An Ultrafast Quantum Camera

University of Virginia April 20th, 2007

Motivation & Outline

Motivation: Making molecular movies in real time

- ·Need a fast camera (ultrafast laser)
- Need to control the action (shaped laser pulses)

<u>Outline</u>

- 1. The tools of the trade
 - Ultrafast lasers
 - Pulse shaping and learning algorithms

A. Zewail, 1999 Nobel Prize in chemistry

- 2. Demonstrating Control
 - Atomic population transfer & molecular fragmentation
 - 3. Understanding Control and Making Movies
 - Uncovering physical mechanisms underlying control
 - Seeking to measure molecular wavefunctions

Making a Movie of Molecular Bond Breaking

- What if we don't know how to break a given bond?
- Use feedback to figure out how!
- What tools do we need to do this?
- 3N-6 vibrational modes, 3 rotational modes are all these needed to understand the dynamics?

Capturing Molecular Dynamics

$$\tau \approx 10^{-6} s$$

$$\tau \approx 10^{-14} \, s$$

Controlling Molecular Dynamics

The 'Coherent' Control Toolbox

Amplified ultrafast lasers

Amplified Ultrafast Lasers

Start with 'modelocked' ultrafast laser

Stretch, amplify and compress

About 1 million modes lasing and locked in phase!

 $E(t)=E_0(t)\cos(\omega t)$

Time

Ultrafast Optical Pulse Shaping

Programmable mask which

Using a Genetic Learning Algorithm I

Based on biological model of natural selection

In Nature

In Our Lab

Individuals:

Genetic Code:

Shaped pulses E(t)

Phase at each frequency

Collection of pulse shapes

Using a Genetic Learning Algorithm II

Based on biological model of natural selection

In Nature

In Our Lab

Survival of the Fittest:

Fitnesses = 1.95, 2.46, ...

Reproduction:

"Operators"

Crossover, Mutation, etc.

Control & Dynamics I Inversion & Lasing in an atom (Na)

Strong Fields - Dynamic Resonance

- Coupling strength and energy shifts are of the same order of magnitude -> low efficiency
- •Absorption -> Emission

Stark shift: $\delta E \propto \varepsilon(t)^2$

R. R. Jones *Phys. Rev. Lett.* **74**, 1091 (1995)

Strong Fields - Dynamic Resonance

Using Feedback to get Inversion & Lasing in Na

Improvement over unshaped ~ 3

Improvement over unshaped $\sim 10^3$

Understanding Single Atom Strong Field Dynamics

Understanding Single Atom Strong Field Dynamics

--- $P_{4s}(t), \alpha(t)$ shaped --- $P_{4s}(t), \alpha(t)$ unshaped --- I(t) measured

 $\alpha(t)$ is the 'atom-laser phase'

Measurement & Calculations of the Stimulated Emission

Stimulated Emission vs $|\psi_{4s}|^2$

- Stimulated emission is superfluorescence locking of atomic dipoles
- Modest single atom gains lead to large stimulated gains

Control and Dynamics II - Molecules

Control in Trifluoroacetone (CH₃COCF₃)

Control goal = CF3+/CH3+

R. J. Levis, G. M. Menkir, and H. Rabitz, Science 292, 709 (2001).

D. Cardoza, M. Baertschy, T. Weinacht, J. Chem Phys. 123, 074315 (2005).

Optimal solution & Pump-Probe Measurement

$$E(t) = A(t)\cos(\omega_0 t + \phi(t))$$

How Can We Describe the Dynamics?

Molecular Relaxation

CH₃COCF₃⁺

 $CF_3 + CH_3CO^+$

Molecular Relaxation II

Enhanced Molecular Ionization

"Diatomic" EI calculation

- ·Ionization probability increases at R_{critical}
- •Treat CH₃CO+ and CF₃ as atomic-like

Control Model

J. Chem. Phys. 123 074315 (2005)

Predictions for 'Family Members'

Fragmentation of Family Members

CH₃COCCl₃

CH₃COCF₃

Results for CH₃COCCl₃ and CH₃COCD₃

Similar But Different - Charge Transfer

Dynamic Resonance

Dynamic Resonance during Dissociation

Fragment Separation

Similar to case of Na - but here dynamics are driven by nuclear motion

Oscillations & Bond Breaking

Can We Measure $\psi(t)$?

$$\psi_{tot}^* \psi_{tot} = |\psi(t)|^2 + |\psi(t+\tau)|^2 + 2|\psi(t)| |\psi(t+\tau)| \cos[\phi(t) - \phi(t+\tau)]$$

Measurement gives amplitude – Interference gives phase

Preliminary Measurements

Wave Packet Simulations

Conclusions & Future Directions

- Can discover and understand optimal pulse shapes for fragmentation
- See systematic behavior - 'photonic reagents'
- En route to making molecular movies – measuring ψ(t)

Acknowledgements

David Cardoza (Stanford)
Brett Pearson
Carlos Trallero
Sarah Nichols
Steve Clow
Chien-Hung Tseng
Brendan Keller
Martin Cohen

Collaborators: Spiridoula Matsika (Temple U) Mark Baertschy (CU Denver)

Funding: NSF, ACS-PRF, DURIP & Research Corp

