Investigation of High Temperature Thermoelectric Materials

Research Progress and Prospects for Completion Jack Simonson

Outline

- Review of Themoelectricity
- XNiSn-type Half-Heusler Dopant Electronic Structure Investigation
- Rare Earth Telluride high-temperature thermoelectrics

Thermoelectricity

$$\gamma = \lim_{\Delta T \to 0} \frac{\Delta Q}{I \Delta T} = T \frac{dS}{dT}$$

Thermoelectric Efficiency for Power Generation

• Dimensionless Figure of Merit:

$$ZT = \frac{S^2 T}{\rho \kappa}$$

• ZT is a measure of efficiency. A ZT of zero indicates no power generation, and a ZT of infinity is Carnot Efficiency.

$$\eta = \frac{T_{H} - T_{C}}{T_{H}} \frac{\sqrt{1 + 2T} - 1}{\sqrt{1 + 2T} + \frac{T_{C}}{T_{H}}}$$

Thermoelectric Devices Power Generation

- P-type leg and n-type leg
- Segmented for greater efficiency.
- Compatible currents

Semiconductors as Thermoelectrics

- The best thermoelectric materials are semiconductors.
- Gap at Fermi energy allows preferential flow of one carrier type.
- N-type: electron flow in conduction band
- P-type: hole flow on valence band.
- A sharp gap gives the best results.

Why half-Heusler?

- High symmetry: low resistivity, degenerate bands
- Three sites: options for doping & isoelectronic substitution.
- Three semiconducting compounds
- The downside: high thermal conductivity.

Electronic Structure of MNiSn

- For ZrNiSn: Zr and Ni
 bands form the gap
- Sn bands have nothing to do with gap formation – Sn site can be doped
 without interfering with the gap.
- The same is true for MCoSb-type and VFeSb-type
 materials.

KKR-CPA-LDA Calculations

B.R.K. Nanda et. Al. J.Phys: Condens Matter 17, 2005

Cartoon Model of Dopant Effects on XNiSn Bandstructure

- Transition metal dopants: V, Cr, Mn, Fe, Co, Ni, Cu on either the Hf/Zr or Ni site.
- Result: creation of dopant band in gap.
- Location determined by high-temperature electrical resistivity

High Temperature Electrical Resistivity Curve Fitting

Composition	Gap Size (eV)	
ZrNiSn (theoretical)	0.50-0.51	
HfNiSn (theoretical)	0.48	0.0014
Hf Zr NiCo	0.22	0.00138 -
H10.75 ² 10.25 ¹ 1311	0.25	0.00136 -
$Hf_{0.75}Zr_{0.25}Co_{0.05}Ni_{0.95}Sn$	0.40	0.00134 -
(Hf _{0.75} Zr _{0.25}) _{0.95} Co _{0.05} NiSn	0.47	
	0.07	0.00132 -
Ht _{0.75} Zr _{0.25} Fe _{0.05} NI _{0.95} Sn	0.27	ୂ 0.0013 -
Hf _{0.75} Zr _{0.25} Mn _{0.1} Ni _{0.9} Sn	0.27	드 욧 0.00128 -
(Hf _{0.75} Zr _{0.25}) _{0.9} Mn _{0.1} NiSn	0.27	
(Hf _{0.75} Zr _{0.25}) _{0.9} Mn _{0.2} Ni _{0.9} Sn	0.33	0.00126 -
Lif Zr Cr Ni Cr	0.19	0.00124 -
$Hf_{2} = 2r_{2} = V_{2} \cdot Ni_{2} \cdot Sn$	0.10	0.00122 -
0.25 0.1 0.9	0.10	

