Nucleon Spin: Results and Challenges on both Longitudinal and Transverse Spin

J. P. Chen, Jefferson Lab, Virginia

Seminar @ Los Alamos, February 19, 2009

- Introduction
- Highlights on JLab Longitudinal Spin Program:
 - Spin Sum Rules and Polarizabilities
 - Higher Twists: g₂/d₂
 - Quark-Hadron Duality
 - Spin Structure at High x: Valence Quark Distributions
- Transverse Spin and TMDs
- Outlook: 12 GeV Energy Upgrade

Introduction

- Structure and interactions
 matter: atoms → nuclei → e+nucleons → quarks
 interactions: strong, EM, weak, gravity
- Nucleon structure and strong interaction energy and mass confinement spin and angular momentum

QCD and Nucleon Structure

- Strong interaction, running coupling ~1
 - -- QCD: accepted theory
 - -- asymptotic freedom (2004 Nobel)
 - perturbation calculation works at high energy
 - -- interaction significant at intermediate energy quark-gluon correlations
 - -- confinement interaction strong at low energy
 - -- Chiral symmetry
 - -- theoretical tools: pQCD, OPE, Lattice QCD, ChPT, ...
- Major challenges: Understand and test QCD in strong interaction region → Study and understand nucleon structure
- Spin Structure Study:
 - -- study QCD and nucleon structure
 - -- very rich program: 'crises' and 'puzzles'

 α_{s}

 \boldsymbol{E}

Nucleon Structure

Spin Sum Rule?

GDH Sum Rule

Bjorken Sum Rule

Transverse Spin Sum Rule?

- Nucleon: proton =(uud) and neutron=(udd) + sea + gluons
- Global properties and structure

Mass: 99% of the visible mass in universe

~1 GeV, but u/d quark mass only a few MeV each! Spin: ½, but total quarks contribution only ~30%!

Magnetic moment: large part is anomalous, >150%! Axial charge Tensor charge ...

Polarizabilities (E, M, Spin, Color,)

Sum rules: relate global property to integral of structure information

Spin and Magnetic Moment (of electron)

1921 Otto Stern and Walther Gerlach

Ag molecular-beam passing through inhomogeneous magnetic field split into two beams

- Ag atom has a magnetic moment Bohr magneton of the electron: $\mu_e = e\hbar/2m_ec$
- 1925 Uhlenbeck and Goudsmit
 - spin: internal property, like angular momentum electron spin $S_e=1/2 \rightarrow two$ eigenstates +- 1/2
- Dirac:
 - relativistic effect: spin $\leftarrow \rightarrow$ magnetic moment
- electron is point-like particle (no internal structure observed so far)

Anomalous Magnetic Moment (of Proton)

1933 Otto Stern

Magnetic moment of the proton

- -- expected: $\mu_p = e\hbar/2m_pc$ (since $S_p = 1/2$)
- -- measured: $\mu_p = e\hbar/2m_pc(1+\kappa_p)$ first 'spin crisis' anomalous magnetic moment (a.m.m) $\kappa_p = 1.5 + -10\%$
- 1943 Nobel Prize awarded to Stern

for 'development of the molecular beam method' and 'the discovery of the magnetic moment of protons'

> now: $\kappa_p = 1.792847386 + 0.00000063$ and $\kappa_n = -1.91304275 + 0.00000045$

A.M.M and Its Implications

Anomalous magnetic moment is an evidence for an internal structure \rightarrow finite size

Finite size → Form factors

Dirac form factor: normal relativistic effect Pauli form factor: relate to a.m.m. part

- Finite size $\leftarrow \rightarrow$ Excitation spectrum
- GDH Sum Rule

relates a.m.m. to integral of excitation spectrum A.M.M < -- > related to GPDs, TMDs (quark orbital angular momentum)

'Spin Crisis' or 'Spin Puzzle'

