)

Yong P. Chen, J. Hitchcock, D. Dries, M. 
Junker, C. Welford, and R. G. Hulet, Phys. 
Rev. A 77, 033632 (2008) 

M. White, M. Pasienski, D. McKay, S. Q. 
Zhou, D. Ceperley, and B. DeMarco, Phys. 
Rev. Lett. 102, 055301 (2009)
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Our approach is to use a tunable BEC trapped into disordered potentials:

 BEC into an optical trap
 Transfer into a fully controllable  disordered quasi-periodic lattice
 Manipulating the scattering length between the atoms (disorder vs interactions)
 Mapping out the condensate wave-function with and w/o disorder

Superfluid

Anderson
glass

Bose glass

Mott

Interactions
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i. no phase 
coherence
ii. broad F(k)

i. phase 
coherence
ii. narrow F(k)

 A tunable 39 Potassium BEC
 Our disordered potential: the 

bichromatic lattice
 One word on the non-interacting, 

s y s t e m : o b s e r v i n g A n d e r s o n 
localization.

 From an uncorrelated glass to a 
coherent state 



Cooling potassium to BEC 

Sympathetic cooling of 39K-87Rb: 

     

BEC of 100000 atoms below 50 nK

potassiumrubidium

Tuning the interactions via a magnetic 
Feshbach resonance in a potassium 
condensate (39K)

Feshbach tuning of the interactions (mag. 
field stability 50 mG -> 0.03 a0 !!)

U < 10-4 J

G. Modugno, et al.  Science 294, 1320 (2001)
G. Roati, et al. PRL 89, 150403 (2002)���
 G. Roati et al. PRL 99, 010403 (2007) 



Rb

    K

z

U
F=2, mF=2

F=1, mF=1

6.834 GHz

F=2, mF=2

F=1, mF=1

462 MHz

Homogeneous magnetic field:   B ~0-1000 G,    dI/I <10-4

Evaporative+sympathetic cooling in a magnetic trap 
down to Τ∼1μΚ
Loading in a crossed beam dipole trap at λ=1030 nm, 
P=10 W. 

Selective evaporation in the dipole trap

NRb ≅ 1.5× 106 and NK ≅ 6×105 atoms @1.8 μK



Rb K

T=0.25 μK
NK=3.4×105
akRb=150 a0
akK=-33 a0

Tc=0.10 μK
NK=1×105
 akK=180 a0

39K BEC

Rb K

T=1.8 μK
NK=6×105
 akRb=28 a0
akK=-33 a0

 G. Roati et al. PRL 99,010403 (2007)

Potassium BEC 



• B > 398.5 G -> 3-body losses due to Feshabach resonance: K3∝a4

• 350.2 G <B<398.5 G -> stable BEC with tunable positive interactions

• B < 350.2 G -> BEC with negative interactions 

Stable BEC with negative interactions (N,a)
Collapse: ac =aho/ N 

Tuning the interactions



*

-2 a
0
                               ~0 a

0                                                                      180 a0

Collapse: ac =aho/ N 

aK=0 -> ground state of the harmonic oscillator,  Erel pure kinetic energy
  

€ 

aho =
h

mϖ
=1.84 µm



Observation of the dipolar interactions in 39K
M. Fattori et al. Phys. Rev. Lett. 101, 190405 (2008)
M. Vengalattore, S. R. Leslie, J. Guzman, and D. M. 
Stamper-Kurn Phys. Rev. Lett. 100, 170403 (2008)
S. E. Pollack, et al. Phys. Rev. Lett. 102, 090402 (2009)

http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000100000017170403000001&idtype=cvips&gifs=yes
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000100000017170403000001&idtype=cvips&gifs=yes


λ1 = 1064.42 nm
λ2 = 866.3 nm

J

4J

2Δ

4.4 lattice sites

G. Roati et al. Nature 453, 895, 898 (2008)

Quasi-periodic lattice(a=0) S. Aubry and G. André, Ann. Israel 
Phys. Soc. 3, 133 (1980).

Metal-insulator (exp. localized) transition even in with 1D 
disorder for Δc = 2 J 

The competition between  J (main lattice) and Δ 
(disorder) defines the physics



narrow peaks in p(k) broad peaks in p(k)

Extended states Localized states

spatial distribution

momentum distribution



Δ/J = 0 Δ/J = 1.1 Δ/J = 2.6 Δ/J = 4.3Time

experiment theoryG. Roati et al. Nature 453, 895, 898 (2008)

Universal behavior 
with Δ/J



AG

Adding the interactions: B. Deissler et al. arXiv:0910.5062, Nature physics online 04/11/2010
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Figure 2 |Analysing the momentum distribution. a,c, Typical momentum distribution (a) and mean local shape of the wavefunction (c) recovered from a

Fourier transform (FT) in the localized regime; b,d, the same in the extended regime, respectively. The root-mean-squared width of the momentum

distribution and the exponent extracted from a fit (red and blue lines) to the FT give the localization properties. The coherence properties are extracted by

measuring the fluctuations of the phase of the interference pattern in the momentum distribution, or by the relative height of the two states 4.4d apart,
which can be related to the spatially averaged correlation function g(4.4d).
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Figure 3 | Probing the interaction-induced delocalization. a, Root-mean-square width (in units of k1) of the central peak of the momentum distribution.

