Towards the transient orientation of linear molecules

Thibault Vogt
October, 15 2007

History: alignment and orientation in dilute gases

Static fields

■ Quadrupole field and Hexapole field focusing : Stark effect used to select a rotational state |J,M, of a molecule from a thermal mixture of rotational states

Diatomic molecules: Zeitschrift für Physics, 141: 6 (1955)

Symmetric top molecules : *JCP*, 42 : 767 (1965)

Brute Force orientation : strong static electric field to orientate molecules with a big dipole moment

JCP, 93: 4779 (1990)

Laser fields

 Adiabatic alignement : intense laser electric field, pulse whose duration is much longer than the rotational period of the molecule

JCP, 104: 3 (1996)

 Diabatic alignment : femtosecond laser electric field pulse, duration smaller than the rotational period of the molecule, field-free alignment

Phys. Rev. Let. 87: 15 (2001)

Transient Orientation ?

Outline

- Orientation with static fields
 Orientation and alignment with laser fields
 ⇒ femtochemistry, interferometry, quantum information, atosecond pulses...
- Transient Orientation of linear molecules
 Computations
 Half-cycle pulses
 Asymetric femtosecond pulses
 Perspectives, status of the AMO experiments

Orientation/Alignment: signification

$$W_{s} = W_{el} + W_{vib} + W_{rot}$$

$$\left| \Psi_{s} \right\rangle = \left| \Psi_{el} \right\rangle \left| \Psi_{vib} \right\rangle \left| \Psi_{rot} \right\rangle$$

For singlet molecules (Λ =0)

$$\Psi_{rot} = \langle \vec{R} | J, M \rangle = Y_J^M (\theta, \varphi) \qquad W_{rot} = B J(J+1)$$

Orientation:

$$\vec{R} \cdot \vec{u}_z \square R_e Cos\theta$$

Alignment:

$$\left| \vec{R} \cdot \vec{u}_z \right|^2 \square R_e^2 \cos^2 \theta$$

State selection

Graph of the Stark energy change W_{|J,M⟩} (E²)

$$\vec{F} = -\overrightarrow{grad}(W_{|J,M\rangle})$$

$$|J,M\rangle = |20,0\rangle$$

$$|J,M\rangle = |0,0\rangle$$

Hexapole focusing

Used for symmetric top molecules

$$\left|\Psi_{s}\right> \propto \left|J,K,M\right>$$
 $\vec{F} \propto \frac{KM}{J(J+1)}\vec{r}$
CH₃I
(iodomethane)

Brute force orientation

Interaction energy of a polar molecule with a strong static electric field

$$-\begin{array}{ccc} & \mathcal{U} \cdot E \\ & S \\ & \mathcal{U} \cdot E \\ = -\begin{array}{ccc} & S \\ & Cos \theta \end{array}$$

Classical picture: torque exerted on the molecule, alignment of the permanent dipole moment on the field

Possibility with symmetric top molecules, but also singlet molecules lecessity of a very strong static field. Example : KCl, μ₀=10.27 D, E_s~30 kV/cm Also very small temperatures (supersonic molecular beams)

Supersonic jet: rotational cooling

$$P(|J,M\rangle)=e^{-BJ(J+1)/(kT)}$$

Stereodynamics studies

Studies on the steric effect (modification of reactions depending on the geometry and the presence of different chemical groups in molecules)

Collisionnal studies, head versus tail preferential reactions

Laser induced alignment

Strong static field replaced by a strong non-resonant laser field

$$H_{eff} = -\frac{1}{2} \sum_{i,j=x,y,z} \alpha_{ij} E_i E_j$$

$$H_{eff} = -\frac{1}{4} (\alpha_{//} - \alpha_{\perp}) \cos^2 \theta E_0^2$$

$$\Delta \alpha = 6$$
 for N_2

Adiabatic alignment

Condition of adiabaticity

$$V_{rot}(J) = \frac{BJ(J+1)}{h}$$

$$T_{p} \square T_{rot}(1) = \frac{1}{V_{rot}(1)} = \frac{\pi h}{B}$$

Pendular states observation for symmetric top molecules

J. Chem. Phys. 104: 3 (1996)

« Adiabatic » orientation :Strong laser field+ static field

$$H_{eff} = -\overrightarrow{\mu_0} \cdot \overrightarrow{E_S} - \frac{1}{4} (\alpha_{\perp} - \alpha_{//}) \cos^2 \theta E_0^2 - \frac{1}{4} \alpha_{//} E_0^2$$