- 1980s: EMC (CERN) + early SLAC quark contribution to proton spin is very small ΔΣ = (12+-9+-14)% ! 'spin crisis' (Ellis-Jaffe sum rule violated)
- 1990s: SLAC, SMC (CERN), HERMES (DESY) $\Delta\Sigma = 20{-}30\%$

the rest: gluon and quark orbital angular momentum A⁺=0 (light-cone) gauge $(\frac{1}{2})\Delta\Sigma + L_q + \Delta G + L_g = 1/2$ gauge invariant $(\frac{1}{2})\Delta\Sigma + \mathcal{L}_q + J_G = 1/2$ Bjorken Sum Rule verified to 5–10% level

 2000s: COMPASS (CERN), HERMES, RHIC-Spin, JLab, ... : ΔΣ ~ 30%; ΔG probably small orbital angular momentum probably significant Transversity, transverse momentum dependent distributions (TMDs)

Polarized Deep Inelastic Electron Scattering

 Q^2 = 4-momentum transfer of the virtual photon, ν = energy transfer, θ = scattering angle

 $x = \frac{Q^2}{2M\nu}$

All information about the nucleon vertex is contained in

 F_2 and F_1 the unpolarized (spin averaged) structure functions,

and g_1 and g_2 the spin dependent structure functions

Quark-Parton Model

$$F_{1}(x) = \frac{1}{2} \sum_{i} e_{i}^{2} f_{i}(x) \qquad g_{1}(x) = \frac{1}{2} \sum_{i} e_{i}^{2} \Delta q_{i}(x)$$
$$f_{i}(x) = q_{i}^{\uparrow}(x) + q_{i}^{\downarrow}(x)$$
$$\Delta q_{i}(x) = q_{i}^{\uparrow}(x) - q_{i}^{\downarrow}(x)$$

 $q_i(x)$ quark momentum distributions of flavor i

 $\uparrow(\downarrow)$ parallel (antiparallel) to the nucleon spin

$$F_2 = 2xF_1 \qquad g_2 = 0$$

$$A_{1}(x) = \frac{g_{1}(x)}{F_{1}(x)} = \frac{\sum \Delta q_{i}(x)}{\sum f_{i}(x)}$$

Unpolarized and Polarized Structure functions

Unpolarized Parton Distributions (CTEQ6)

- After 40 years DIS experiments, unpolarized structure of the nucleon reasonably well understood.
- High $x \rightarrow$ valence quark dominating

NLO Polarized Parton Distributions (AAC06)

Jefferson Lab Experimental Halls

HallA: two HRS'

Hall B:CLAS

Hall C: HMS+SOS

Hall A polarized ³He target

 ✓ Both longitudinal, transverse and vertical

- ✓Luminosity=10³⁶(1/s) (highest in the world)
- ✓ High in-beam polarization
 ~ 65%
- ✓ Effective polarized neutron target
- ✓ 9 completed experiments
 4 are currently running
 6 approved with 12 GeV (A/C)

Hall B/C Polarized proton/deuteron target

- Polarized NH₃/ND₃ targets ${\color{black}\bullet}$
- **Dynamical Nuclear Polarization** •
- In-beam average polarization 70-80% for p 30-40% for d
- Luminosity up to ~ 10^{35} (Hall C) \bullet ~ 10³⁴ (Hall B)

JLab Spin Structure Experiments

- Inclusive:
 - Moments: Spin Sum Rules and Polarizabilities, n (³He), p and d
 - Higher twists: g_2/d_2 , n and p
 - Valence Quark Structure: A₁ at high-*x*, n, p and d
 - Quark-Hadron duality in spin structure: n (³He) and p
- Planned/On-going:
 - 6 GeV: g_2/d_2 , p, n and d
 - 12 GeV: A₁/d₂, p, n and d
- Semi-inclusive:
 - transversity, TMDs, flavor decomposition,....
- Review: Sebastian, Chen, Leader, arXiv:0812.3535, to appear on PPNP

Spin Sum Rules and Polarizabilities

Moments of Spin Structure Functions

Gerasimov-Drell-Hearn Sum Rule

Circularly polarized photon on longitudinally polarized nucleon

$$\int_{v_{in}}^{\infty} \left(\sigma_{\gamma_2}(v) - \sigma_{\gamma_2}(v) \right) \frac{dv}{v} = -\frac{2\pi^2 \alpha_{EM}}{M^2} \kappa^2$$

