SCIENTIFIC CHALLENGES IN HYDROGEN STORAGE: BREAKTHROUGH AT UVa

Adam Phillips and Bellave Shivaram

University of Virginia

UNIVERSITY of VIRGINIA

- Introduction
- Background and Calculations –
- Experimental Results
- Outlook and Broader Impact

Experimental Methods

Global Energy Inventory

(35 TW) 28 TW Lewis (Caltech) and Nocera (MIT) 30 PNAS Perspective, 2006 25 ? 20 12.8 TW renewable (0.29) nuclear (0.83) 15 15 г **hydro** (0.29) biomass (1.21) 10 10 **coal** (2.96) gas (2.70) 5 5 **oil** (4.52) 0 0 2000 2050

Future Global Energy Inventory?

Nocera, Daedalus, 2006

30

25

20

15

10

5

 $\mathbf{0}$

2050

(35 TW)

28 TW

hydro...limit (0.7 TW)

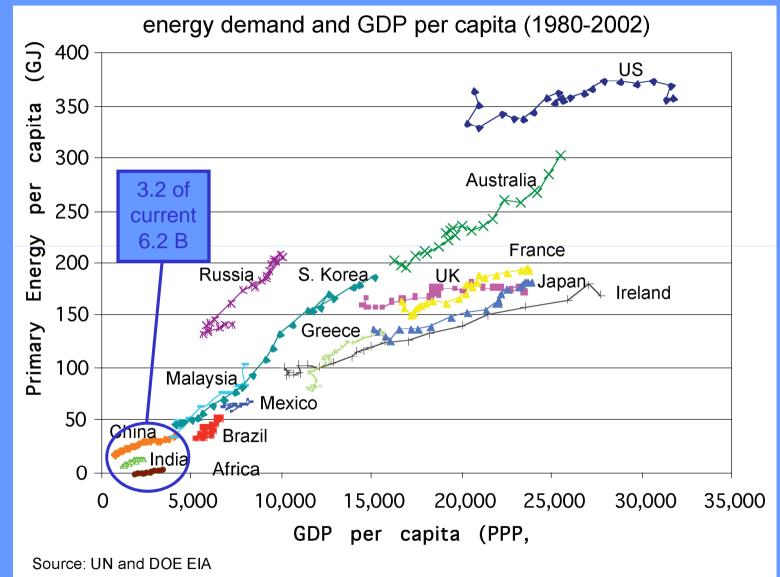
wind...theoretical limit
all class 3 (5.1 m/s
10 m above ground) (2.1 TW)

nuclear... 8000 new nuclear power plants (8 TW)

biomass...

1.28 × 10¹³ m² 20% earth's surface all cultivatable land used for biomass (7-10 TW)

...BUT there is hope


Solar energy is a source of sufficient scale to meet global future energy needs

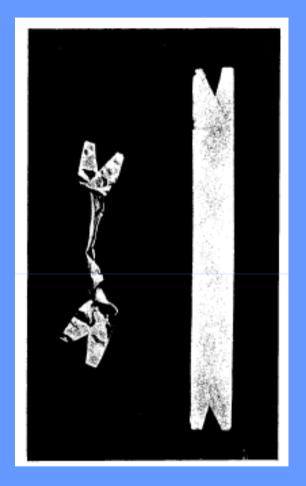
solar energy

 more sun hits surface in 1 hr, than energy used in one year

Energy Use Per Person in Different Countries

Nocera, Dædalus, Fall 2006

Some "Sociological" Remarks


- Need for energy is so enormous that conventional, long-discussed sources will not be enough
- Current technologies not enough, need new science to take care of the future energy demands
 - renewable energy research is not an engineering problem...needs to be tackled as a basic science problem...materials, catalysis and new modes of reactivity or chemical bonds

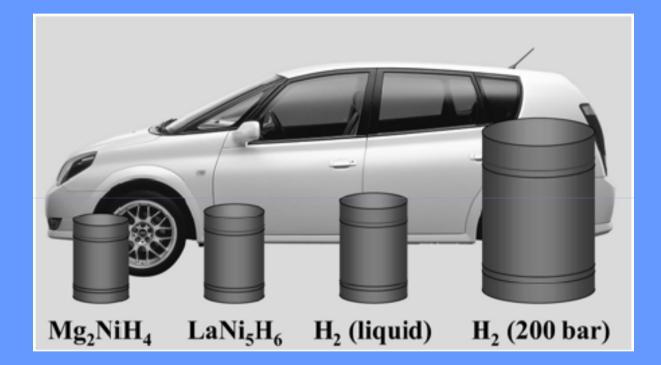
Physics and Chemistry are THE central sciences of energy (light capture, conversion and <u>Storage</u> in bonds or new materials).

The "Basic Physics" of Hydrogen in Materials

- Hydrogen Embrittlement: Pd-Ag
- Metal Insulator Transition: Y₂O₃-H
- Superconductivity: Pd-H
- Ortho Para conversion rates
- Spin Polarized Hydrogen BEC in
- High Pressure Hydrogen Metallic H₂

Pure Pd and Pd-25% Ag alloy same size specimens after 30 cycles of heating and cooling in H_2 atmosphere.

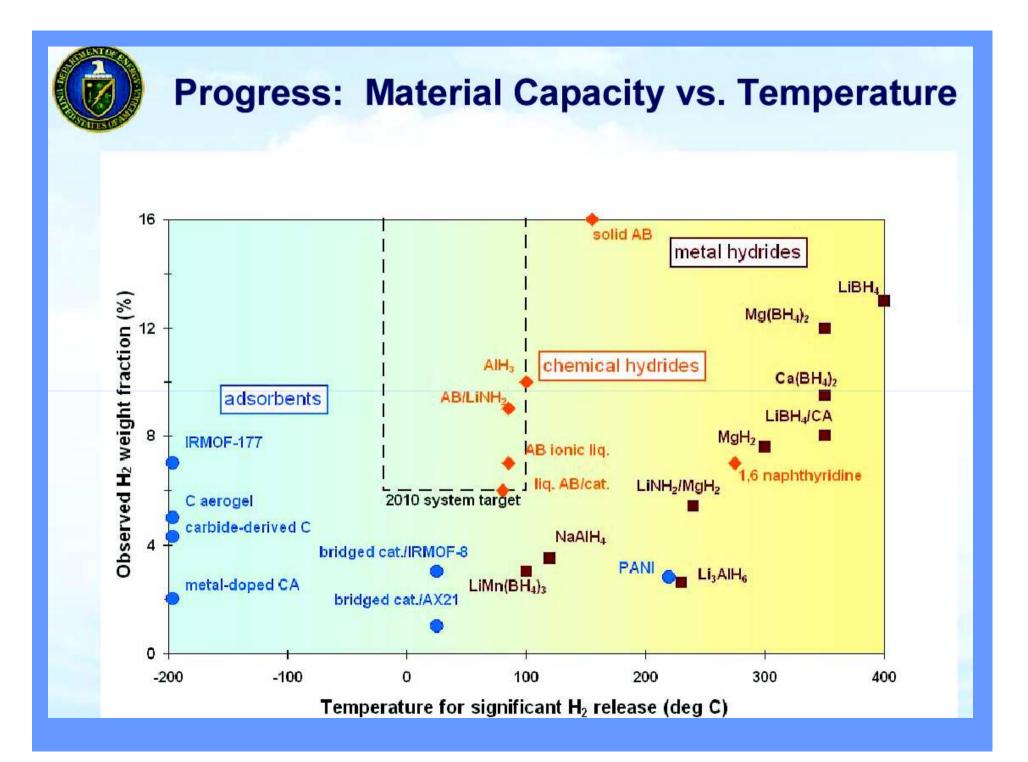
Hydrogen Storage: The "Grand Challenge"


Goal: On-board hydrogen storage for > 300 mile driving range and meet all performance (wt, vol, kinetics, etc.), safety and cost requirements.

These Are System Targets

Examples of Targets	2010	2015
System Gravimetric	6 wt.%	9 wt.%
Capacity (net)	(2.0 kWh/kg)	(3.0 kWh/kg)
System Volumetric	1.5 kWh/L	2.7 kWh/L
Capacity (net)	(45 g/L)	(81 g/L)
Storage System Cost	\$4/kWh	\$2/kWh
	(~\$133/kg H ₂)	(\$67/kg H ₂)
Min. Full Flow Rate	0.02 g/s/kW	0.02 g/s/kW
Refueling Time (for 5 kg)	3 min	2.5 min
Cycle Life (Durability)	1000 cycles	1500 cycles

QUIZ #1: What is it that is striking about the following picture ?


Desirable Characteristics of an Ideal Material

• High capacity absorption at room temperature (volumetric as well as gravimetric).