The white line gives Eint =0.05∆ (standard deviation of the lowest-lying energies), where we expect the centre of the delocalization crossover. b, Average

exponent α of states occupying the potential wells. The line is the same as in a. The data taken at different values of∆/J and Eint/J are linearly interpolated;
the colour indicates the mean value of the measured quantity.

system is a realization of the Aubry–Andrémodel29, which shows an
Anderson-like localization transition for a finite value of the disor-
der∆/J =2. Above the transition, the non-interacting eigenstates of
the potential are exponentially localized owing to the quasiperiodic
perturbation of the lattice on-site energies and the energy spectrum
is split into ‘minibands’13,30. The localization properties in this case
have been studied experimentally in detail in ref. 27, where it was
seen that several low-lying eigenstates, separated on average by
d/(β − 1)≈ 4.4d , where β = k2/k1, are typically populated in the
experiment. Adding weak interactions, the different regimes that
appear as a result of the interplay of disorder and interactions can
be explored. For very weak repulsive interactions, the occupation of
several eigenstates in the lowestminiband is favoured (Fig. 1a). This

regime, in which several exponentially localized states coexist with-
out phase coherence, is often identified with an Anderson glass11,15
(AG). As Eint is increased, coherent fragments, which extend over
more than one well of the quasiperiodic potential, are expected to
form (Fig. 1b). In this case, global phase coherence would not yet be
restored, and the local shape of the states might be modified. Some
authors have called this regime a ‘fragmented BEC’ (fBEC; ref. 12).
Finally, for large enough Eint a single, extended phase-coherent state
is expected to be formed, that is, amacroscopic BEC (Fig. 1c).

The system is prepared by first loading an interacting condensate
adiabatically from the ground state of a harmonic trap into the
quasiperiodic lattice. The interaction energy is then slowly changed
to its final value Eint, and the confining potential is reduced. This

2 NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics

Adding interactions the momentum 
distribution becomes narrower: transition 
from a localized to extended state! 

EintExperiment Theory
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Supplementary Information
Energy spectrum The potential of our system can be written in general
as

V(x) = s1ER1 sin2(k1x) + s2ER2 sin2(k2x + φ) + Vext(x, r⊥), (S1)

where ER,i = !2k2i /(2M) = h
2/(2Mλ2i ) is the recoil energy for the lattice

with wavelength λi = 2π/ki, and si = Vi/ER,i is the height of the lattice
i in units of ER,i . Each of the two lattices is λi/2 periodic. Any external
confining potential is given by Vext(x, r⊥). The lattice spacing of such a
potential is to good approximation d = λ1/2. If the ratio β = k2/k1 is
an irrational number, eq. S1 describes a quasi-periodic potential. In our
case, λ1 = 1064.4 nm and λ2 = 866.6 nm, giving β ≈ 1.228.

The essential features of such a potential are visible in Fig. S1. The
potential energy minima of the primary lattice are modulated by the
second one, giving rise to characteristic wells separated on average by
1/(β − 1) ≈ 4.4 lattice sites. The energy scales that characterize such a
potential are the tunnelling energy of the primary lattice1

J = 1.43s0.981 exp
{

−2.07
√
s1
}

ER,1 , (S2)

and the disorder energy2

∆ = 0.5s2β2
(

1.0264 exp
{

−2.3624/s0.591

})

ER,1 . (S3)

Neglecting the external confining potential, the spectrum of such a
quasi-periodic potential can easily be calculated and is shown in Fig. S2
for various values of the disorder strength ∆/J. A striking feature is the
appearance of minigaps in the spectrum, the lowest of which has approxi-
mately the same width for all values of ∆/J. A minigap appears when the
potential has two neighbouring lattice sites with almost the same mini-
mum potential energy. Locally, the potential then looks like a double
well, for which the two lowest-lying eigenstates have an energy split-
ting of 2J. In fact, the width of the lowest minigap is approximately 2J
throughout the range of ∆/J shown. The lowest “miniband” of energies
corresponds to the lowest energy eigenstates localized in the potential
wells 4.4d apart. Since in the experiment, only the states in the first
“miniband” are populated, we restrict our analysis to these energies and
find that their standard deviation is approximately 0.05∆, while the ex-
tension of this band is approximately 0.17∆. The effect of a confining
potential on the spectrum has been analysed previously in ref. 2.
Fourier transform Fourier transform techniques are used to extract in-
formation both about the spatial localization of the wavefunction, and
about the phase coherence properties of neighbouring states. After a
long free expansion without interactions, the image of the atoms that
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Figure S1 | Quasi-periodic potential. The quasi-periodic potential realized
in the experiment for lattice incommensurability β = 1.228 . . . and ∆/J = 15.
The red stripe shows the amplitude 2∆ of the perturbation by the secondary
lattice. The blue stripe denotes the position of the first Bloch band of the
primary lattice, with width 4J. The quasi-periodic lattice is characterized by
potential wells approximately every 1/(β − 1) ≈ 4.4 lattice sites, which arise
from the beating of the two lattices (dashed grey line).

Figure S2 | Energy spectrum of the quasi-periodic potential. Energies
of eigenstates of the non-interacting system as a function of ∆/J.

is acquired is approximately the in-trap momentum distribution ρ(k) =
〈Ψ̂†(k)Ψ̂(k)〉, where Ψ̂(k) is the Fourier transform of the bosonic field
operator Ψ̂(x). In order to recover information about the in-trap wave-
function, we can therefore use an inverse Fourier transform.

