

Exploration of Novel Tunnel Barrier Materials for STT-RAM

Wei Chen Advisor: Dr. Stuart Wolf

Department of Physics University of Virginia

Funded by DARPA and DMEA Collaborator: NIST, Freescale

1

Outline

- Introduction and Motivation
- Background Theory
- Experiment Setups
- Results & Discussion
- Summary & Future Plan

Outline

- Introduction and Motivation
 - What is Magnetic Tunnel Junction (MTJ)?
 - MRAM: Major Application of MTJ
 - New Solution: Spin Torque Transfer!
- Background Theory
- Experiment Setups
- Results & Discussion
- Summary & Future Plan

AFM Pinned FM Tunnel Barrier Free FM Substrate

Basic Structure of Exchange Biased MTJ

[Spintronics Class Lecture Notes, Stuart Wolf, Spring 2007]

H=0

Field

MRAM: Major Application of MTJ

[Spintronics Class Lecture Notes, Stuart Wolf, Spring 2007]

Wei Chen

MRAM: Major Application of MTJ

Potential Advantages:

- Compatibility with CMOS
- Density and speed of DRAM
- Less power than FLASH
- Unlimited writing cycles
- Truly Non-volatile

Main Challenges:

Field Switching MRAM cannot be effectively scaled down (65nm node)!

- 1T-1MTJ cell structure limited by the size of transistor! $K_{u}V$
- Thermal Stability Factor:

$$\frac{k_B}{k_B T}$$

Spin Torque Transfer Switching

• A spin-polarized current injected into a ferromagnetic layer can induce a torque on its magnetization, hence rotate the magnetization. Key Advantage compared with conventional field switching:

• Highly *Scalable* ← writing current scales down with cell size with constant **Jc**!

Key Advantages and Potentials of STTRAM

	MRAM (180 nm)	DRAM (45 nm)+	SRAM (45 nm)+	FLASH (45 nm)+	STTRAM (45 nm)*
Cell size (µm²)	1.25	0.03	0.18	0.03	0.03
Read time	35 ns	1 ns	0.5 ns	10 - 50 ns	5 ns
Write time	5 ns	1 ns	0.5 ns	0.1-100 ms	5 ns
Write energy/bit	150 pJ	0.02 pJ Needs refresh	5 pJ	10 nJ	0.04 pJ
Endurance	> 10 ¹⁵	> 10 ¹⁵	> 10 ¹⁵	> 10 ¹⁵ read, > 10 ⁶ write	>10 ¹⁵
Non-volatile	Yes	NO	NO	YES	YES

- Excellent write selectivity ~ localized spin-injection within cell
- Highly Scalable ~ write current scales down with cell size
- Low power ~ low write current
- Simpler Architecture ~ no write lines, no bypass line and no cladding
- High Speed ~ Few nanoseconds

Spin Torque Transfer Switching

Model by Slonczewski: $J_c = \frac{2eM_s\delta\alpha(H + 2\pi M_s)}{h\eta}$

 $J_c \sim 10^8 \,\text{A/cm}^2 \,(\text{Co:}\,\delta = 2.5 \text{nm}, M_s = 1420 \,\text{kA/m}, \alpha = 0.1)$

=> Too high to be practical! $(10^{6} A/cm^{2})$

What we could engineer:

- M_s Saturation Magnetization \rightarrow Decrease
- **a** Gilbert damping parameter \rightarrow Decrease
- **\eta** Spin Transfer Efficiency \rightarrow Increase

Novel Barrier Exploration

- Only ~70% with AlOx-MTJs.
- TMR record with MgO barrier: Over 300%!
 →MgO increases η (spin transfer efficiency) significantly!

New Barriers Exploration \rightarrow Increase η :

- Oxides: VOx, TiOx, TaOx
- Nitrides: BN
 - prevent the oxidation of under layer FM
 - large gap provides robust tunneling

Smart Barrier for MTJs

Outline

- Introduction and Motivation
- Background Theory
 - Spin-dependent Transport
 - Spin Polarized Electron Tunneling: FM-I-FM
 - AFM/FM Exchange Bias
- Experiment Setups
- Results & Discussion
- Summary & Future Plan

Spin-dependent Transport

current through ferromagnetic metal

Density of State diagram for ferromagnetic metal: $g\uparrow > g\downarrow$

[Spintronics Class Lecture Notes, Stuart Wolf, Spring 2007] [Mark Jonson, J. Phys. Chem. B (2005), 109, 14278-14291]

Spin Polarized Electron Tunneling: FM-I-FM

[J.Nogues, Ivan Schuller, JMMM192(1999) 203-232]

Outline

- Introduction and Motivation
- Background Theory
- Experiment Setups
 - Reactive Biased Target Ion Beam Deposition
 - Lithographic patterning process
 - CIPTech Measurement
- Results & Discussion
- Summary & Future Plan

Reactive Biased Target Ion Beam Deposition

- Low Energy Ion Source (5-50eV)
- High Temperature ~ 700 °C
- Smooth Surface/Interface Layer
- **Control Phase Formation**
- Combinatorial Growth \rightarrow Complex • Oxides

Lithographic Patterning (I)

Unpatterned MTJ Film (*Cross-section View***)**

Lithographic Patterning (II)

• **iii)** Deposition of ~ 300nm SiO2 by rf-sputtering as passivation layer

• **iv)** Dissolve PR in Acetone to finish lift-off process

• v) Apply and develop another layer of mask, deposit and define Ti/Au contact layer by lift-off

CIPTech Measurement

D. C. Worledge, etc. APL, 83, 84 (2003)

- *Fast, nondestructive,* and *accurate* way to measure TMR without patterning!
- Collaboration with NIST

Outline

- Introduction and Motivation
- Background Theory
- Experiment Setups
- Results & Discussion
- Summary & Future Plan

MTJ with AlOx Barrier (I)

Better oxidized AlOx barrier provides better separated switching!

MTJ with AlOx Barrier (II)

VOx Recipe Development

- Growth condition: on top of <u>sub/CoFeB(1nm)/V(0.5nm)</u>
- VOx thickness: ~50nm

Ar/O2 Flow Rate (Sccm)	Resistance (Ohm) Change		
	(RT->~100C)		
5.5	200K->30K		
6	680K->150K		
6.5	2,500K->400K		
7	Too insulating		
6 (with enhanced ion	57K Ohm->200 Ohm		
energy~50eV)	(Temperature:50K->250K)		

IrMn/CoFeB Exchange Bias

MTJ with VOx Barrier (I)

VOx-MTJ Stack

Results Analysis and Improvement (I)

- Tunneling *interfaces* are crucial!
 - Over-oxidation of bottom FM layer
 - Alloy formation between FM and barrier material: pre-oxidation to form diffusion barrier
- *Barrier* needs to be further optimized!
 - Barrier Thickness: 1~2nm; Pinholes, uniformity problem with thin barrier
 - Oxidation approaches: natural oxidation, reactive sputtering, post-deposition plasma oxidation, etc.
- *Annealing* is also very important!

Results Analysis and Improvement (II)

ARBSITY OF

Summary

- Growth of Prototype AlOx-MTJ
- Development of Basic Patterning Process
- VOx Material Exploration
- Preliminary VOx-MTJ Experiments

Future Work

- Continuous exploration of VOx-MTJ; focusing on barrier growth and interface quality.
- Re-visit of AlOx-MTJs to better understand the dependence of interface and barrier quality on TMR
- New barrier materials exploration: Oxides like TiOx, TaOx, Nitrides like BN, etc.
- Further optimization of lithographic patterning process.