- A fundamental relation between the nucleon spin structure and its anomalous magnetic moment
- Based on general physics principles
 - Lorentz invariance, gauge invariance \rightarrow low energy theorem
 - unitarity \rightarrow optical theorem
 - casuality → unsubtracted dispersion relation applied to forward Compton amplitude
- First measurement on *proton* up to 800 MeV (Mainz) and up to 3 GeV (Bonn) agree with GDH with assumptions for contributions from un-measured regions

Generalized GDH Sum Rule

- Many approaches: Anselmino, loffe, Burkert, Drechsel, ...
- Ji and Osborne:

Forward Virtual-Virtual Compton Scattering Amplitudes: $S_1(Q^2,v)$, $S_2(Q^2, v)$ (or alternatively, $g_{TT}(Q^2,v)$, $g_{LT}(Q^2,v)$)

Same assumptions: no-subtraction dispersion relation optical theorem (low energy theorem)

Generalized GDH Sum Rule

$$S_1(Q^2, v) = 4 \int_{el}^{\infty} \frac{G_1(Q^2, v')v' dv'}{{v'}^2 - v^2}$$

For v=0

$$S_1(Q^2) = 4 \int_{el}^{\infty} \frac{G_1(Q^2, v) dv}{v}$$

Connecting GDH with Bjorken Sum Rules

- Q²-evolution of GDH Sum Rule provides a bridge linking strong QCD to pQCD
 - Bjorken and GDH sum rules are two limiting cases
 - High Q², Operator Product Expansion : $S_1(p-n) \sim g_A \rightarrow Bjorken$
 - $Q^2 \rightarrow 0$, Low Energy Theorem: $S_1 \sim \kappa^2 \rightarrow GDH$
 - High Q² (> ~1 GeV²): Operator Product Expansion
 - Intermediate Q² region: Lattice QCD calculations
 - Low Q2 region (< ~0.1 GeV²): Chiral Perturbation Theory Calculations: RBχPT with Δ, Bernard, Hemmert, Meissner; HBχPT, Ji, Kao, Osborne; Kao, Spitzenberg, Vanderhaeghen
 - Reviews: Theory: Drechsel, Pasquini, Vanderhaeghen, Phys. Rep. 378,99 (2003) Experiments: Chen, Deur, Meziani, Mod. Phy. Lett. A 20, 2745 (2005)

JLab E94-010

Neutron spin structure moments and sum rules at Low Q²

Spokespersons: G. Cates, J. P. Chen, Z.-E. Meziani

PhD Students: A. Deur, P. Djawotho, S. Jensen, I. Kominis, K. Slifer

- Q² evolution of spin structure moments and sum rules
 (generalized GDH, Bjorken and B-C sum rules)
- transition from quarkgluon to hadron
- Test χPT calculations
- Results published in several PRL/PLB's
- New results on ³He

GDH integral on

PRL 89 (2002) 242301

New Hall B EG1b Results: Γ_1^p

spokespersons: V. Burkert, D. Crabb, G. Dodge, S. Kuhn, R. Minehart, M. Taiuti

Γ_1 of neutron and p-n

E94-010 + EG1a: PRL 93 (2004) 212001

E94-010: PRL 92 (2004) 022301

Effective Coupling extracted from Bjorken Sum

A. Deur, V. Burkert, J. P. Chen and W. Korsch

PLB 650, 244 (2007) and PLB 665, 349 (2008)

BC Sum Rule

$$f_2 = \int_0^1 g_2(x) dx = 0$$

Brawn: SLAC E155x Red: Hall C RSS Black: Hall A E94-010 Green: Hall A E97-110 (very preliminary) Blue: Hall A E01-012 (very preliminary)

BC = Meas+low_x+Elastic

"Meas": Measured x-range

"low-x": refers to unmeasured low x part of the integral.