Phys. Rev. Let., 90: 083001 (2003)

CO ionization

D. Normand et al., J. Phys. B: At. Mol. Opt. Phys. 25, L497 (1992)

Decay path	Energy released (eV)		Branching ratio (%)
(1) CO ⁺ →C ⁺ +0	1.2		11
(2) $CO^+ \rightarrow C + O^+$	2		15
(3) $CO^{2+} \rightarrow C^{+} + O^{+}$	6	,	24
(4) $CO^{3+} \rightarrow C^{2+} + O^{+}$	10	,	39
(5) $CO^{3+} \rightarrow C^{+} + O^{2+}$	11		8
(6) $CO^{4+} \rightarrow C^{2+} + O^{2+}$	20		3

Experimental observation: TOF spectroscopy

Detection (N₂)

Adiabatic alignment of Diiodine (I₂)

JCP, 110: 10235 (1999)

Diabatic alignment

$$H_{eff} = \frac{1}{4} (\alpha_{\perp} - \alpha_{\parallel}) \cos^2 \theta E_0^2 - \frac{1}{4} \alpha_{\perp} E_0^2$$

Short Pulse → Impulsive Angular Kick

$$\frac{d\vec{p}}{dt} \propto -\sin 2\theta \, E_0^2 \, \overrightarrow{u_\theta}$$

Raman excitation of rotationnal states

$$W_{J} = B J(J+1)$$
 $\left| J_{0}, M_{0} \right\rangle \Rightarrow \Psi(t) = \sum_{J,M} c_{J} e^{-\frac{W_{J}t}{\hbar}} \left| J, M \right\rangle$

Wavepacket excitation: revivals

$$v_J = k(J) \frac{2B}{h} \Rightarrow \tau_R = \frac{\pi \hbar}{B}$$

Diabatic alignment

Phys. Rev. Let., 87: 153902 (2001)

Ratio =
$$\frac{A_2 - A_1}{A_1 + A_2}$$

Diabatic alignment

Non-Zero Temperature: P_{|J,M⟩} ~ exp [-J(J+1)B/k_BT]

At high T, high Bohr frequencies, Centrifugal distortion

→ Reduced Net Alignment

Applications

Preferential dissociation, Fragments selection

Control: pulse shaping

3D alignment

Lithography: Focusing and orienting molecules

Orientation of molecules and quantum information processing

Rotational temperature measurement

Attosecond pulses, rescattering experiments

Tomographic imaging of molecular orbitals

Orientation of molecules and quantum information processing

Stark addressing of individual trapped polar oriented molecules (qubit), interaction between the qubits driven by the dipole-dipole interaction

Rotational temperature analysis

Phys. Rev. A 68 : 023406 (2003)

Fourier analysis

Amplitude of the states after excitation

$$P(|J,M\rangle) = S(J) e^{-RJ(J+1)/(kT)}$$

Attosecond pulses, rescattering experiments

Attosecond pulses from High Harmonic generation

Science, 292 : 1689 (2001)

Symmetry properties ⇒ **odd harmonics for atoms**

Even harmonics for non centrosymmetric molecules

Tomographic imaging of molecular orbitals

Nature, 432 : 867 (2004)

Reconstructed of N2 in its ground state HOMO (highest occupied molecular orbital)

Experimental HHG (High Harmonic generation) spectrum (dependence with alignment)

Intermediate conclusion

- Orientation in a static field
- Adiabatic alignment
- Diabatic (field-free) alignment

Field-free orientation

Theory

Interaction energy of a molecule with an electric field

$$H = H^{(0)} + V$$

$$= H^{(0)} - \vec{\mu} \cdot \vec{E} - \sum_{\alpha, \beta = x, y, z} \frac{1}{3} \Theta_{\alpha\beta} \frac{\partial E_{\beta}}{\partial \alpha} - \vec{m} \cdot \vec{H} - \dots$$

Dipolar moment operator

Quadrupolar moment operator

$$\vec{\mu} = \sum_{i} e_{i} \vec{r}_{i} = \sum_{\alpha = x, y, z} \mu_{\alpha} = \sum_{\alpha} \sum_{i} e_{i} r_{i_{\alpha}}$$

$$\Theta_{\alpha\beta} = \frac{1}{2} \sum_{i} e_{i} (3r_{i_{\alpha}} r_{i_{\beta}} - r_{i}^{2} \delta_{\alpha\beta})$$