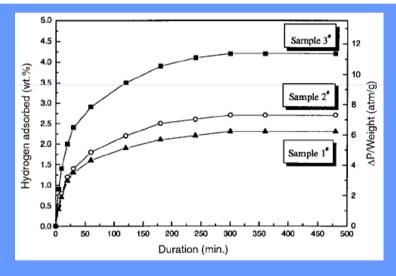
- Desorption at moderate temperatures
- Rapid kinetics
- Zero degradation with repeated cycling.

SUCH A MATERIAL DOES NOT EXIST TODAY !

SO, WHAT ARE THE MATERIALS THAT DO EXIST AN HOW GOOD ARE THEY ?

best of craigslist > western mass > Fill My Valence Electron Shell email this posting to a friend Originally Posted: Sat, 2 Aug 20:33 EDT Fill My Valence Electron Shell Date: 2008-08-02, 8:33PM EDT H2 A little about me: My name is Selenium, but you can just call me Se. I take good care of myself--78.96 amu and disease free. I've been ionized before, but I'm not really into that anymore. but I am not interested in that. can I'm looking for someone to really bond with. Covalently. I want to be in a truly stable relationship. Do you have what I need? I'm not just looking for another Bromine. I want someone who will treat me like a princess and together we can with high energy become noble, save the world.

- Location: Unknown
- it's NOT ok to contact this poster with services or other commercial interests


PostingID: 780731449

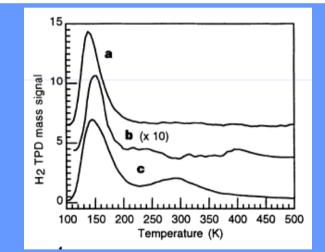
Copyright © 2008 craigslist, inc. terms of use privacy policy feedback forum

"Coloring" Research

Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature

C. Liu,¹ Y. Y. Fan,¹ M. Liu,¹ H. T. Cong,² H. M. Cheng,^{1*} M. S. Dresselhaus,^{3*}

Science, 286, 1127,

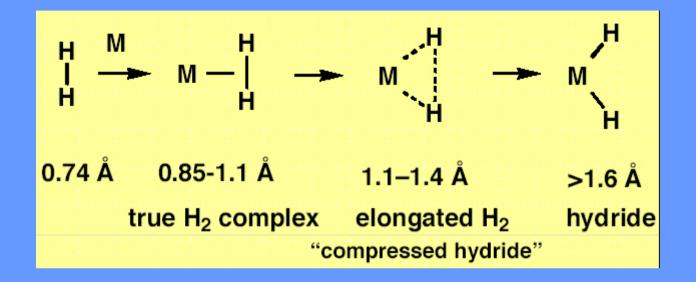

1999.

Storage of hydrogen in single-walled carbon nanotubes

A. C. Dillon*, K. M. Jones*, T. A. Bekkedahl*, C. H. Kiang†, D. S. Bethune† & M. J. Heben*

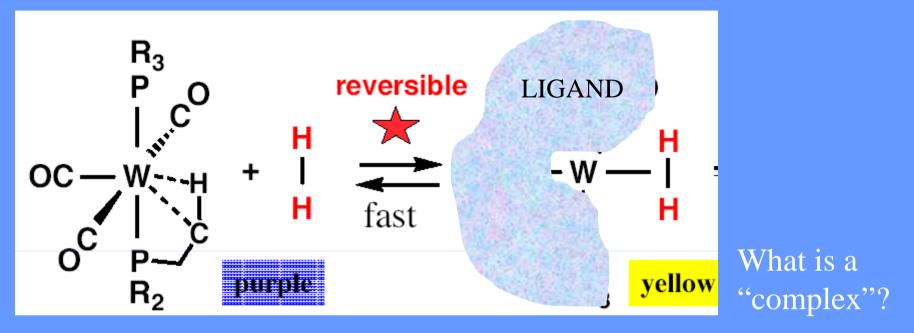
* National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401-3393, USA

† IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099, USA


Nature, <u>386</u>, 377, 1997

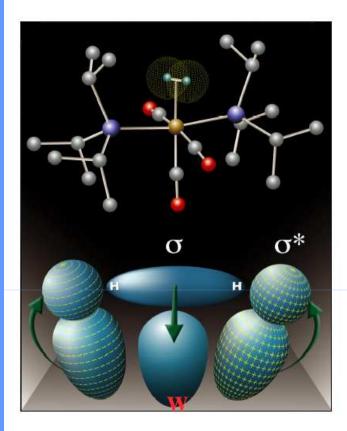
But Co is used as catalyst for making CNT's.

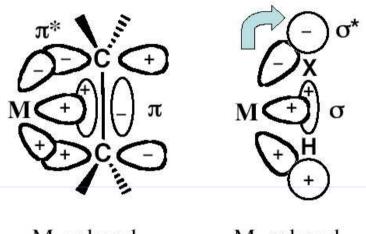
Some More Sociological Remarks


- "NANO" is highly interdisciplinary.
- Involves interplay of physics, chemistry, materials science etc.
- Hydrogen storage research is a good example of this interplay (as you will see).

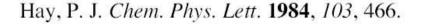
H-H Bond distances

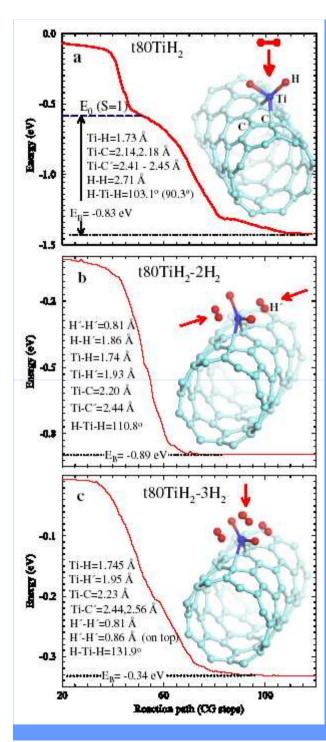
- Continuous range possible
- Another way to characterize the "ideal" storage material


Kubas Complex - 1984


Some 562 of these "complexes" are known today

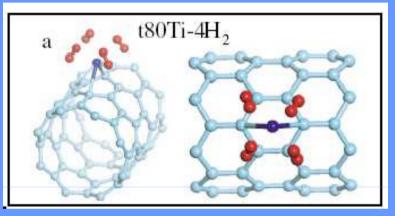
In all of them only 1 H_2 is reversibly absorbed – with the exception of one where 2 H_2 molecules participate... SPECIAL BRANCH OF ORGANO-METALLIC CHEMISTRY





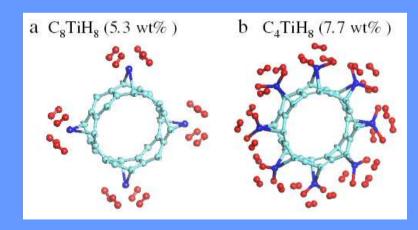
Bonding in W(CO)₃(PⁱPr₃)₂(H₂): donation of the bonding σ electrons in H₂ to a filled metal d orbital and backdonation to the antibonding orbital (σ^*) of H₂ backdonation is critical in stabilizing H_2 and other σ complexes

M–π bond olefin complex $M-\sigma \text{ bond}$ X = H, C, Si, etc

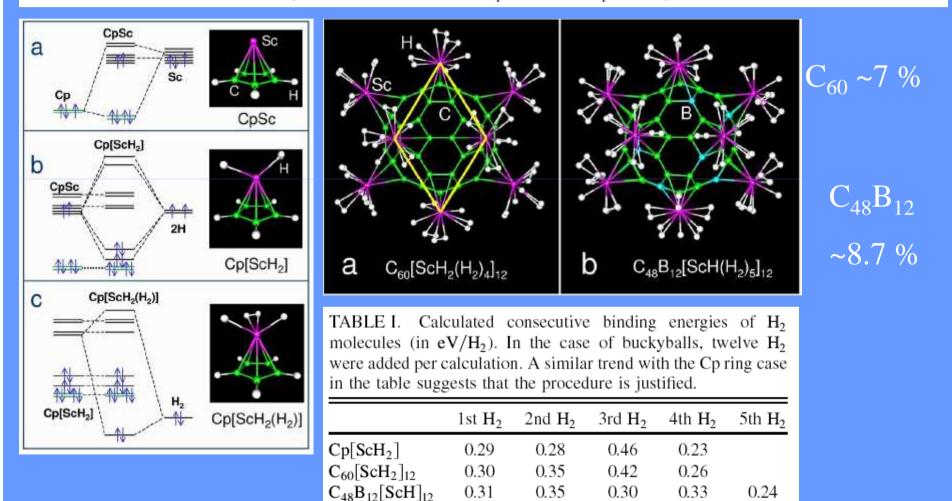

PRL 94, 175501 (2005) PF

PHYSICAL REVIEW LETTERS

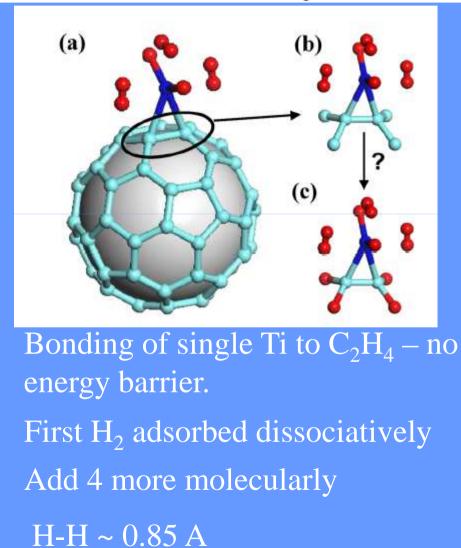
Titanium-Decorated Carbon Nanotubes as a Potential High-Capacity Hydrogen Storage Medium