Assume Leading Twist Behaviour

Elastic: From well know FFs (<5%)

BC Sum Rule

BC satisfied w/in errors for JLab Proton 2.8σ violation seen in SLAC data

BC satisfied w/in errors for Neutron (But just barely in vicinity of Q²=1!)

BC satisfied w/in errors for ³He

2nd Moments: Generalized Spin Polarizabilities

• generalized forward spin polarizability γ_0 generalized L-T spin polarizability δ_{LT}

$$\gamma_0(Q^2) = \left(\frac{1}{2\pi^2}\right) \int_{\nu_0}^{\infty} \frac{K(Q^2,\nu)}{\nu} \frac{\sigma_{TT}(Q^2,\nu)}{\nu^3} d\nu$$
$$= \frac{16\alpha M^2}{Q^6} \int_{0}^{x_0} x^2 [g_1(Q^2,x) - \frac{4M^2}{Q^2} x^2 g_2(Q^2,x)] dx$$

$$\delta_{LT}(Q^2) = \left(\frac{1}{2\pi^2}\right) \int_{v_0}^{\infty} \frac{K(Q^2, v)}{v} \frac{\sigma_{LT}(Q^2, v)}{Qv^2} dv$$
$$= \frac{16\alpha M^2}{Q^6} \int_{0}^{x_0} x^2 [g_1(Q^2, x) + g_2(Q^2, x)] dx$$

Neutron Spin Polarizabilities

- δ_{LT} insensitive to Δ resonance
- RB ChPT calculation with resonance for γ_0 agree with data at Q²=0.1 GeV²
- Significant disagreement between data and both ChPT calculations for δ_{LT}
- Good agreement with MAID model predictions

Summary of Comparison with χ PT

$$\begin{split} I_{A}{}^{n} & \Gamma_{1}{}^{P} & \Gamma_{1}{}^{n} & \Gamma_{1}{}^{p-n} & \gamma_{0}{}^{p} & \gamma_{0}{}^{n} & \delta_{LT}{}^{n} & \gamma_{0}{}^{p-n} \\ Q^{2}\left(GeV^{2}\right) & 0.1 & 0.1 & 0.05 & 0.1 & 0.05 & 0.16 & 0.05 & 0.05 & 0.1 & 0.1 & 0.1 \\ HB\chi PT & poor poor good poor good good good bad poor bad bad \\ RB\chi PT/\Delta & good fair fair fair fair good poor fair bad good bad bad bad \\ \end{split}$$

 $Q^2 \sim 0.1 \text{ GeV}^2$ is too high for HB χ PT? 0.05 is good? RB χ PT(NL) with Δ reasonable to $Q^2 \sim 0.1$? δ_{LT} puzzle: δ_{LT} not sensitive to Δ , one of the best quantities to test χ PT, it disagrees with neither calculations by several hundred %! Very low Q^2 data on n(³He), p and d available soon (E97-110, EG4) Need NNL O(P⁵)? Kao et al. are working on that Other reasons?

A challenge to χ PT theorists.

JLab E97-110: GDH Sum Rule and Spin Structure of ³He and Neutron with Nearly Real Photons Spokespersons: J. P. Chen, A. Deur, F. Garibaldi; PhD Students: J. Singh, V. Sulkosky, J. Yuan

Preliminary Results: zeroth moments of g₁ and g₂

Hall B EG4 Projected Results

Spokespersons: M. Battaglieri, R. De Vita, A. Deur, M. Ripani

- Extend to very low Q² of 0.015 GeV²
- Longitudinal polarization $\rightarrow g_1^{p}, g_1^{d}$
- Data taking in 2006
- Analysis progress well

δ_{LT} Puzzle

- Possible reasons for δ_{LT} puzzle: discussions with theorists Consensus: A real challenge to (χ PT) theorists! Speculations: Short range effects beyond πN ? t-channel axial vector meson exchange? Isoscalar in nature? An effect of QCD vacuum structure?
- To help solve the puzzle and to understand the nature of the problem, more information needed, including isospin separation

 \rightarrow need measurement on proton

Does the δ_{LT} discrepancy also exists for proton?