Dipolar approximation : size of the molecule $<< \lambda$

Theory

Interaction energy of a molecule with a static electric field

$$H = H^{(0)} - \vec{\mu} \cdot \vec{E}$$
 $\vec{\mu} = \sum_{i=x,y,z} \mu_i = \sum_i \sum_n e_n r_{n_i}$

Result from the perturbation theory, for a given state Ψ :

$$W = \langle \Psi | H | \Psi \rangle = W^{(0)} - \mu_i^{(0)} E_i - \frac{1}{2} \alpha_{ij} E_i E_{\beta} - \frac{1}{6} \beta_{ijk} E_i E_j E_k - \dots$$

Linear Polarisability : α_{ii}

Diatomic molecules : $-rac{1}{2}lpha_{//}E_{//}^2-rac{1}{2}lpha_{\perp}E_{\perp}^2$

First Hyperpolarisability eta_{ijk}

Interaction energy of a molecule with a periodic electric field

$$H = H^{(0)} - \vec{\mu} \cdot \vec{E}(t)$$

$$\vec{\mu} = \sum_{i=x,y,z} \mu_i = \sum_i \sum_n e_n r_{n_i}$$

$$W = \langle \Psi | H | \Psi \rangle = W^{(0)} - \overline{\mu_i^{(0)} E_i} - \frac{1}{2} \alpha_{ij} E_i E_j - \frac{1}{6} \overline{\beta_{ijk} E_i E_j E_k} - \dots$$

"Explanation": Floquet theorem ⇒ wavefunction expanded in Fourier series

$$\Psi_{s} = e^{(-iW_{s}t/\hbar)} \sum_{n=-\infty}^{\infty} C_{n}e^{(-in\omega t)} \qquad \text{sum of wavefunctions} \qquad C_{n}e^{(-i(\frac{W_{s}}{\hbar} + n\omega)t)}$$
 with
$$W_{s} = \sqrt{\Psi_{s} \left| -\vec{\mu} \cdot \vec{E} \right| \Psi_{s}} \qquad W_{s}' = W_{s} + n\hbar\omega$$

Very weak interaction \Rightarrow C₀ only non negligible term \Rightarrow Possibility to define one energy

$$W_s' = W_s \qquad \Psi_s = e^{(-iW_s t/\hbar)} \Phi_s = e^{(-iW_s t/\hbar)} C_0$$

Time independent Schrodinger equation, possibility to apply time independent perturbation theory to these wavefunctions

Field-free orientation of molecules

Interaction energy of a molecule with one periodic electric field

$$H_{eff} = H^{(0)} - \underbrace{\overline{\mu_{0_i} E_i}}_{=0} - \underbrace{\frac{1}{2} \alpha_{ij} E_i E_j}_{=0} - \underbrace{\frac{1}{6} \underbrace{\overline{\beta_{ijk} E_i E_j E_k}}_{=0}}_{=0} - \dots$$

⇒ Asymmetric electric field necessar possibilities:

"Half-Cycle Pulse" (HCP)

Computations

- 1) Semi-analytical solutions : impulsive limit
- 2) Numerical solutions of the TDSE (Time dependent Schrodinger equation)

$$i\hbar \frac{\partial \Psi(t)}{\partial t} = H(t)\Psi(t)$$

Resolution in the basis of the rotational states

Initially
$$|J,M\rangle$$

$$P(|J,M\rangle) = e^{-RJ(J+1)/(kT)}$$

$$\Rightarrow |\Psi(t)\rangle = \sum_{J'',M'} c_{J',M'}(t)|J',M'\rangle$$

$$i\hbar \dot{c}_{J',M'} = \sum_{J'',M''} c_{J',M'}\langle J',M'|H(t)|J'',M''\rangle$$

Impulsive limit

$$\Psi(t) = U(t_0, t) \Psi(t_0)$$
 $H = H_0 \Rightarrow U(t, t_0) = e^{-i H_0(t - t_0)/\hbar}$
 $U(t, t_0) = e^{-i/\hbar \int_{t_0}^t H_0 dt'}$