T. Yildirim¹ and S. Ciraci²

¹NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA ²Physics Department, Bilkent University, 06800 Bilkent, Ankara, Turkey (Received 5 November 2004; published 5 May 2005)


t80Ti-4H₂.

H-H 0.84 A Ti-H 1.9 A Ti-C 2.17 A Ti-C' 2.4 A


Hydrogen Storage in Novel Organometallic Buckyballs

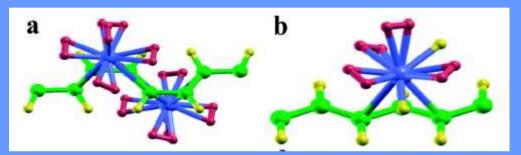
Yufeng Zhao, Yong-Hyun Kim, A. C. Dillon, M. J. Heben, and S. B. Zhang National Renewable Energy Laboratory, Golden, Colorado 80401, USA (Received 8 December 2004; published 22 April 2005)



Transition-Metal-Ethylene Complexes as High-Capacity Hydrogen-Storage Media

E. Durgun,^{1,2} S. Ciraci,^{1,2,*} W. Zhou,^{3,4} and T. Yildirim^{3,4}

Dimerization and polymerization of Ti_2 - C_2H_4

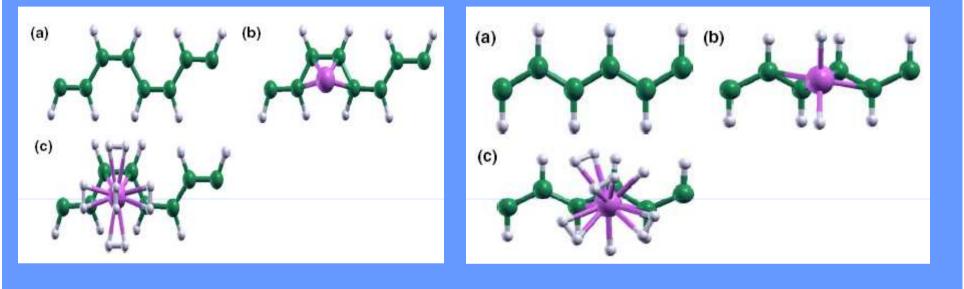

REDUCES # H₂ ADSORBED!

Proposals to prevent dimerization

Combinatorial Search for Optimal Hydrogen-Storage Nanomaterials Based on Polymers

Hoonkyung Lee, Woon Ih Choi, and Jisoon Ihm*

Department of Physics and Astronomy, FPRD, and Center for Theoretical Physics, Seoul National University, Seoul 151-747, Korea (Received 24 March 2006; published 4 August 2006)



Materials	$N_{\rm ads} - N_{\rm des}$	$N_{\rm use}/N_{\rm max}$	$G_{\rm use}/G_{\rm max}~({ m wt}\%)$	$V_{\rm use}/V_{\rm max}~({\rm kg}/{\rm m}^3)$
cis-PA	5.00 - 1.84	3.16/5	7.6/12	63/100
PPY	3.00 - 0.05	2.95/3	4.9/5	33/34
PANI-out	3.00 - 0.96	2.04/3	4.1/6	31/46
$C_{48}B_{12}Sc_{12}$	2.68 - 0.02	2.66/5	4.7/8.8	23/43
CNT	1.95 - 0.35	1.60/3	4.1/7.7	Not available

PHYSICAL REVIEW B 76, 195110 (2007)

Ab initio study of dihydrogen binding in metal-decorated polyacetylene for hydrogen storage

Materials	ZPE	$N_{\rm ads} - N_{ m des}$	$N_{\rm use}/N_{\rm max}$	G_{use}/G_{max} (wt %)
Ti-decorated cis-PA	Yes	5.00-1.91	3.09/5	7.4/12
Sc-decorated cis-PA	Yes	0.86 - 0.00	0.86/5	2.1/12
Ti-decorated trans-PA	Yes	2.57 - 0.10	2.47/4	6.2/10
Sc-decorated trans-PA	Yes	1.90-0.05	1.85/5	4.4/12

Calcium as the Superior Coating Metal in Functionalization of Carbon Fullerenes for High-Capacity Hydrogen Storage

Mina Yoon,^{1,2} Shenyuan Yang,^{3,2} Christian Hicke,⁴ Enge Wang,³ David Geohegan,¹ and Zhenyu Zhang^{1,2}

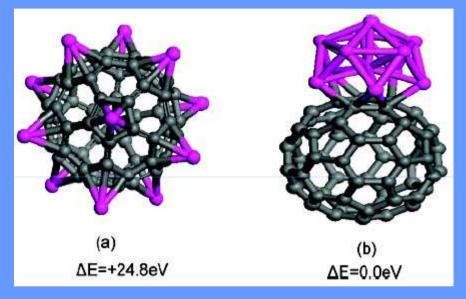
TABLE I. Hydrogen binding energies (in eV) for MC_{60} (M = Ca, Sr). For Ca, the GGA and LDA results are also compared.

Ca	0.222	0.214	0.233	0.206	0.204
(LDA)	0.413	0.396	0.415	0.376	0.385
Sr	0.200	0.192	0.202	0.181	0.179

Even More Sociological Remarks

- How come all these PRLs are only "theory"?
- Is it yet another "quirk" of our funding system ?

Encouraging Predictions from calculations!


But tempered, again by theorists.....

Agglomeration or Clustering Problems – Guidelines from Theory

Clustering of Ti on a C₆₀ Surface and Its Effect on Hydrogen Storage

Qiang Sun,[†] Qian Wang,[†] Puru Jena,^{*,†} and Yoshiyuki Kawazoe[‡]

Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284, and Institute for Material Research, Tohoku University, Sendai 980-8577, Japan

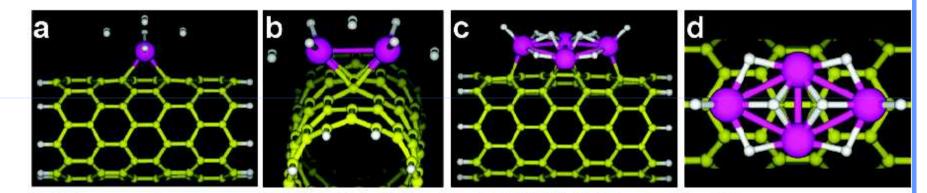
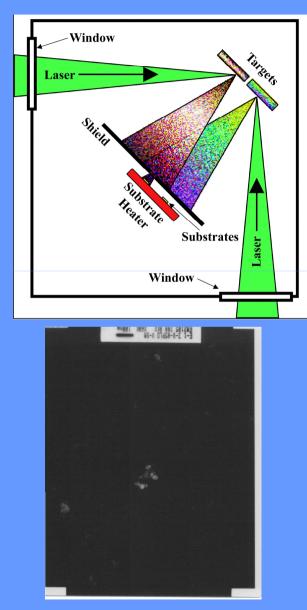
The clustering of Ti atoms on the carbon nanostructures not only significantly changes the nature of hydrogen bonding but also greatly reduces the weight percentage of hydrogen storage.