0.0012

0.00118 -

Thermoelectric, Resistivity, and Hall Measurements

	(<u>µ</u> ∀/K)	(μΩ·cm)		Concentration (cm ⁻³)
Hf _{0.75} Zr _{0.25} Ni Sn	-213	6800	Electrons	5.5×10^{19}
Hf _{0.75} Zr _{0.25} Ni _{0.99} Cu _{0.01} Sn	-71	1700	Electrons	2.2×10^{20}
(Hf _{0.75} Zr _{0.∞}) ₀₉₉ Cu _{0.01} Ni Sn	-171	1480		
Hf _{0.75} Zr _{0.25} Co _{0.05} Ni _{0.95} Sn	36	6700	Holes	3.1×10^{20}
Hf _{0.75} Zr _{0.25} Co _{0.15} Ni _{0.85} Sn	56	3800	Holes	7.3×10^{20}
(Hf _{0.75} Zr _{0.25}) ₀₉₇ Co _{0.18} Ni _{0.85} Sn	25	4420		
Hf _{0.75} Zr _{0.25} Fe _{0.05} Ni _{0.95} Sn	-86	6750	Electrons	Obscured by magnetic effects
hf _{0.75} Zr _{0.25} Mn _{0.1} Ni ₀₉ Sn	-172	7050	Electrons	5.4×10^{19}
(Hf _{0.75} Zr _{0.25})09Mn _{0.1} Ni Sn	-201	8000	Electrons	4.1×10^{19}
n (Hf _{0.75} Zr _{0.25})09Mn _{0.2} Ni	-195	4000		
Hf _{0.75} Zr _{0.25} Cr _{0.1} Ni _{0.9} Sn	-100	2645		
Hf _{0.75} Zr _{0.25} V _{0.1} Ni ₀₉ Sn	-129	2370	Electrons	2.6×10^{20}
(Hf _{0.75} Zr _{0.∞}) ₀₉ V _{0.1} NiSn	-161	4900		
(Hf _{0.75} Zr _{0.四})09 ^{Ce} 0.1 ^{Ni Sn}	-36	2300		

Transition Metal Doping in XNiSn: Analysis

• Transition metal doping on the X or Ni site has two effects:

- 1: Lowers thermopower by placing the Fermi energy in a partially unfilled DOS location.
- 2: Dopes inefficiently. The dopant bands are not fully part of the conduction band.
- Transition metal doping is detrimental to high ZT. Lesson learned: future doping efforts must be sp-type only.

Why Rare Earth Sesquichalcogenides?

- Semiconducting
- High melting points
- Self-doping and highly sensitive
- Low thermal conductivities
- Good results (ZT=1.5) reported by JPL in 1980s.

Why La_{3-x}Te₄? (Or LaTe_y)

- Continuous series of solid solutions for 1.33 < y < 1.50
- All have Th₃P₄ structure
- Wide range of carrier concentration from 0 to 4.5 x 10²¹/cm³
- Low sublimation rate
- Coefficient of thermal expansion matches p-type Zintl Yb₁₄MnSb₁₁

LaTe_y Self-doping

- La_{3-x}Te₄ is n-type material
 =>
 (La⁺³)_{3-x}V_xTe⁻²₄e⁻¹_{1-3x}
- When x=0, one free electron/F.U.
- When x =1/3, no free electrons.
- $La_{3-1/3}Te_4 = La_{2/3}Te_4 = La_2Te_3$
- Carrier concentration: n=n_{max}(1-3x)

Comparison: Recent JPL data and our data

Comparison: Recent JPL data and our data

Caltech/JPL

Uva/Clemson

Comparison: Recent JPL data and our data

LaTe_y at Intermediate Temperature

Thermopower

Resistivity

LaTe_y Challenges

- LaTe_y has significant Te evaporation during melting. Sample stoichiometry must be improved.
- Oxidation occurs during initial reaction and ball milling.
- Obtaining a solid sample challenging. LaTe_y reaction is exothermic.
- Find better method for High Temperature measurement.

Future Work

- Suction casting to constrain LaTe_y and form solid samples – will improve resistivity.
- Begin looking at dopants/substitutions to minimize thermal conductivity, possibly improve electronic properties.

Dopant band formation: Ti_{1-x}Mn_xNiSn

- Ti vacancy depletes 4 electrons, Mn adds 7.
- Ti levels tend to be above gap, Ni tend to be below. Larger nuclei pull electrons to lower energy.

B.R.K. Nanda et. Al. J.Phys: Condens Matter 17, 2005

High-Symmetry Points for F-43m

Electronic Structure of TiCoSb