Impulsive limit approximation: case of a time-dependent Hamiltoni

$$U(t,t_0) \approx e^{-i/\hbar \int_{t_0}^t H(t')dt'}$$
 Our case: $T_p \Box T_{rot} = \frac{\pi \hbar}{B}$

ur case: equivalent to neglect the rotation of the molecules during the interact Momentum kick

$$U(t,t_0) \approx e^{-i/\hbar} \left(-\mu_0 \cos\theta \int_{t_0}^t E(t')dt' - \frac{\Delta\alpha}{2} \cos^2\theta \int_{t_0}^t E^2(t')dt' + \dots \right)$$

Transient Field-Free Orientation of Polar Molecules

HBr T = 2K

HCP generation

Experiment

Ex : Hydrogen Bromide (HBr) $\mu_0 \approx 0.8 \ D$

Lasers (780 nm) HCP

Difficulties

- Synchronization (delay stage)
- Space overlap
- Stabilization (intensities, chirp)
- Calibration of an intense HCP
- Temperature

Alignment: N₂

Ratio =
$$\frac{N_2 - N_1}{N_1 + N_2}$$

Alignment: HBr

 $\Delta \alpha \approx$ 1.5 (a. u.) and $T_r \approx$ 15 K Strong dependence of the degree of orientation with the temperature : we hope to get better !

Orientation with two overlapping femtosecond pulses

Parity of a $|J,M\rangle$ state is $(-1)^{J}$ \Rightarrow Even and odd J states population necessary $|\Psi(-\vec{R})|^{2} \neq |\Psi(\vec{R})|^{2}$

Promising: possibility to orientate molecules without the need of any dipole moment Ex:

Carbon monoxide (CO) $\mu_0 \approx 0.12 D$

Orientation with two overlapping femtosecond pulses

$$H_{eff} = \frac{1}{2} \alpha_{ij} E_{i} E_{j} - \frac{1}{6} \beta_{ijk} \overline{E_{i}} E_{j} E_{k}$$

$$H_{eff} = -\frac{1}{4} \left(E_{\omega}^{2} + E_{2\omega}^{2} \right) \left(\Delta \alpha \cos^{2} \theta \right) - \frac{1}{12} E_{\omega}^{2} E_{2\omega} \left(\Delta \beta \cos^{3} \theta + \beta_{\perp} \cos \theta \right)$$

$$\Delta \beta = \beta_{\parallel} - \beta_{\perp}$$

$$\beta_{\perp} / \frac{1}{3} = \beta_{xxx} = \beta_{xxx} = \beta_{xxx} = \beta_{yyx} = \beta_{yyx} = \beta_{yyy}$$

$$\beta_{\parallel} = \beta_{xxy}$$

Experimental difficulty: Problems of ionization

Other problem:

Strong alignment of the molecules (orientation messed up by the alignment)

Possibility to try HBr (polarisability anisotropy 3 times smaller than for CO)

Computations: CO

$I = 2.2 10^{14} \text{ W/cm}^2$ in both pump beams

Without alignment

With alignment

Computations

Very low temperatures necessary!

Conclusion

- Orientation of molecules with electric fields
 - Stereodynamics studies, fragments selection...
 - but not yet field-free oriented molecules
 - Important for recollision experiments, tomographic imaging
- Experimental difficulties with the two overlapping femtosecond pulses (temperature, alignment...)
- Half-cycle pulse ?

Ultrafast Laser / Atomic Physics group

Pr. Robert R. Jones
Dan Pinkham
Xiangdong Zhang
Mary Kutteruf
Brett Sickmiller
Kelsie Betsch

Three-dimensional molecular orientation with combined electrostatic and elliptically polarized laser fields

PHYSICAL REVIEW A **72**, 063401 2005 Haruka Tanji, Shinichirou Minemoto, and Hirofumi Sakai*

Experimental Observation of Revival Structures in Picosecond Laser Induced Alignment of I₂
F. Rosca-Pruna and M. J. J. Vrakking
Phys. Rev. Let. 87,15 (2001)

Controlling the Orientation of Polar Molecules with Combined Electrostatic and Pulsed, Nonresonant Laser Fields Hirofumi Sakai,* Shinichirou Minemoto, Hiroshi Nanjo, Haruka Tanji, and Takayuki Suzuki Phys. Rev. Let. 90,083001 (2003)

Photodissociation of oriented HXeI molecules in the gas phase

R. Baumfalk, N. H. Nahler, and U. Buck, J. Chem. Phys. **114**, 4755 (2001).