In fact, the inverse Fourier transform of the square root of the mo-
mentum distribution gives the average local shape of the wavefunction.
Due to our finite resolution in momentum space (about k1/20), we are
only able to resolve easily two neighbouring states. The averaged wave-
function is analysed by fitting to the sum of two generalized exponential
functions

∑

i=1,2

Ai exp (−|(z − zi)/L|α) ·
[

1 + B cos(k1(z − zi) + φi)
]

, (S4)

where z1 = 0 and z2 = 4.4d (see Fig. S3 for examples). From such a fit,
the exponent α and the average relative phase φ = φ1 − φ2 between two
neighbouring states can be extracted.
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Figure S3 | Examples of Fourier analysis. Typical Fourier transforms
(dots) of the square root of the momentum distribution giving the average lo-
cal shape of the wavefunction, a, in the localized regime, b, for a coherent,
extended state. The red and blue lines give the fits to the data for a generalized
exponential function centered at the origin (red line) and at 4.4d (blue line).
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 Fourier transform of the momentum distribution 
f(k): 

1) F-1(f(k)1/2)= average local shape of the 
wavefunction 
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Figure 2 | Analyzing the momentum distribution. a, Typical momentum
distribution and c, mean spatial distribution recovered from a Fourier trans-
form (FT) in the localized regime, and b,d in the extended regime. The
root-mean-squared width of the momentum distributions and the exponent ex-
tracted from a fit (red and blue lines) to the FT give the localization properties.
The coherence properties are extracted by measuring the fluctuations of rela-
tive phase of the two states 4.4d apart, or by their relative height, which can be
related to the spatially averaged correlation function g(4.4d).

appear as a result of the interplay of disorder and interactions can be ex-
plored. For very weak repulsive interactions, the occupation of several
eigenstates in the lowest miniband is favoured (Fig. 1a). This regime,
in which several exponentially localized states coexist without phase co-
herence, is often identified with an Anderson glass11,22 (AG). As Eint is
increased, coherent fragments, that extend over more than one well of
the quasi-periodic potential, are expected to form (Fig. 1b). In this case,
global phase coherence would not yet be restored, and the local shape
of the states might be modified. Some authors have called this regime a
‘fragmented BEC’20 (fBEC). Finally, for large enough Eint a single, ex-
tended phase-coherent state is expected to be formed, i.e. a macroscopic
BEC (Fig. 1c).

The system is prepared by first loading an interacting condensate
adiabatically from the ground state of a harmonic trap into the quasi-
periodic lattice. The interaction energy is then slowly changed to its
final value Eint , while the confining potential is reduced. This process
is adiabatic for most of the parameter range explored until Eint becomes
sufficiently low for the system to enter the fully localized regime. Here,
several independent low-lying excited states are populated even when it
would be energetically favourable to populate just the ground state. This
loss of adiabaticity is seen experimentally as a transfer of energy into the
radial direction (see Supplementary Information).

The system is characterized in detail by analyzing its momentum dis-
tribution, which is recovered by taking an image of the condensate after
a long ballistic expansion without interactions (see Methods). From the
momentum distribution and its Fourier transform, of which we show ex-
amples in Fig. 2, we extract the local shape of the wavefunction, spatial
correlations, and phase coherence properties for different values of ∆/J
and Eint/J. First, the mean extension of individual localized states can
be quantified by measuring the root-mean-squared width of the momen-
tum distribution (Fig. 2a-b). A smaller (larger) width indicates a more
extended (localized) state. The nature of the spatial localization of the
wavefunction can be probed using a Fourier transform technique, which
in the localized regime gives the mean spatial distribution of the localized
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Figure 3 | Probing the interaction-induced delocalization. a, Root-mean-
square width (in units of k1) of central peak of momentum distribution. The
white line gives Eint = 0.05∆ (standard deviation of the lowest-lying energies),
where we expect the centre of the delocalization crossover. For small interac-
tions, the line is interpolated in order to reach the critical disorder strength
∆/J = 2 for the non-interacting system. b, Average exponent α of states oc-
cupying the potential wells. The line is the same as in a. The data taken at
different values of ∆/J and Eint/J is linearly interpolated; the color indicates
the mean value of the measured quantity.

states. The local shape of the states is characterized by their exponent α,
recovered from a fit to a generalized exponential function (see also Meth-
ods), as shown in Fig. 2c-d. The measured momentum width and expo-
nent are shown in Fig. 3. We find that for very small Eint , the states are
exponentially localized, since α ≈ 1, and the momentum width is large,
consistent with the Anderson glass regime. Increasing Eint , the width
decreases while the exponent increases up to α ≈ 2. Repulsive inter-
actions therefore delocalize the system as expected, or alternatively, the
localization transition is shifted to higher values of the disorder strength
∆/J when interactions are introduced into the system. Interestingly, the
position of the crossover is in good agreement with the prediction of dis-
order screening theories29: As the atomic distribution is modified by the
interactions, it serves to smooth over the disordering potential in the oc-
cupied lattice sites. The centre of the crossover is therefore expected to
occur when Eint is comparable to the standard deviation of energies in
the lowest miniband of the non-interacting spectrum, 0.05∆ (white line
in Fig. 3, see also Supplementary Information).