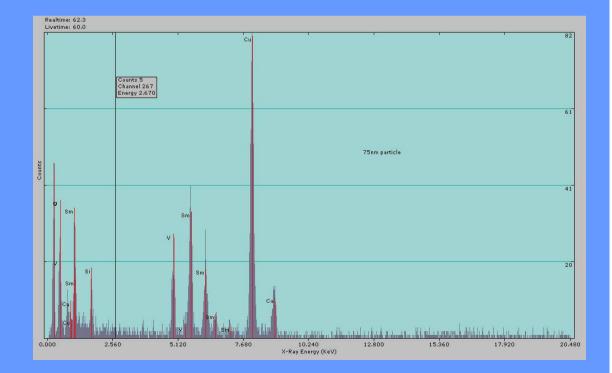
Clustering of Sc on SWNT and Reduction of Hydrogen Uptake: *Ab-Initio* All-Electron Calculations

Pavel O. Krasnov,[†] Feng Ding,[†] Abhishek K. Singh, and Boris I. Yakobson*

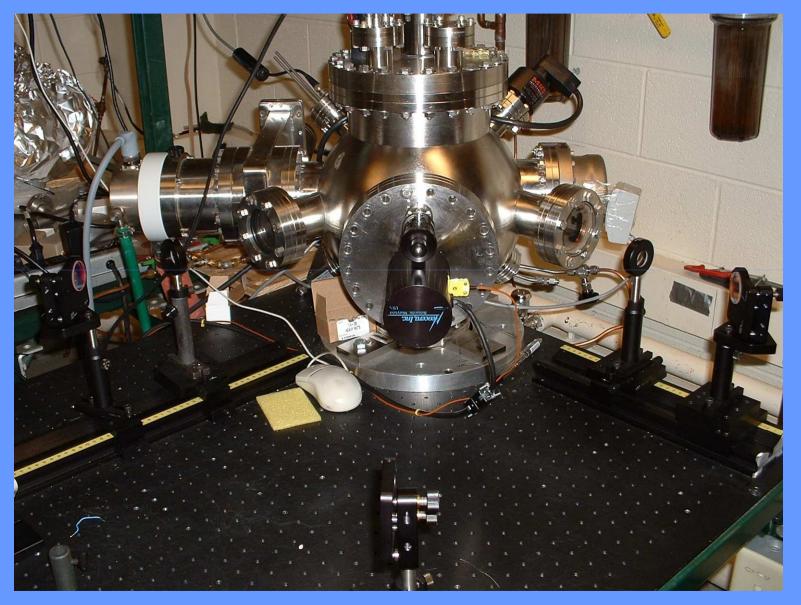
Department of Mechanical Engineering & Materials Science, and Department of Chemistry, Rice University, Houston, Texas 77005

17980 J. Phys. Chem. C, Vol. 111, No. 49, 2007

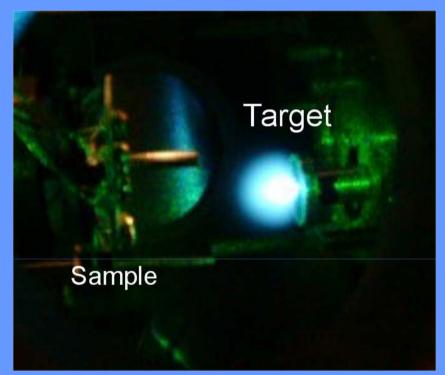




Figure 4. Hydrogen uptake on aggregated Sc_n (n = 1, 2, 4) clusters on (8,0) SWNT. (d) is the top view of (c).

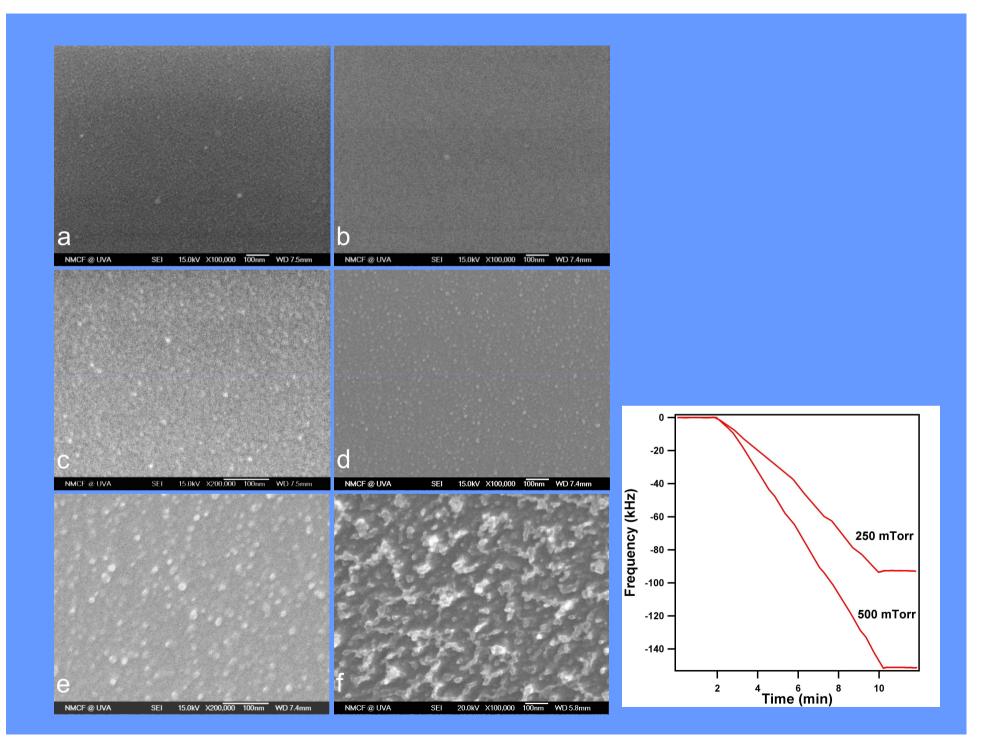
DIGRESSION ON EXPERIMENTAL METHODS

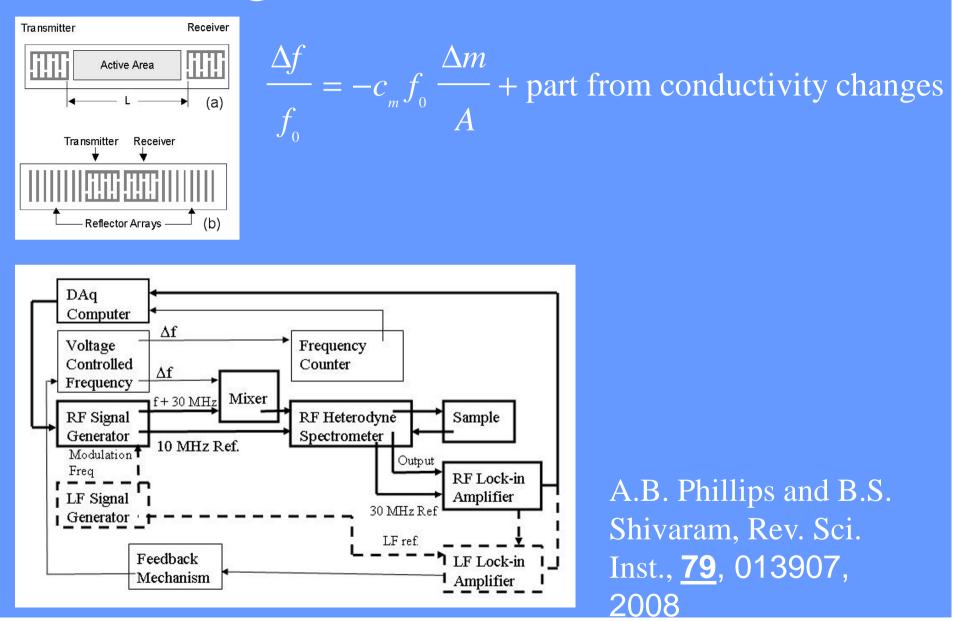

Synthesis of Nanoparticles - PLD

Sm-V, V, Nb, Nb-Al etc.

