

Oleg Tchernyshyov

JOHNS HOPKINS

Acknowledgments

- Ya. Bazaliy (IBM Almaden → Leiden → USC).
- G.-W. Chern, D. Clarke, O. Tretiakov (JHU).
- C.-L. Chien, N. Markovic (JHU).

MRSEC Grant DMR-0520491.

Size does matter

- A macroscopic magnet has two states:
 - magnetized (uniform magnetization M),
 - demagnetized (domains with different **M**).
 - Domains separated by sharp domain walls.
- New physics on the nanoscale:
 - domain walls don't fit inside a small magnet,
 - intricate continuous textures form instead.
- We'll discuss properties of these textures.
- Fractional vortices, skyrmions, monopoles ahead!

Ferromagnetism basics

- Quantum exchange interaction:
 - short-range,
 - lines up spins parallel to each other.
- Crystalline anisotropies:
 - short-range,
 - lines up spins with crystalline axes.
- Dipolar interaction:
 - long-range,
 - discourages formation of magnetic charges.

Exchange

$$E = A \int_{\text{sample}} d^3r \, |\nabla \hat{\mathbf{m}}|^2, \quad \hat{\mathbf{m}} = \mathbf{M}/M.$$

Exchange constant.

Ground state: $\hat{\mathbf{m}} = \text{const.}$

Spontaneously breaks the O(3) symmetry.

Scales as the linear size of the system.

Anisotropies

Crystal anisotropy + spin-orbit interaction.

Example: crystal with a cubic symmetry.

$$E = -K \int_{\text{sample}} d^3 r \, (m_x^4 + m_y^4 + m_z^4).$$

Rotational symmetry is explicitly broken.

Ground state:
$$\hat{\mathbf{m}} = (\pm 1, 0, 0), (0, \pm 1, 0), (0, 0, \pm 1).$$

Breaks the residual discrete group D_2 .

Dipolar

$$E = \frac{\mu_0}{2} \int_{\text{all space}} d^3 r H^2.$$

$$\nabla \cdot \mathbf{B} = 0 \quad \Rightarrow \quad \nabla \cdot (\mathbf{H} + \mathbf{M}) = 0.$$

$$\nabla \cdot \mathbf{H} = 4\pi \rho, \quad \rho = -\nabla \cdot \mathbf{M}/4\pi.$$

$$E = \frac{\mu_0}{8\pi} \int_{\text{sample}} d^3r \, d^3r' \, \frac{\rho(\mathbf{r})\rho(\mathbf{r'})}{|\mathbf{r} - \mathbf{r'}|}$$

Scales as the volume of the sample.

Comparing the energies

- Exchange: scales as sample length.
- Dipolar: scales as system volume.
- Hence $\mathbf{H}=0$ (and $\rho=0$) in a large sample.
- Lines of **M** do not originate or terminate.
- Cost of domain walls less than cost of **H**.

Magnetic domains in Fe

Domains of uniform M separated by 90° and 180° walls.

Magnetic domains in Fe

Domains of uniform **M** separated by 90° and 180° walls.

$$\lambda_1=\sqrt{2A/\mu_0M^2}\approx 10~{
m nm}, \quad \lambda_2=\sqrt{A/K}\gtrsim 100~{
m nm}.$$
 Exchange vs dipolar Exchange vs anisotropy

Real Fe sample

Fig. 6.17 SEMPA images of magnetization direction in (a) an amorphous ribbon, (b) a Co/Cu mulitlayer, and (c) patterned Fe films. Relationship between color and direction is given by colorwheel.

Scanning electron microscopy, J. Unguris (2000).

New physics on the nanoscale

- In submicron samples $E_{\text{exchange}} \sim E_{\text{dipolar}}$.
- Anisotropy is small in amorphous alloys.
- Domain walls have internal structure,
- exhibit nontrivial dynamic behavior.

Scanning electron microscopy, W. C. Uhlig and J. Unguris, JAP (2006).

Memory based on magnetic nanorings

Memory based on magnetic nanorings

The switching involves creation, propagation, and annihilation of 2 domain walls

Numerical simulation. J. G. Zhu et al. (2004).

DWs in a submicron strip

DWs in a submicron strip

What does a domain wall in a nanostrip look like?

- If a strip is narrow enough, it is a 1d object:
 - $\mathbf{M} = \mathbf{M}(x)$, rather than $\mathbf{M}(x,y)$.