The correlation properties of neighbouring states can also be ex-
tracted from a similar Fourier transform technique which gives the spa-
tially averaged first order correlation function g(x) (see Methods). In
Fig. 4a-b, g(x) at x = 4.4d is shown for both the experiment and a ground-
state theory that we have developed, with generally good agreement. In
the localized regime, the correlation is exactly zero in the theory and has
a small non-zero value in the experiment, due to the occupation of neigh-
bouring, independent localized states. As Eint is increased, the correla-
tion features a crossover towards larger values, signalling that coherence
is progressively established locally over distances of at least 4.4d. The
shape of the crossover in the experiment is again in qualitative agreement
with the expectation of the general energetic argument above (see white
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system is a realization of the Aubry–Andrémodel29, which shows an
Anderson-like localization transition for a finite value of the disor-
der∆/J =2. Above the transition, the non-interacting eigenstates of
the potential are exponentially localized owing to the quasiperiodic
perturbation of the lattice on-site energies and the energy spectrum
is split into ‘minibands’13,30. The localization properties in this case
have been studied experimentally in detail in ref. 27, where it was
seen that several low-lying eigenstates, separated on average by
d/(β − 1)≈ 4.4d , where β = k2/k1, are typically populated in the
experiment. Adding weak interactions, the different regimes that
appear as a result of the interplay of disorder and interactions can
be explored. For very weak repulsive interactions, the occupation of
several eigenstates in the lowestminiband is favoured (Fig. 1a). This

regime, in which several exponentially localized states coexist with-
out phase coherence, is often identified with an Anderson glass11,15
(AG). As Eint is increased, coherent fragments, which extend over
more than one well of the quasiperiodic potential, are expected to
form (Fig. 1b). In this case, global phase coherence would not yet be
restored, and the local shape of the states might be modified. Some
authors have called this regime a ‘fragmented BEC’ (fBEC; ref. 12).
Finally, for large enough Eint a single, extended phase-coherent state
is expected to be formed, that is, amacroscopic BEC (Fig. 1c).

The system is prepared by first loading an interacting condensate
adiabatically from the ground state of a harmonic trap into the
quasiperiodic lattice. The interaction energy is then slowly changed
to its final value Eint, and the confining potential is reduced. This
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system is a realization of the Aubry–Andrémodel29, which shows an
Anderson-like localization transition for a finite value of the disor-
der∆/J =2. Above the transition, the non-interacting eigenstates of
the potential are exponentially localized owing to the quasiperiodic
perturbation of the lattice on-site energies and the energy spectrum
is split into ‘minibands’13,30. The localization properties in this case
have been studied experimentally in detail in ref. 27, where it was
seen that several low-lying eigenstates, separated on average by
d/(β − 1)≈ 4.4d , where β = k2/k1, are typically populated in the
experiment. Adding weak interactions, the different regimes that
appear as a result of the interplay of disorder and interactions can
be explored. For very weak repulsive interactions, the occupation of
several eigenstates in the lowestminiband is favoured (Fig. 1a). This

regime, in which several exponentially localized states coexist with-
out phase coherence, is often identified with an Anderson glass11,15
(AG). As Eint is increased, coherent fragments, which extend over
more than one well of the quasiperiodic potential, are expected to
form (Fig. 1b). In this case, global phase coherence would not yet be
restored, and the local shape of the states might be modified. Some
authors have called this regime a ‘fragmented BEC’ (fBEC; ref. 12).
Finally, for large enough Eint a single, extended phase-coherent state
is expected to be formed, that is, amacroscopic BEC (Fig. 1c).

The system is prepared by first loading an interacting condensate
adiabatically from the ground state of a harmonic trap into the
quasiperiodic lattice. The interaction energy is then slowly changed
to its final value Eint, and the confining potential is reduced. This
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process is adiabatic for most of the parameter range explored

until Eint becomes sufficiently low for the system to enter the fully

localized regime. Here, several independent low-lying excited states

are populated even when it would be energetically favourable to

populate just the ground state. This loss of adiabaticity is seen

experimentally as a transfer of energy into the radial direction (see

Supplementary Information).

The system is characterized in detail by analysing its momentum

distribution, which is recovered by taking an image of the

condensate after a long ballistic expansion without interactions (see

Methods). From the momentum distribution and derived Fourier

transforms, of which we show examples in Fig. 2, we extract the

local shape of the wavefunction, spatial correlations and phase

coherence properties for different values of ∆/J and Eint/J . The
system can be approximately described as the superposition of states

with the same envelope separated by 4.4d . First, themean extension

of individual states can be quantified by measuring the root-

mean-squared width of the momentum distribution (Fig. 2a,b). A

smaller (larger) width indicates a more extended (localized) state.

Next, the mean local shape of the wavefunction on a length scale

of 4.4d is extracted from the Fourier transform of the square

root of the momentum distribution. From a fit to a generalized

exponential function, the localization exponent α is recovered (see

also Methods), as shown in Fig. 2c,d. The measured momentum

width and exponent are shown in Fig. 3. We find that for very

small Eint the states are exponentially localized, because α ≈ 1, and

the momentum width is large, consistent with the AG regime.

Increasing Eint, the width decreases and the exponent increases

to α ≈ 2. Repulsive interactions therefore delocalize the system

as expected, or, alternatively, the localization crossover is shifted

to higher values of the disorder strength ∆/J when interactions

are introduced into the system. The position of the delocalization

crossover is in good agreement with the expectations of a simple

screening argument
14
. The increasing interaction energy serves

to smooth over the disordering potential in the occupied sites,

providing a flatter energetic landscape on which more extended

states can form. The centre of the crossover is therefore expected to

occur when Eint is comparable to the standard deviation of energies

in the lowest miniband of the non-interacting spectrum, 0.05∆
(white line in Fig. 3, see also Supplementary Information).