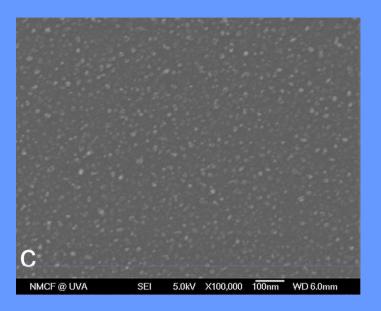


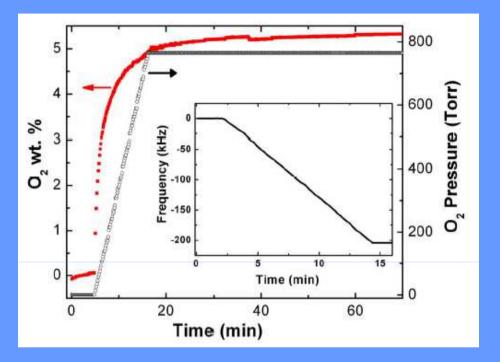
Pulsed Laser Deposition Apparatus


P.L.D. Basics

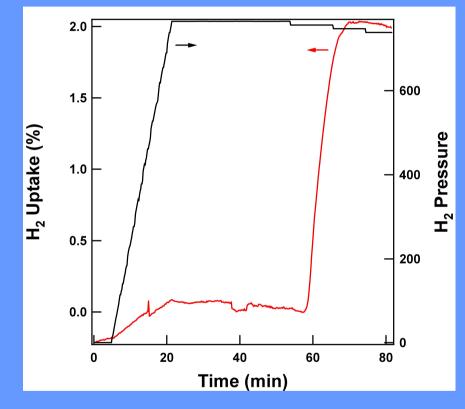


Rotating TargetVisible PlumeMostly Neutrals – but also some ions are producedNd – YAG laser, 10 Hz., 15-60 kJ/m²


PLD "denominations"

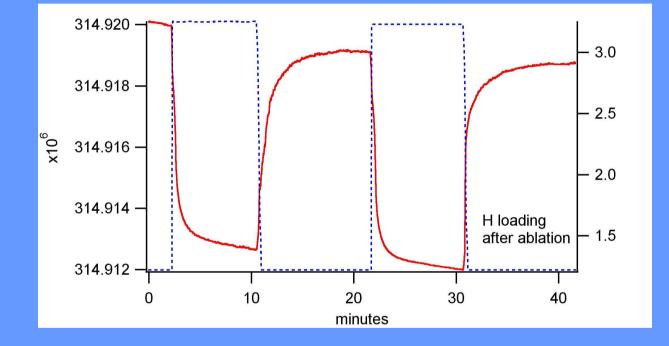

Sensing with Surface Acoustics

Sensing with Surface Acoustics

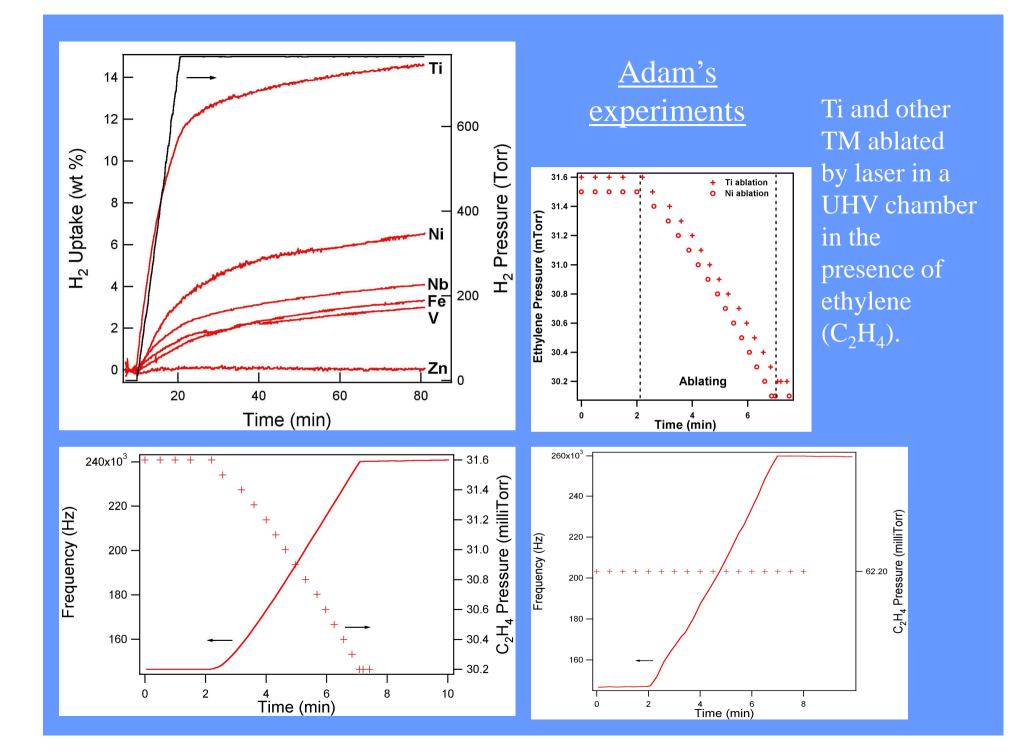

Through SEM measurements of nanoparticles on Si and TEM grids we measure directly the average radius r = 7.32 + -1.09 nm.

 $r = 7.63 + -0.18 \text{ nm for } V_2O_5$ $c_m = 4.42 \times 10^{-9} \text{ cm}^2 / \text{MHz ng}$

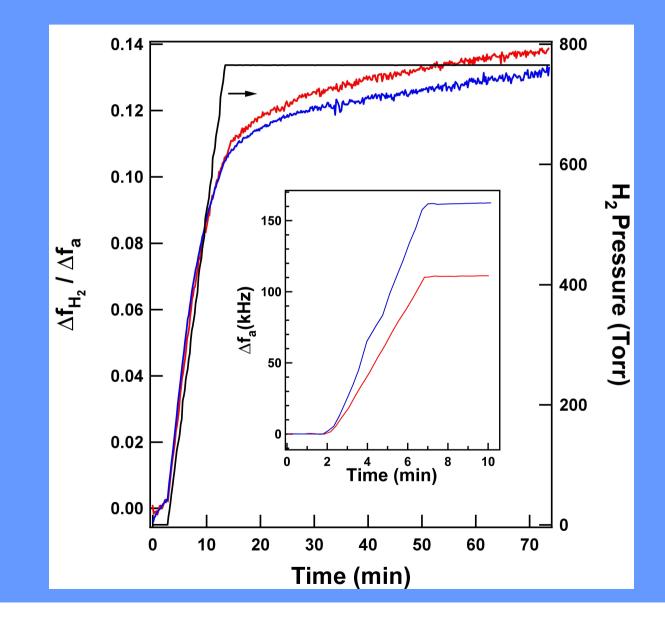
A.B. Phillips and B.S. Shivaram, Appl. Phys. Lett., **91**, 153109, 2007.


Sensing with Surface Acoustics

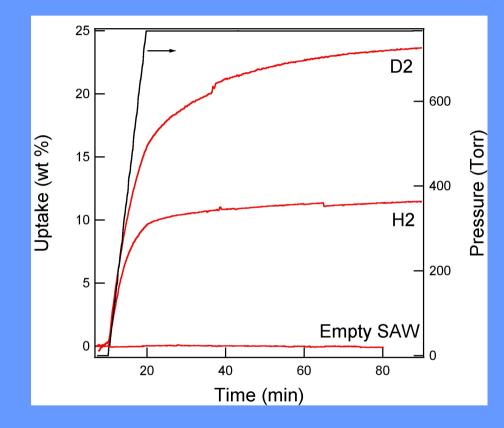
K. Hirano et al. / Journal of Alloys and Compounds, 408–412, 351–354 (2006).


H₂ absorption in Sm nanoparticles Phillips & Shivaram, RSI, 2007.

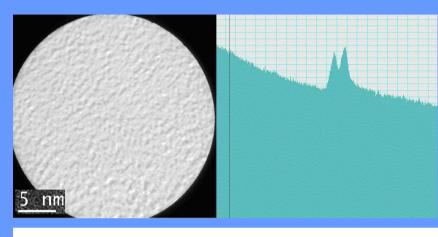
Hydrogen Cycling in Vanadium Nanoparticles

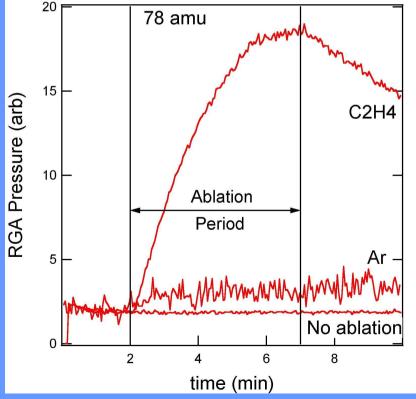


A.B. Phillips, G. Myneni and B.S. Shivaram, AIP. Proc., 2003.


END OF DIGRESSION ON EXPERIMENTAL METHODS

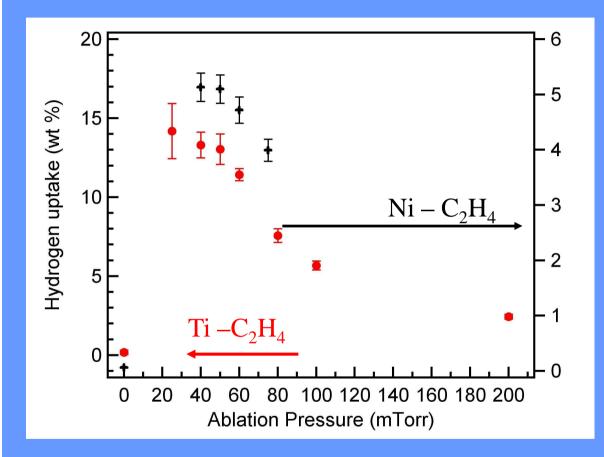
Acoustic Sensors at Different Frequencies Give The Same Result for H₂ Uptake




How do we know it really is hydrogen (H_2) that is getting in ?