E08-027 approved to measure g_2^p and δ_{LT} on proton

 g_2 , d_2 : Higher Twists Quark-gluon Correlations and Color Polarizabilities

g₂: twist-3, q-g correlations

- experiments: transversely polarized target SLAC E155x, (p/d)
 JLab Hall A (n), Hall C (p/d)
- g₂ leading twist related to g₁ by Wandzura-Wilczek relation g₂(x,Q²) = g₂^{WW}(x,Q²) + g₂(x,Q²) g₂^{WW}(x,Q²) = -g₁(x,Q²) + ∫_x¹ g₁(y,Q²) dy/y
 g₂ - g₂^{WW}: a clean way to access twist-3 contribution quantify *q*-*q* correlations
Precision Measurement of $g_2^n(x,Q^2)$: Search for Higher Twist Effects

T. Averett, W. Korsch (spokespersons) K. Kramer (Ph.D. student)

- Improve g_2^n precision by an order of magnitude.
- Measure higher twist \rightarrow quark-gluon correlations.
- Hall A Collaboration, K. Kramer et al., PRL 95, 142002 (2005)

E97-103 results: *g*₂^{*n*} vs. *Q*²

- measured g_2^n consistently higher than g_2^{WW} : positive twist-3
- higher twist effects significant below Q²=1 GeV²
- Models (color curves) predict small or negative twist-3

Color Polarizability: *d*₂ (twist-3)

2nd moment of g₂-g₂^{WW}
d₂: twist-3 matrix element

$$d_{2}(Q^{2}) = 3\int_{0}^{1} x^{2} [g_{2}(x,Q^{2}) - g_{2}^{WW}(x,Q^{2})] dx$$
$$= \int_{0}^{1} x^{2} [2g_{1}(x,Q^{2}) + 3g_{2}(x,Q^{2})] dx$$

 d_2 and $g_2 - g_2^{WW}$: clean access of higher twist (twist-3) effect: q - g correlations Color polarizabilities χ_E, χ_B are linear combination of d_2 and f_2 Provide a benchmark test of Lattice QCD at high Q^2 Avoid issue of low-*x* extrapolation

Measurement on proton: d_2^p (Hall C and SLAC) **RSS and SANE: O. Rondon et al.**

Measurements on neutron: d_2^n (Hall A and SLAC)

BRAND NEW DATA!

Very Preliminary

RED : RSS. (Hall C, NH₃,ND₃)

K. Slifer, O. Rondon et al. in preparation

BLUE: E01-012. (Hall A, ³He)

courtesy of **P. Solvignon**

GREEN: E97-110. (Hall A, ³He) courtesy of <u>V. Sulkosky</u>

Planned d₂ⁿ with JLab 6 GeV and 12 GeV

Projections with planned 6 GeV and 12 GeV experiments
Improved Lattice Calculation (QCDSF, hep-lat/0506017)

Quark-hadron Duality in Spin Structure

Duality in Spin-Structure: Hall A E01-012 Results

Spokesperson: N. Liyanage, J. P. Chen, S. Choi; PhD Student: P. Solvignon

- g_1/g_2 and A_1/A_2 (³He/n) in resonance region, $1 < Q^2 < 4 \text{ GeV}^2$
- Study quark-hadron duality in spin structure.
- PRL 101, 1825 02 (2008)

Γ_1 resonance vs. pdfs A_1^{3He} (resonance vs DIS)

Valence Quark Spin Structure

 A_1 at high x and flavor decomposition

JLab E99-117

Precision Measurement of *A*₁^{*n*} **at Large** *x*

Spokespersons: J. P. Chen, Z. -E. Meziani, P. Souder, PhD Student: X. Zheng

- First precision A_1^n data at high x
- Extracting valence quark spin distributions
- Test our fundamental understanding of valence quark picture
 - SU(6) symmetry
 - Valence quark models
 - pQCD (with HHC) predictions
- Quark orbital angular momentum
- Crucial input for pQCD fit to PDF
- PRL 92, 012004 (2004)
- PRC 70, 065207 (2004)