The correlation properties of neighbouring states can be

extracted from a Fourier transform of the momentum distribution

itself, which gives the spatially averaged first-order correlation

function g (x) (see Methods). In Fig. 4a,b, g (x) at x = 4.4d is

shown for both the experiment and a ground-state theory that we

have developed, with generally good agreement. In the localized

regime, the correlation is exactly zero in the theory, because no

neighbouring states are occupied. In contrast, the correlation is

finite in the experiment owing to the occupation of neighbouring

localized states arising from the non-adiabatic loading, but is

small because the states are independent. As Eint is increased, the

correlation features a crossover towards larger values, signalling

that coherence is progressively established locally over distances

of at least 4.4d . The shape of the crossover in the experiment is

again in qualitative agreement with the expectation of the screening

argument above (see the white line in Fig. 4a).

Finally, information about the phase coherence of neighbouring

states can be obtained by measuring the phase φ of the interference

pattern in the momentum distribution for repeated runs of the

experiment with the same parameters (see Methods for details).

If the states are not phase locked, φ changes almost randomly

at each repetition of the experimental sequence. In Fig. 4d we

show the standard deviation of φ, estimated from a large number

of repetitions of the experiment, for fixed ∆/J = 12. We see a

slight decrease of the phase fluctuations with increasing Eint, which

nevertheless remain relatively large in the crossover region where
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Figure 4 | Probing the phase coherence of the system. a,b, Correlation of

neighbouring localized states. a, Experiment (white line as in Fig. 3).

b, Theory of the ground state. The white and orange dashed lines show the

boundaries between an AG, an fBEC and a macroscopic BEC. c, Correlation

of neighbouring states for ∆/J= 12, corresponding to the black dashed line

in a. The error bar is given by the standard error of the mean. d, Standard

deviation of the phase measured by repeating the experiment up to 25

times for a given set of parameters for ∆/J= 12. The error is estimated as

∆φ/
√
N, where N is the number of images from which the phase was

extracted. The blue bar shows the phase fluctuations measured for an

extended system below the localization threshold. The grey dash–dotted

line gives the standard deviation for a purely random distribution. In c

and d, the grey dashed (dotted) lines give Eint =0.05∆ (0.17∆).

the correlation increases (Fig. 4c). The fluctuations finally drop

to the background value only when Eint is comparable to the full

width of the lowest miniband of the non-interacting spectrum,

0.17∆. These observations confirm that in the localized regime the

states are totally independent, which together with the localization
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process is adiabatic for most of the parameter range explored

until Eint becomes sufficiently low for the system to enter the fully

localized regime. Here, several independent low-lying excited states

are populated even when it would be energetically favourable to

populate just the ground state. This loss of adiabaticity is seen

experimentally as a transfer of energy into the radial direction (see

Supplementary Information).

The system is characterized in detail by analysing its momentum

distribution, which is recovered by taking an image of the

condensate after a long ballistic expansion without interactions (see

Methods). From the momentum distribution and derived Fourier

transforms, of which we show examples in Fig. 2, we extract the

local shape of the wavefunction, spatial correlations and phase

coherence properties for different values of ∆/J and Eint/J . The
system can be approximately described as the superposition of states

with the same envelope separated by 4.4d . First, themean extension

of individual states can be quantified by measuring the root-

mean-squared width of the momentum distribution (Fig. 2a,b). A

smaller (larger) width indicates a more extended (localized) state.

Next, the mean local shape of the wavefunction on a length scale

of 4.4d is extracted from the Fourier transform of the square

root of the momentum distribution. From a fit to a generalized

exponential function, the localization exponent α is recovered (see

also Methods), as shown in Fig. 2c,d. The measured momentum

width and exponent are shown in Fig. 3. We find that for very

small Eint the states are exponentially localized, because α ≈ 1, and

the momentum width is large, consistent with the AG regime.

Increasing Eint, the width decreases and the exponent increases

to α ≈ 2. Repulsive interactions therefore delocalize the system

as expected, or, alternatively, the localization crossover is shifted

to higher values of the disorder strength ∆/J when interactions

are introduced into the system. The position of the delocalization

crossover is in good agreement with the expectations of a simple

screening argument
14
. The increasing interaction energy serves

to smooth over the disordering potential in the occupied sites,

providing a flatter energetic landscape on which more extended

states can form. The centre of the crossover is therefore expected to

occur when Eint is comparable to the standard deviation of energies

in the lowest miniband of the non-interacting spectrum, 0.05∆
(white line in Fig. 3, see also Supplementary Information).

The correlation properties of neighbouring states can be

extracted from a Fourier transform of the momentum distribution

itself, which gives the spatially averaged first-order correlation

function g (x) (see Methods). In Fig. 4a,b, g (x) at x = 4.4d is

shown for both the experiment and a ground-state theory that we

have developed, with generally good agreement. In the localized

regime, the correlation is exactly zero in the theory, because no

neighbouring states are occupied. In contrast, the correlation is

finite in the experiment owing to the occupation of neighbouring

localized states arising from the non-adiabatic loading, but is

small because the states are independent. As Eint is increased, the

correlation features a crossover towards larger values, signalling

that coherence is progressively established locally over distances

of at least 4.4d . The shape of the crossover in the experiment is

again in qualitative agreement with the expectation of the screening

argument above (see the white line in Fig. 4a).

Finally, information about the phase coherence of neighbouring

states can be obtained by measuring the phase φ of the interference

pattern in the momentum distribution for repeated runs of the

experiment with the same parameters (see Methods for details).