Independent exposure to D₂ indicates doubling of mass accumulated on sensor.

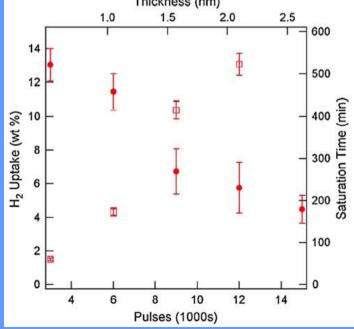
Other characterization experiments.



TEM characterization – $Ti(C_2H_4)$

Gas phase characterization Ti $(C_2H_4) \equiv 76$ amu

HRTEM & EELS Spectra – $Ti(C_2H_4)$ Complex nm 0 nm e filosof starte en la segunda al filosoficien a segundada da segundada en la segundada da segundada en la seg 5000 5000 54000 52000 illeli^an ann an Albaneo (1177 OUTSIDE THE PARTICLE **INSIDE THE PARTICLE**


Pressure Dependence of H₂ Uptake

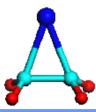
T.E.M. indicates that nanoparticles (and hence clustering of metal atoms) are formed for ablations at ethylene pressures above 100 mtorr.

Reduced hydrogen uptake is consistent with cluster formation.

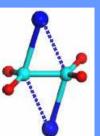
Element Experimen		Nb ± 0.3	1 =	V ± 0.3		Fe ± 0.	Zn 3 0		Ti ± 0.4	2	Ni ± 0.3		Expe	erim	ent	
PRL 97, 226102 (2006) PHYSICAL REVIEW LETTERS week ending 1 DECEMBER 2006 TABLE I. The binding energies (in eV) with respect to atomic and bulk energies of various metals (<i>M</i>). The last two rows indicate the maximum number of H ₂ molecules bonded to each metal and its average binding energy (in eV). TO							Th.									
Property/M	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Zr	Mo	W	Pd	Pt	1 11.
$E_B (M-\text{atomic})$ $E_B (M-\text{bulk})$ $\max H_2/M$ $E_B (\text{per H}_2)$	1.39 -2.72 - 5 0.39	1.47 -3.66 5 0.45	1.27 -4.13 5 0.43	0.05 -3.57 5 0.35	0.37 -3.20 5 0.34	0.83 -1.74 5 0.26	1.30 -2.53 3 0.41	0.70 -2.19 2 0.87	1.41 -2.25 2 0.14	none - -	1.69 -4.44 5 0.57	0.37 -5.84 5 0.77	$ \begin{array}{r} 1.18 \\ -7.18 \\ 5 \\ 0.90 \end{array} $	1.56 -2.24 2 0.58	$ \begin{array}{r} 1.78 \\ -3.56 \\ 2 \\ 0.95 \end{array} $	
14 12		kness (ni 1.5 T	m) 2.0 1	2.5	600											

The samples we study are very thin – roughly a monolayer !

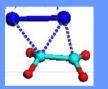
All of the numbers are based on the **assumption** that we are making purely $Ti(C_2H_4)$.

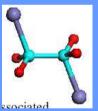

But there is a problem – we measure the majority species in our gas phase experiments as 78 amu not 76 amu !

What is it that we are making in our chamber ?


DOES IT MATTER ?!

It is better that samples that are not "pure" and that they also exhibit large H_2 absorption !

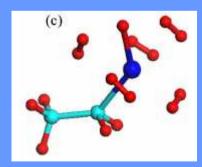

Follow Up work from NIST group.... Zhou et. al., PRB, Oct., 2007.


C_2H_4 - M

 $C_2H_4 - M_2$ (sandwich)

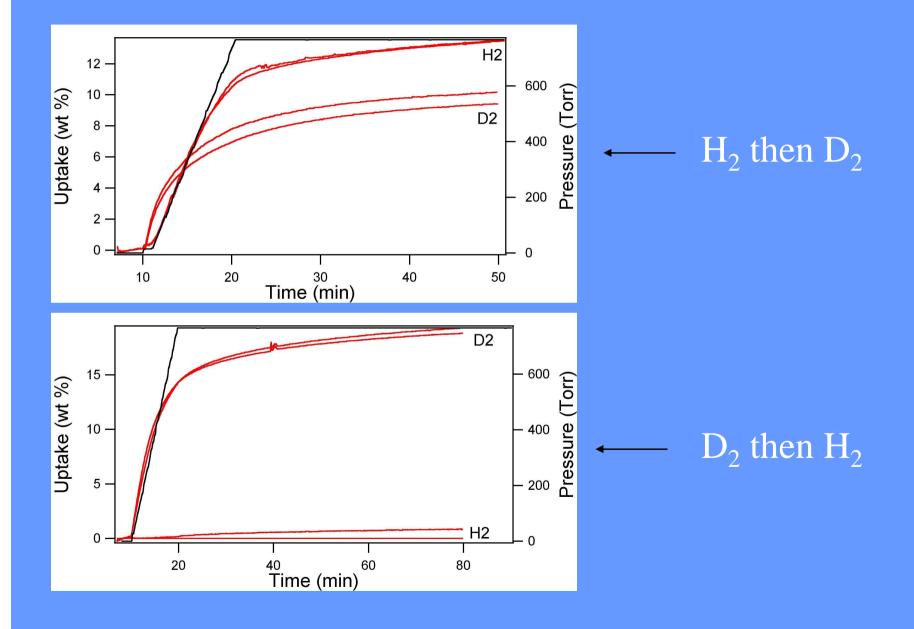
 $C_2H_4 - M_2$ (dimer parallel)

 $CH_2M - MCH_2$

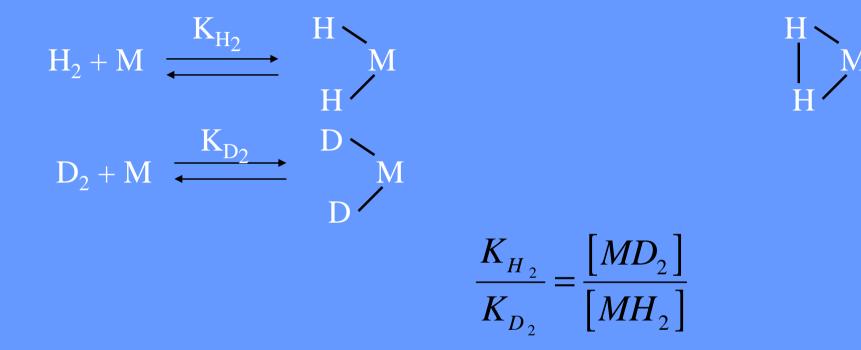

 $C_2H_4 - M_2$ (dimer perpendicular)

dissociated

W. Zhou et. al., PRB, Oct 2007.



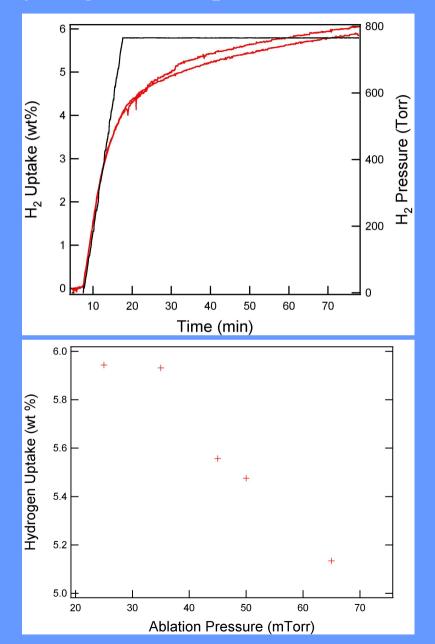
"Titanol"


What about desorption ? Is the H₂ going to come out?

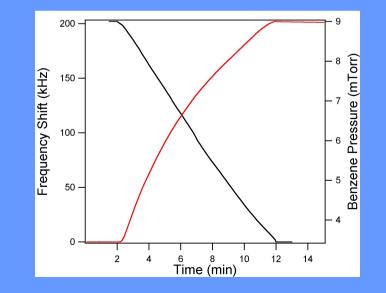
D₂ exchange reactions

Equilibrium Isotope Effect

• Free D-D bond is 1.8 kcal/mol stronger than free H-H bond.