- If a strip is narrow enough, it is a 1d object:
 - $\mathbf{M} = \mathbf{M}(x)$, rather than $\mathbf{M}(x,y)$.
- That works only when strip width < 10 nm.
 - If width > 100 nm: positively 2d textures.

- If a strip is narrow enough, it is a Id object:
 - $\mathbf{M} = \mathbf{M}(x)$, rather than $\mathbf{M}(x,y)$.
- That works only when strip width < 10 nm.
 - If width >100 nm: positively 2d textures.

Numerical simulation. McMichael and Donahue (1997).

• Thickness is the shortest geometrical size.

- Thickness is the shortest geometrical size.
- Dipolar forces tie **M** to the geometry:
 - M prefers to stay in the plane of the film,
 - M also tends to be parallel to the edge.

- Thickness is the shortest geometrical size.
- Dipolar forces tie **M** to the geometry:
 - M prefers to stay in the plane of the film,
 - M also tends to be parallel to the edge.

*R. Moser (2004); M. Kurzke (2004).

• Planar (XY) model \Rightarrow O(2) winding numbers.

*R. Moser (2004); M. Kurzke (2004).

• Planar (XY) model \Rightarrow O(2) winding numbers.

Bulk:

vortices (+ I), antivortices (− I).

*R. Moser (2004); M. Kurzke (2004).

- Planar (XY) model \Rightarrow O(2) winding numbers.
- Bulk:
 - vortices (+ I), antivortices (− I).
- Edge:
 - boundary vortices* (±1/2)†.

*R. Moser (2004); M. Kurzke (2004).

Winding numbers of edge defects

$$n = -\frac{1}{2\pi} \int_{\text{edge}} \nabla(\phi - \phi_e) \cdot d\mathbf{r} = \pm \frac{1}{2}.$$

Winding numbers of edge defects

$$n = -\frac{1}{2\pi} \int_{\text{edge}} \nabla(\phi - \phi_e) \cdot d\mathbf{r} = \pm \frac{1}{2}.$$

Are they really halfvortices?

$$+1+1-1/2-1/2=+1.$$

Are they really halfvortices?

• Take a vortex (+1) and 2 edge defects.

$$+1+1-1/2-1/2=+1.$$

Are they really halfvortices?

- Take a vortex (+1) and 2 edge defects.
- They annihilate without a trace.

$$+1+1-1/2-1/2=+1.$$

- Take a vortex (+1) and 2 edge defects.
- They annihilate without a trace.
- Hence each edge defect is -1/2 of a vortex.

$$+1+1-1/2-1/2=+1.$$

- Take a vortex (+1) and 2 edge defects.
- They annihilate without a trace.
- Hence each edge defect is -1/2 of a vortex.

- Take a vortex (+1) and 2 edge defects.
- They annihilate without a trace.
- Hence each edge defect is -1/2 of a vortex.

- Take a vortex (+1) and 2 edge defects.
- They annihilate without a trace.
- Hence each edge defect is -1/2 of a vortex.

Mathematically speaking...

Sum of the winding numbers (incl. bulk and edge) is a constant:

Note that there are no distinct topological sectors!

Mathematically speaking...

Sum of the winding numbers (incl. bulk and edge) is a constant:

Note that there are no distinct topological sectors!

Analogs of boojums in ³He.

G. E. Volovik, Universe in a Helium Droplet (2003).

What about domain walls?

- DWs in nanostrips are composite objects.
- Basic rules for putting together a DW:
 - one halfvortex at each edge (or an odd number),
 - total winding number of a wall is 0.
- Examples:
 - \bullet +1/2 -1/2 = 0.
 - \bullet 1/2 1/2 + 1 = 0.

+1/2

+1/2

+1/2

+1/2

+1/2

Most economical (fewest defects).

- Most economical (fewest defects).
- Seen in thin and narrow strips (< 50 nm).

- Most economical (fewest defects).
- Seen in thin and narrow strips (< 50 nm).
- Becomes Id kink as strip width → 0:

- Most economical (fewest defects).
- Seen in thin and narrow strips (< 50 nm).
- Becomes Id kink as strip width → 0:

$$\cos \phi(x, y) = \tanh x/\lambda.$$

-1/2

-1/2

• Seen in thicker and wider strips.

-1/2

- Seen in thicker and wider strips.
- Most economical if +1/2 defects "forbidden."