If the states are not phase locked, φ changes almost randomly

at each repetition of the experimental sequence. In Fig. 4d we

show the standard deviation of φ, estimated from a large number

of repetitions of the experiment, for fixed ∆/J = 12. We see a

slight decrease of the phase fluctuations with increasing Eint, which

nevertheless remain relatively large in the crossover region where
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neighbouring localized states. a, Experiment (white line as in Fig. 3).

b, Theory of the ground state. The white and orange dashed lines show the

boundaries between an AG, an fBEC and a macroscopic BEC. c, Correlation

of neighbouring states for ∆/J= 12, corresponding to the black dashed line

in a. The error bar is given by the standard error of the mean. d, Standard

deviation of the phase measured by repeating the experiment up to 25

times for a given set of parameters for ∆/J= 12. The error is estimated as

∆φ/
√
N, where N is the number of images from which the phase was

extracted. The blue bar shows the phase fluctuations measured for an

extended system below the localization threshold. The grey dash–dotted

line gives the standard deviation for a purely random distribution. In c

and d, the grey dashed (dotted) lines give Eint =0.05∆ (0.17∆).

the correlation increases (Fig. 4c). The fluctuations finally drop

to the background value only when Eint is comparable to the full

width of the lowest miniband of the non-interacting spectrum,

0.17∆. These observations confirm that in the localized regime the

states are totally independent, which together with the localization
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P. W. Anderson. Theory of dirty superconductors, J. 
Phys. Chem. Solids, 11:26–30, 1959.

Y. Dubi, et al. Nature, 449:876–880, 2007

SIT transition

P.W. Anderson demonstrated that superconductivity is stable 
against some disorder (no magnetic) (“Anderson theorem”). 

but... 2D disordered superconductors show a transition from a 
superconducting to an insulator phase (SIT). 
The nature of this transition is still under debate. 

Disorder “fragments” the order parameter:

-> Islands of superconductivity with defined Δ
-> The system behaves as a bulk superconductor 
as long as Δ≠0, and the phases of Δ(r) on two 
sides of the sample are correlated. The 
correlations are guaranteed by coherent 
tunnelling of Cooper pairs between the islands
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Future plans

I. Strongly correlated bosons (1D) in presence of disorder: 

a. Expected transition from a SF to Bose glass phase (U,Δ>>J)
b. Probing the excitation spectra (Bragg spectroscopy) 
c. Compressibility measurements (Mott vs Bose glass) 

II. Fermions in disordered potentials: closer connection to condensed matter problems

a. Competition between EF and disorder strength
b. Fermions in 2D disordered potential (superfluidity vs disorder, MIT)



1D highly correlated Bose systems (Rb) 
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Recent observations of confinement induced resonances

Exploring Correlated 1D Bose Gases from the Superfluid to the Mott-Insulator State
by Inelastic Light Scattering

D. Clément,* N. Fabbri, L. Fallani, C. Fort, and M. Inguscio
LENS, Dipartimento di Fisica, Università di Firenze and INFM-CNR, via Nello Carrara 1, I-50019 Sesto Fiorentino (FI), Italy
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We report the Bragg spectroscopy of interacting one-dimensional Bose gases loaded in an optical lattice

across the superfluid to the Mott-insulator phase transition. Elementary excitations are created with a

nonzero momentum and the response of the correlated 1D gases is in the linear regime. The complexity of

the strongly correlated quantum phases is directly displayed in the spectra which exhibit novel features.

This work paves the way for a precise characterization of the state of correlated gases in optical lattices.

DOI: 10.1103/PhysRevLett.102.155301 PACS numbers: 67.85.Hj, 67.85.De

Cold atomic gases loaded in optical lattices have been
routinely used during the past few years as a versatile and
powerful experimental system to study many physical
problems [1]. They have been used to realize and manipu-
late strongly correlated quantum phases [2–4] and consti-
tute a promising candidate for implementing quantum
information processing and quantum simulation schemes
[5]. The cornerstone to achieving those goals consists of a
precise characterization of the correlated gaseous phases.

As in similar problems of condensed matter, the pres-
ence of strong correlations makes it hard to draw a com-
plete picture, both from the experimental and theoretical
point of view. The implementation of spectroscopic
probes, such as angle-resolved photo-emission spectros-
copy for high-Tc superconductors where electron-electron
correlations play a major role [6], are crucial. For the Mott-
insulator phase created with atomic gases, experiments
have investigated the presence of a gap in the spectrum
[2,7], the shell structure [8], the spatial order [9] and the
suppression of compressibility [4]. Yet an experimental
probe giving direct access to important information, such
as the temperature or the elementary excitations on which
the dynamical properties of the many-body system depend,
is still missing. It has been proposed that inelastic light
scattering (Bragg spectroscopy) performed at nonzero mo-
mentum in the linear response regime could provide such a
tool [10–14].

In this Letter we report the measurement of the linear
response of interacting one-dimensional (1D) Bose gases
across the superfluid (SF) to the Mott-insulator (MI) tran-
sition. The elementary excitations are created at a nonzero
momentum using two-photon Bragg transition. In the SF
state the presence of an extra mode to the phonon one is
suggested. In the inhomogeneous MI state, multiple reso-
nances are observed which give information about the
particle-hole excitation energy, the inhomogeneity of the
trapped system, and which exhibit novel features at low
energies that could be related to the temperature of the
atomic sample. From the continuous modification of the
spectra we also get quantitative information on the critical
lattice amplitude for entering the MI phase.