Polarized Quark Distributions

- Combining A_1^n and A_1^p results
- Valence quark dominating at high x
- u quark spin as expected
- d quark spin stays negative!
 - Disagree with pQCD model calculations assuming HHC (hadron helicity conservation)
 - Quark orbital angular momentum
- Consistent with valence quark models and pQCD PDF fits without HHC constraint

Projections for JLab at 11 GeV

A₁ⁿ at 11 GeV

 A_1^p at 11 GeV

Semi-inclusive Deep Inelastic Scattering $N(e, e'\pi)x$

Transversity and TMDs

Transversity and TMDs

- Three twist-2 quark distributions:
 - Momentum distributions: $q(x, Q^2) = q^{\uparrow}(x) + q^{\downarrow}(x)$
 - Longitudinal spin distributions: $\Delta q(x, Q^2) = q^{\uparrow}(x) q^{\downarrow}(x)$
 - Transversity distributions: $\delta q(x, Q^2) = q^{\perp}(x) q_{\perp}(x)$
- It takes two chiral-odd objects to measure transversity
 - Semi-inclusive DIS
 - Chiral-odd distributions function (transversity)
 - Chiral-odd fragmentation function (Collins function)
- TMDs: (without integrating over P_T)
 - Distribution functions depends on x, k_{\perp} and $Q^2 : \delta q$, $f_{1T}^{\perp}(x, k_{\perp}, Q^2)$, ...
 - Fragmentation functions depends on z, p_{\perp} and Q^2 : D, $H_1(x, p_{\perp}, Q^2)$
 - Measured asymmetries depends on x, z, P_⊥ and Q²: Collins, Sivers, ... (k_⊥, p_⊥ and P_⊥ are related)

"Leading-Twist" TMD Quark Distributions

$A_{UT}^{sin(\phi)}$ from transv. pol. H target

Simultaneous fit to $sin(\phi + \phi_s)$ and $sin(\phi - \phi_s)$

`Collins' moments

- Non-zero Collins asymmetry
- Assume $\delta q(x)$ from model, then
 - H_1 _unfav ~ - H_1 _fav
- Need independent H₁ (BELLE)

`Sivers' moments

•Sivers function nonzero $(\pi^+) \rightarrow$ orbital angular momentum of quarks

•Regular flagmentation functions

Current Status

- Large single spin asymmetry in pp-> πX
- Collins Asymmetries
 - sizable for proton (HERMES and COMPASS)

large at high x, large for π^-

 $\pi^{\scriptscriptstyle -}$ and $\pi \! + \, has opposite sign$

unfavored Collins fragmentation as large as favored (opposite sign)?

- consistent with 0 for deuteron (COMPASS)
- Sivers Asymmetries
 - non-zero for π^+ from proton (HERMES), consistent with zero (COMPASS)?
 - consistent with zero for π^2 from proton and for all channels from deuteron
 - large for K⁺?
- Very active theoretical and experimental study RHIC-spin, JLab (Hall A 6 GeV, CLAS12, HallA/C 12 GeV), Belle, FAIR (PAX)
- Global Fits/models by Anselmino et al., Yuan et al. and ...
- First neutron measurement from Hall A 6 GeV (E06-010)
- Solenoid with polarized ³He at JLab 12 GeV Unprecedented precision with high luminosity and large acceptance

Transversity Distributions

A global fit to the HERMES p, COMPASS d and BELLE e+e- data by the Torino group (Anselmino *et al.).*

Need neutron data.

Need precision multi-dimension data.