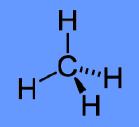


Metal Complex	Product $M(H)_2$ or $M(\eta^2-H_2)$	= EIE	Temp (°C)
$W(PMe_3)_4I_2$	$W(H)_2 W(\eta^2-H_2) Cr(\eta^2-H_2)$	0.63	60
$W(CO)_3(PCy_3)_2(N_2)$		0.70	22
$Cr(CO)_3(PCy_3)_2(N_2)$		0.65	22

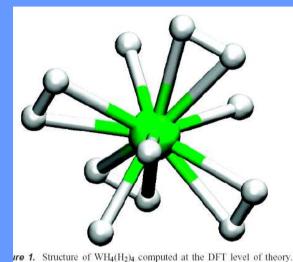

Bender & Kubas, 2000

ORGANICS OTHER THAN ETHYLENE

Hydrogen Absorption in Transition Metal – Benzene (Ring) Complexes



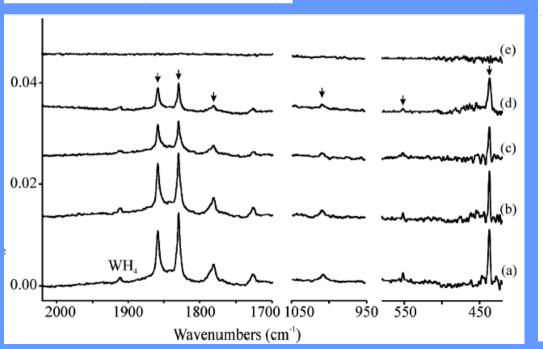
Benzene predicted to absorb ~ 6% by weight of hydrogen (Wecka et. al., J. Phys. Chem., 2008)


OTHER RESULTS

• Methane runs - small ~1.8% immediate uptake of H_2

- Furthermore there is a very small <u>increase</u> in pressure when ablating (~0.2 mtorr at 250 mtorr).
- Ti-C₂H₄ complexes also absorb methane (~27%).
- TM-C₂H₄(H₂)n complexes unstable to O₂. But exposure to CH₄ appears to prevent oxidation.

CON-CURRENT IMPORTANT WORK AT UVa

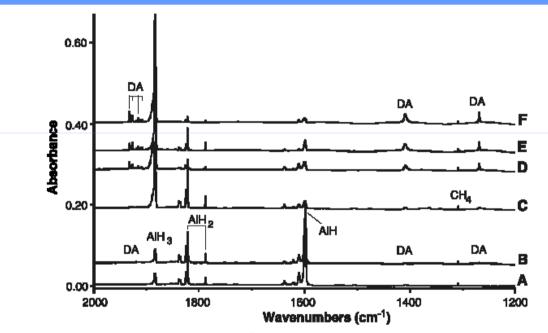


Prof. Lester Andrews' Laboratory - Chemistry

Xuefeng Wang, Lester Andrews, Ivan Infante, and Laura Gagliardi, **J. AM. CHEM. SOC. 2008**, 130, 1972-1978.

Wt% ~ 8/188

Table 3. Frequencies (cm⁻¹) Calculated at the DFT/BP86/TZVPP Level of Theory for $WH_4(H_2)_4$ (Singlet State, D_{2d} Symmetry)

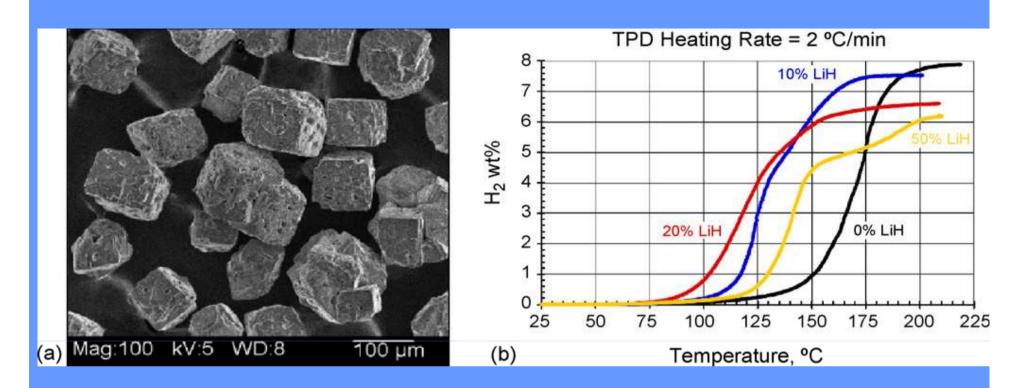


obs freqª	calc freq	int⁵	symm⁰	mode description
	351	0	bı	
437.2	414	171	b ₂	bending H2-W-H2
	428	6 x 2	е	bending H2-W-H2
	499	0	a_1	
	539	0	a ₂	
551.5	565	38×2	е	bending H-W-H
	681	0	b_1	
	748	8×2	е	bending H-W-H ₂
	775	0	a ₂	
	816	16×2	e	bending H-W-H ₂
	842	0	b ₂	
	871	0	a_1	
	897	0	b_1	
1007.6	1065	172×2	e	bending H2-W-H2
	1160	3	b ₂	bending H ₂ -W-H ₂
	1284	0	a_1	
	1741	0	b_1	asym stretch W-H ₂
	1767	0	a ₂	stretch W-H ₂
1782.0	1790	40×2	e	asym stretch W-H ₂
1830.6	1844	212	b ₂	sym stretch W-H
1859.3	1868	53×2	е	asym stretch W-H
	1903	0	a_1	totally sym stretch W−H
2500	2657	208×2	е	stretch H-H
	2683	11	b ₂	stretch H-H
	2740	0	a_1	totally sym stretch H−H

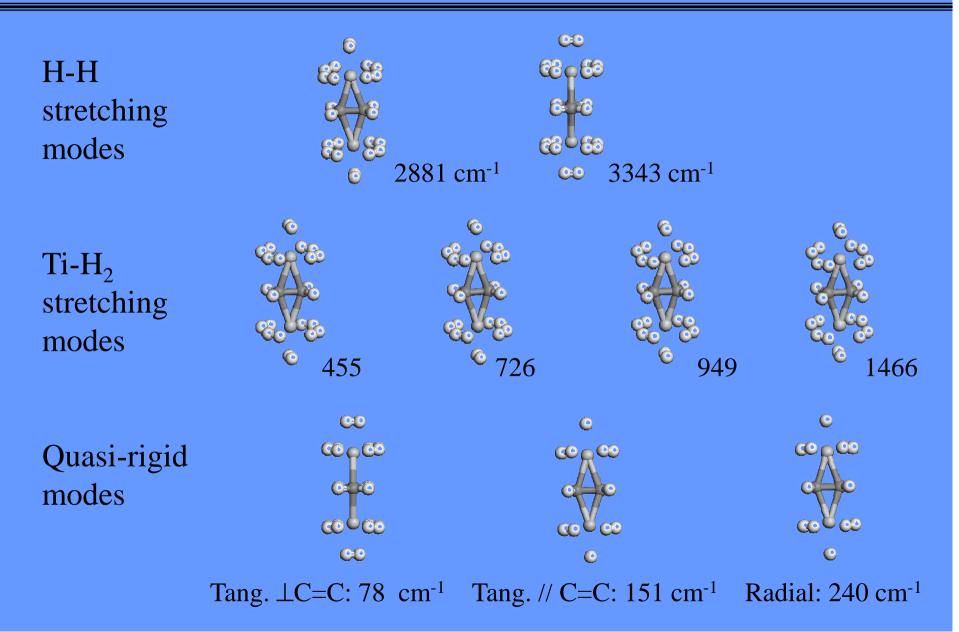
The Infrared Spectrum of Al₂H₆ in Solid Hydrogen

Lester Andrews* and Xuefeng Wang

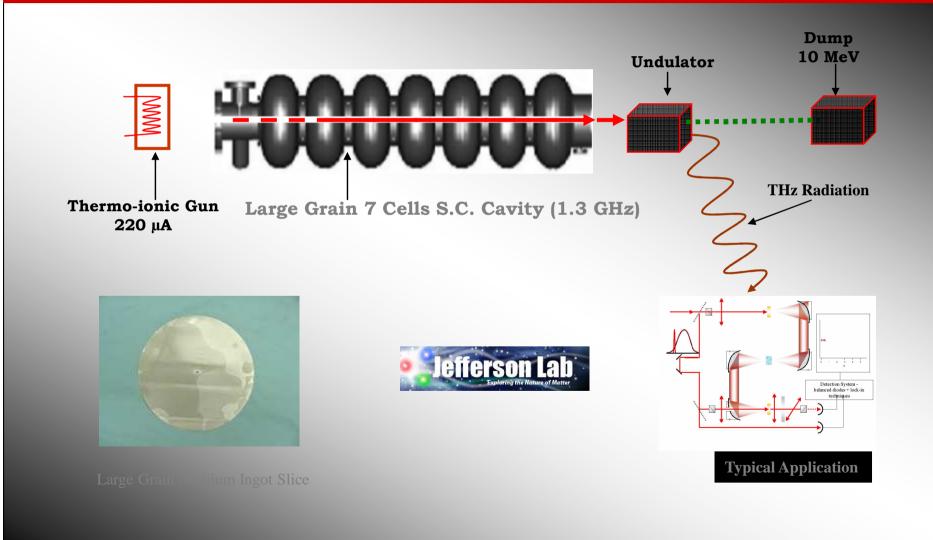
Science, **299,** 2049, 2003.