We produce an array of independent 1D gases by adia-
batically loading a three-dimensional (3D) Bose-Einstein
condensate (BEC) of 87Rb atoms (N ’ 1:5! 105, chemi-
cal potential !3D=h ’ 740 Hz) in two orthogonal optical
lattices ("L ¼ 2#=qL ¼ 830 nm) at a large amplitude
V? ¼ s?ER ¼ 35ER where ER ¼ h2=2m"2

L, h being the
Planck constant and m the atomic mass. The 1D gases can
be considered independent since the tunneling rate in the
transverse plane is 0.75 Hz and much smaller than the
inverse time scale of the experiment. A crucial quantity
indicating the regime in which a 1D gas lies is the ratio of
the mean-field interaction energy to the kinetic energy
needed to correlate particles on a distance 1=n1D, n1D being
the atomic density [15]. This ratio is $ ¼ mg1D=@2n1D, g1D
being the interatomic coupling in the 1D gas [16]. For $ #
1, the 1D gas is in the mean-field regimewhile for $ $ 1 it
enters the Tonks-Girardeau regime [17]. In our experiment
$ ’ 0:6 [18] so the correlations in the 1D gases are
stronger than in the mean-field regime. To drive the 1D
gases from a SF state to a MI state, a longitudinal optical
lattice ("L ¼ 830 nm) with an amplitude Vy ¼ syER is
added along the axis of the 1D gases.
The spectroscopic study of the 1D gases is performed

using a two-photon Bragg excitation [19]. Once the 1D
gases are loaded into the optical lattices, two off-resonant
laser beams ("B ¼ 780 nm, redshifted by 250 GHz from
the atomic transition), detuned from each other by a tun-
able frequency difference %, are shone onto the atoms
during a time !tB ¼ 3 to 6 ms. The momentum transfer
q0 by the Bragg excitation depends on the angle between
the two beams while the energy transferred is given by the
frequency difference %. The angle between the Bragg
beams has been set up to transfer a momentum along the
y direction smaller but close to the edge of the first
Brillouin zone where the response in the Mott state is
predicted to be the largest [10,11]. The momentum transfer
q0 along y is kept constant to q0 ¼ 0:96ð3ÞqL [20].
The spectra are measured by tuning % and monitoring

the response of the 1D gases with the experimental se-
quence described in Fig. 1(a). From the interference den-
sity pattern after expansion [Fig. 1(b)], we fit the central
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We investigate experimentally the entropy transfer between two distinguishable atomic quantum gases

at ultralow temperatures. Exploiting a species-selective trapping potential, we are able to control the

entropy of one target gas in presence of a second auxiliary gas. With this method, we drive the target gas

into the degenerate regime in conditions of controlled temperature by transferring entropy to the auxiliary

gas. We envision that our method could be useful both to achieve the low entropies required to realize new

quantum phases and to measure the temperature of atoms in deep optical lattices. We verified the

thermalization of the two species in a 1D lattice.

DOI: 10.1103/PhysRevLett.103.140401 PACS numbers: 05.30.Jp, 03.75.Hh, 67.85.Pq

In recent years, an intense research of quantum phases
common to condensed matter systems and atomic quantum
gases has made remarkable progresses [1]. Some of these
phases can only be reached provided that the temperature is
suitably low. However, in strongly correlated quantum
systems, even the temperature measurement can be a chal-
lenging task. If so, to ascertain whether a given quantum
phase is accessible, it is convenient to focus on the critical
value of entropy, rather than temperature. The advantage is
especially clear when the strongly correlated regime is
reached by sufficiently slow, entropy-preserving, transfor-
mations of the trapping potential, as it is often the case for
atoms in deep optical lattices [2]. For these reasons, it is
important to determine and grasp control of the entropy of
degenerate quantum gases [3–5]. In this work, we demon-
strate the reversible and controlled transfer of entropy
between the two ultracold, harmonically trapped Bose
gases, which is based on the use of a species-selective
dipole potential (SSDP), i.e., an optical potential experi-
enced exclusively by one species (Fig. 1) [6,7]. In particu-
lar, we drive the target gas across the threshold for Bose-
Einstein condensation, by a reversible transfer of entropy
to the auxiliary gas.

The main idea can be understood from textbook ther-
modynamics. Let us consider two distinguishable gases
filling an isolated box, exchanging neither particles nor
energy with the outside, and imagine that only one gas
(target) is compressed, e.g., through a piston permeable to
the second gas (auxiliary). The temperature will increase
and, in thermal equilibrium, heat, hence entropy, will trans-
fer from the target to the auxiliary uncompressed gas. In
the limit of the auxiliary gas containing a large number of
particles, it stands as a thermal bath. In a more formal way,
for an ideal gas ofN particles, the entropy S is proportional
to N logð!=NÞ, where the number of accessible single-
particle states ! increases with the energy density of states
and with the average energy, i.e., the temperature. In an

adiabatic compression of one single gas, the reduction of
the energy density of states is compensated by a tempera-
ture raising such that !, hence S, remains constant. If we
add the uncompressed auxiliary gas in thermal contact, the
temperature raising must be lower: ! decreases for the
target gas (and increases for the auxiliary component). In
our experiment, the gases are trapped by adjustable har-
monic potentials, but the underlying physics is the same.
To make quantitative predictions, we start from the

entropy of an ideal gas at temperature T in a harmonic
potential with angular frequency ! [8]: S ¼
kBNth½4g4ðzÞ=g3ðzÞ % logðzÞ&, where Nth denotes the num-
ber of thermal atoms and the polylogarithmic functions are
defined as gnðzÞ ¼