E06-010/06-011 Single Target-Spin Asymmetry in Semi-Inclusive $n^{\uparrow}(e,e'\pi^{+/-})$ Reaction on a Transversely Polarized ³He Target

Hall-A Transversity:

Polarized 3He: effective polarized neutron target World highest polarized luminosity: 10³⁶ New record in polarization: >70% without beam ~65% in beam and with spin-flip (proposal 42%)

HRSL for hadrons (p+- and K+-), new RICH commissioned

BigBite for electrons, 64 msr, detectors performing well

Precision Study of Transversity and TMDs

- From exploration to precision study
- Transversity: fundamental *PDF*s, tensor charge
- TMDs provide 3-d structure information of the nucleon
- Laboratory to study QCD
- Learn about quark orbital angular momentum
- Multi-dimensional mapping of TMDs
 - 3-d (*x,z,P*⊥)
 - Q² dependence
 - multi facilities, global effort
- Precision \rightarrow high statistics
 - high luminosity and large acceptance

Measurement of Tensor Charge

- Tensor charge is a fundamental quantity; *LQCD* prediction
- A plan for a measurement of the tensor charge
 - As much model independent as possible
 - Valence phenomena: *u* and *d* quarks dominant
 - To determine δu , δd , H_1^u , H_1^d
 - Need at least 4 measurements at each kinematical point
 - → *SIDIS* of π^{+-} on both proton and neutron
 - Kinematical region: most contributions in 0.1 < x < 0.5
 - 12 GeV JLab idea for this measurement
 - CLAS12 with proton and a new Solenoid with polarized neutron (³He)
- Issues: factorization, Q² evolution, NLO, higher-twists, sea quarks e+e- (Belle), pp (RHIC, FAIR,...), ep (EIC) → global fit

Solenoid detector for SIDIS at 11 GeV

Proposed for PVDIS at 11 GeV

3-D Mapping of Collins/Siver Asymmetries at JLab 12 GeV With A Large Acceptance Solenoid Detector

3-D Projections for Collins and Sivers Asymmetry (π^+)

Discussion

- Unprecedented precision *3-d* mapping of SSA
 - Collins and Sivers
 - π^+ , π^- and K^+ , K^-
- Study factorization with x and z-dependences
- Study P_T dependence
- Combining with CLAS12 proton and world data
 - extract transversity and fragmentation functions for both *u* and *d* quarks
 - determine tensor charge
 - study TMDs for both valence and sea quarks
 - study quark orbital angular momentum
- Combining with world data, especially data from high energy facilities
 - study Q² evolution
- Global efforts (experimentalists and theorists), global analysis
 - much better understanding of 3-d nucleon structure and QCD

Summary

- Spin structure study full of surprises and puzzles
- A decade of experiments from JLab: exciting results
 - Spin sum rules and polarizabilities: test χ PT calculations
 - $\rightarrow \delta_{LT}$ puzzle'
 - g_2/d_2 : higher-twist effects and q-g correlations, LQCD
 - Spin-duality: transition and link between hadrons and quark-gluons
 - A_1 at high-x: valence structure, flavor decomposition, quark OAM
- Bright future
 - Complete a chapter in longitudinal spin structure study
 - Transversity and TMDs: new dimensions
 - Upgrades (12 GeV, large acceptance) greatly enhance our capability
- Together with other world facilities, experiments and theoretical efforts will lead to breakthrough in our understanding of STRONG QCD.

Flavor decomposition with SIDIS

 Δu and $\Delta d~$ at JLab 11 GeV

Polarized Sea

Leading-Twist Quark Distributions

(A total of eight distributions)

CLAS A_1^{p} and A_1^{d} results

CLAS collaboration, Phys.Lett. B641 (2006) 11

pQCD with Quark Orbital Angular Momentum

F. Yuan, H. Avakian, S. Brodsky, and A. Deur, arXiv:0705.1553

Spin Polarizability γ_0 : Isospin Separation

- Deur *et al. arXiv:0802.2232*
- γ₀ sensitive to resonance, but p-n not sensitive to Δ

Still large discrepancy with ChPT

CLAS Proton Spin Polarizability

• EG1b, Prok *et al. arXiv:0802.2232*

Large discrepancies with ChPT!

Only longitudinal data, model for transverse (g₂)

 γ_0 sensitive to resonance

New Hall A ³He Results

- Q² evolution of moments of ³He spin structure functions
- Test Chiral Perturbation Theory predictions at low Q²
- need χPT calculations for ³He