Wt% ~ 6/54~12%


Table 1. IR absorptions (in cm⁻¹) observed from codeposition of laser-ablated Al atoms and pure H₂ or D₂ at 3.5 K. –, not observed.

H ₂	D2	Identification
1932.3	1414.9	DA
1927.2	1413.4	DA site
1915.1	1402.9	DA
1909.1	1401.0	DA site
1883.7	1378.7	AlH ₃
1838.4	1346.1	Al_2H_4
1835.8	1343.9	Al_2H_4
1825.5	1306.4	Al_2H_4
1821.9	1337.2	AlH ₂
1787.8	1293.1	AlH ₂
1638.1	1183.2	AlH ₄
1610.7	1169.6	AlH site
1598.7	1163.1	AlH
1408.1	1028.5	DA
1268.2	919.7	DA
835.6	607.5	DA
777.9	561.8	AlH ₃
711.3	522.0	AlH ₃
702.4	510.6	DA
631.9	-	DA

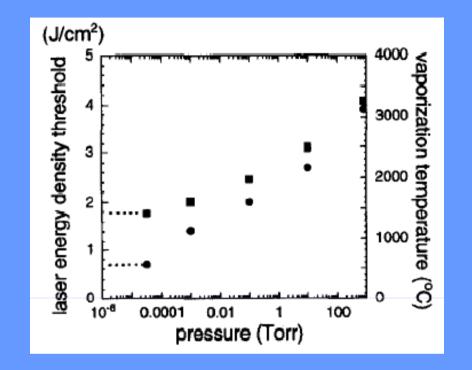


AlH₃ metal hydride particles and (b) H₂ desorbed vs. temperature for AlH₃ doped with LiH. The doped samples (yellow, blue, and red curves) show significantly lower temperatures of desorption than the undoped samples (black curve).

C₂H₄Ti₂+10H₂: Distinctive Modes

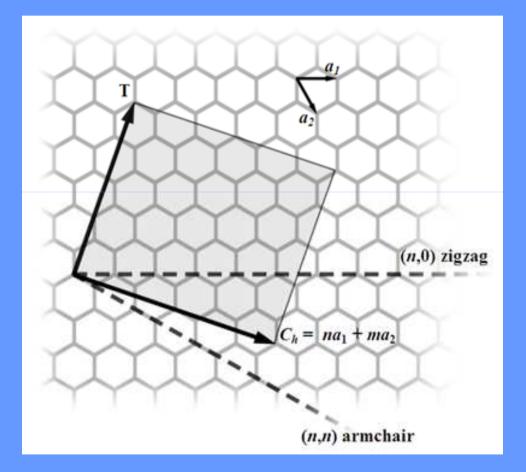
Compact-Intense-Wideband Pilot THz Source

FUTURE WORK


- Spectroscopy urgently needed !
- Test other predicted materials there are lots of them replace C with B etc.
- Size selection of ablated species "magic numbers"
- Lighter elements Li, B?
- Compositionally Challenged Metal Alloys
- Desorption
- Recyclability ?
- Large scale production ???

BROADER IMPACT OF OUR WORK

- Hydrogen Storage of course !
- Astro-chemistry "Chemistry of the Universe".
- Testing DFT refinements needed to handle D_2 vs H_2 (biggest isotopic effect you can find).
- H_2 and D_2 targets for nuclear physics
- Quantum Impurity Solids
- Alternate route towards metallic hydrogen


ACKNOWLEDGEMENTS

- A. B. Phillips (U. Toledo)
- G. Myneni (JLab)
- Lester Andrews (UVa)
- David Hinks (Argonne)
- Stu Wolf (UVa)
- Taner Yildirim and Wei Zhou (NIST)
- Tom Anuniwat (UVa)
- Anjali Manivannan (CMU)

Laser-energy-density threshold (circle) and vaporization temperature (square) versus pressure for silicon.

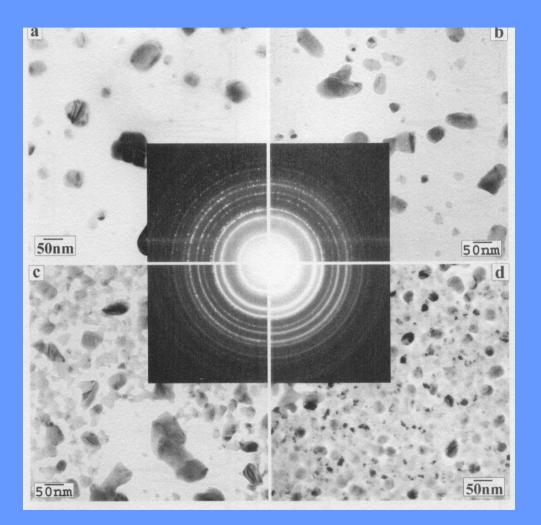
Carbon Nanotube Nomenclature

1910 - "for work on the equation of state for gases and liquids"

1918 - "in recognition of the services he rendered to the advancement of Physics by his discovery of energy quanta"

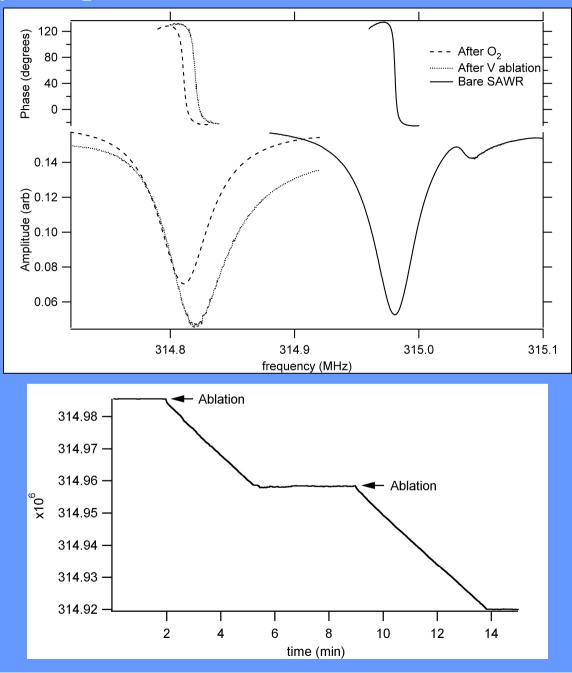
1962--Lev Davidovich Landau "for his pioneering theories for condensed matter, especially liquid helium"

2003 - "for pioneering contributions to the theory of superconductors and superfluids"



1977 - "for their fundamental theoretical investigations of the electronic structure of magnetic and disordered systems"

 $1972 \ \ \text{"for their jointly developed theory of superconductivity, usually called the BCS-theory"}$


Exposing nanoparticles to air does not destroy the original crystal structure

GaAsSb alloy nanoparticles, 550 ⁰C.

0.7 J/cm2 to 1.6 J/cm2 and 600 to 900 pulses.

Frequency Response of the Surface Acoustic Wave Sensor

J. Phys. Chem. 1992, 96, 4879-4883

Chemistry and Kinetics of Primary Reactions of Ti⁺ with H₂O, NH₃, CH₃OH, C₂H₄, and C₃H₆ at Thermal Energies

B. C. Guo, K. P. Kerns, and A. W. Castleman, Jr.*

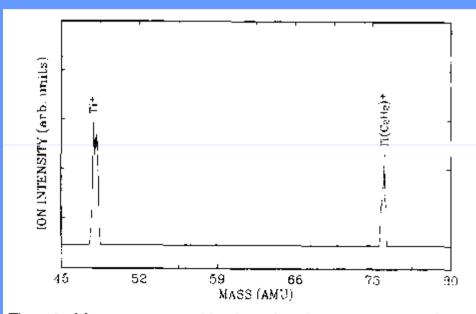


Figure 2. Mass spectrum resulting from the primary reaction of Ti^+ with the ethylene molecule at an ethylene partial pressure of 0.08 mTorr. The peaks labeled are Ti^+ and $Ti(C_2H_2)^+$ from the primary reaction.

 $Ti^+ + C_2H_4 = Ti^+(C_2H_2) + H_2$