P
k'1z

k=kn. Above the BEC critical
temperature Tc, Nth equals the total atom number N, and
the fugacity z is implicitly given by the relation N ¼
g3ðzÞðkBT=@!Þ3. Below Tc, z ¼ 1 and only the thermal
atoms contribute to the entropy, each with a quantity equal
to 4kB!ð4Þ=!ð3Þ, !ðnÞ ¼ gnð1Þ, so that

FIG. 1 (color online). Schematic of our experimental proce-
dure. Left: the harmonic magnetic potential is common to both
gases, auxiliary (red, larger) and target (blue, smaller). Right: the
species-selective dipole beam compresses the target sample and
drives it into the degenerate regime. Trapping potentials for the
auxiliary Rb (dashed line) and the target K gas (solid line) are
sketched on the background panels together with the K density
distributions.
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Observation of an Efimov spectrum in an
atomic system
M. Zaccanti1*, B. Deissler1, C. D’Errico1, M. Fattori1,2, M. Jona-Lasinio1, S. Müller3, G. Roati1,
M. Inguscio1 and G. Modugno1

In 1970, Vitaly Efimov predicted that three quantum particles subjected to a resonant pair-wise interaction can join into an
infinite number of loosely bound states, even if each pair of particles cannot bind. The properties of these aggregates, such
as the peculiar geometric scaling of their energy spectrum, are universal, that is, independent of the microscopic details of
their components. Despite an extensive search in many different physical systems, including atoms, molecules and nuclei, the
characteristic spectrum of Efimov trimer states has not been observed so far. Here, we report on the discovery of two bound
trimer states of potassium atoms very close to the Efimov scenario, which we reveal by studying three-particle collisions in
an ultracold gas. Our observation provides the first evidence of an Efimov spectrum and enables a direct test of its scaling
behaviour, providing potentially general insights into the physics of few-body systems.

From nuclei, atoms and molecules up to galaxies, our complex
world is made up of many kinds of aggregate for which
the properties depend on the details of the interactions

between their components. This scenario may drastically change
as one moves to the world of few neutral quantum particles.
The physics of these systems is typically dominated by two-body
interactions, which in the limit of vanishing collision energies can
be described by a single parameter, namely the s-wave scattering
length, independently from the nature of the particles and of the
microscopic shape of their interaction1,2. If the two-body scattering
length becomes resonantly large, the binding of few such particles
into larger aggregates is predicted to become universal, in the sense
that its properties depend only on the scattering length and few
other global parameters3.

These expectations have been so far verified only for two-body
bound states2, and even the seemingly simple case of three particles
is still under investigation. In this frame, a landmark theoretical
result was obtained in 1970 by Efimov4,5. He extended previous
studies6 to show that three identical bosons with large two-body
scattering length a, even without two-body bound states, can form
weakly bound trimer states with a size greatly exceeding the charac-
teristic range r0 of the two-body potential. The binding properties
of such states follow a universal behaviour, regardless of the micro-
scopic peculiarities of their components and of their interaction.
Efimov indeed identified an effective three-particle interaction
potential of the form −(s20 +1/4)/R2, where R is the overall size of
the three-body system and s0 ∼ 1.00624 is a universal parameter4.
This simple potential is known to support an infinite number of
bound states for which the energy spectrum exhibits a peculiar
geometric scaling where two consecutive states are linked by the
relation En = En−1 exp(−2π/s0). This perfect scaling is predicted to
apply only for the special case of a systemwith infinite a. For finite a,
the number of bound states becomes of the order of ln(|a|/r0), the
scaling behaviour for the energies of the ladder is only approximate,
but shows up in the relative values of a at which the trimers dis-
sociate into unbound particles. Analogous results, differing mainly
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because of a different value of the Efimov parameter s0, have
been predicted also for many combinations of three non-identical
particles with at least two resonant interactions7.

In view of its universality, the Efimov effect has sparked a strong
interest in many fields of physics. However, despite an extensive
search among different physical systems including nuclei, atoms
and molecules3,8–10, the peculiar Efimov spectrum has so far eluded
observation. This is mainly due to the difficulty of realizing a system
with resonant two-body interaction fulfilling the requirement
|a|� r0. Ultracold atomic gases have been demonstrated to be a very
appealing system in this respect, because of their ultralow collision
energies and because Feshbach resonances11 enable the scattering
length to be tuned over several orders of magnitude, offering
the unprecedented possibility to reproduce in a single system the
whole Efimov scenario. However, only individual Efimov states
have been found so far through the study of atomic and molecular
collisions in a system of identical bosonic atoms9,10 and in mixtures
of distinguishable particles12–14, and doubts about the realistic
possibility of testing the scaling properties of the spectrum in
experiments have been raised15.

Here, we report on the discovery of the first two states of an
Efimov spectrum in a system composed of ultracold potassium
atoms with resonantly tunable two-body interaction. We find that
the study of a single observable of the system, that is, the recombi-
nation of three atoms into bound states, enables us to extract more
information than expected by current theories about the Efimov
states, and provides a test of their scaling behaviour. We find a
scaling not far from the geometric universal one, despite the fact that
our system is not expected to be fully in the universal regime. Our
findings provide a test ground for advanced few-body theories, and
open a newwindow for studying universal few-body phenomena.

Geometric scaling of three-body observables
To understand the essence of our discovery, let us discuss at first
the basic aspects of an Efimov spectrum for |a|� r0. In this regime,
the behaviour of the trimer states is universal, and the three-body
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