-1/2

- Seen in thicker and wider strips.
- Most economical if +1/2 defects "forbidden."
- +1/2 has magnetic charge \Rightarrow high dipolar energy.

An exotic wall

Transient state far out of equilibrium.

Summary: DW statics

- DWs in nanostrips are composite objects...
- ...made from integer and fractional vortices...
- ...following simple topological rules.
- Typical makeup of a domain wall:
 - +1/2 and -1/2 edge defects,
 - $2\times(-1/2)$ edge defects, +1 bulk vortex.
 - other compositions are metastable states.

• DWs in nanostrips carry magnetic charge,

- DWs in nanostrips carry magnetic charge,
- hence can be moved by applying magn. field.

- DWs in nanostrips carry magnetic charge,
- hence can be moved by applying magn. field.
- Even a weak field (20 Oe) can do that!

- DWs in nanostrips carry magnetic charge,
- hence can be moved by applying magn. field.
- Even a weak field (20 Oe) can do that!
- (Spin) current can, too. Less efficient.

Weak field: viscous motion

- DW moves steadily, slightly deformed.
- Speed is set by rate of energy dissipation:

$$\sum_i F_i^x - \Gamma v^x = 0.$$
 DW viscosity

- Periodic creation, annihilation of ±1 vortices.
- Viscous motion if no ±1 vortex is present.
- Oscillations in the presence of a ±1 vortex.

- Periodic creation, annihilation of ±1 vortices.
- Viscous motion if no ±1 vortex is present.
- Oscillations in the presence of a ±1 vortex.

- Periodic creation, annihilation of ±1 vortices.
- Viscous motion if no ±1 vortex is present.
- Oscillations in the presence of a ±1 vortex.

- Periodic creation, annihilation of ±1 vortices.
- Viscous motion if no ±1 vortex is present.
- Oscillations in the presence of a ±1 vortex.

- Periodic creation, annihilation of ±1 vortices.
- Viscous motion if no ±1 vortex is present.
- Oscillations in the presence of a ±1 vortex.

- Periodic creation, annihilation of ±1 vortices.
- Viscous motion if no ±1 vortex is present.
- Oscillations in the presence of a ±1 vortex.

- Periodic creation, annihilation of ±1 vortices.
- Viscous motion if no ±1 vortex is present.
- Oscillations in the presence of a ±1 vortex.

Underdamped regime

$$\sum_{i} \mathbf{F}_{i} - \Gamma \mathbf{v} + \mathbf{G} \times \mathbf{v} = 0, \quad G \gg \Gamma.$$

- Gyrotropic force:
 - acts on bulk vortices (±1),
 - has a topological origin,
 - overwhelms the viscous force.
- Vortex absent: viscous motion downhill.
- Vortex present: motion along equipotential lines.

Underdamped regime

$$\sum_{i} \mathbf{F}_{i} - \Gamma \mathbf{v} + \mathbf{G} \times \mathbf{v} = 0, \quad G \gg \Gamma.$$

- Gyrotropic force:
 - acts on bulk vortices (±1),
 - has a topological origin,
 - overwhelms the viscous force.
- Vortex absent: viscous motion downhill.
- Vortex present: motion along equipotential lines.

Underdamped regime

$$\sum_{i} \mathbf{F}_{i} - \Gamma \mathbf{v} + \mathbf{G} \times \mathbf{v} = 0, \quad G \gg \Gamma.$$

- Gyrotropic force:
 - acts on bulk vortices (±1),
 - has a topological origin,
 - overwhelms the viscous force.
- Vortex absent: viscous motion downhill.
- Vortex present: motion along equipotential lines.

$$\mathbf{G} \times \mathbf{v} = \nabla U, \quad \Rightarrow \quad U(x, y) = \mathrm{const.}$$

$$U(x, y) = -2HMwx + V(y).$$

$$\partial_x U(x, y) = -F^{\mathrm{Zeeman}} = -2HMw,$$

$$v_y = 2HMw/G, \quad T = w/|v_y| = \pi/\gamma H.$$

Crossing time = half a period of Larmor precession.

K.Yu. Guslienko (2007); O.T. (2007).

Vortex core: a close-up

M points out of the plane (\uparrow or \downarrow) at the core (\approx 10 nm).

A. Wachowiack et al., Science (2002).

$$\mathbf{F}^{\mathrm{gyro}} = \mathbf{G} \times \mathbf{v} = 4\pi J q \,\hat{\mathbf{z}} \times \mathbf{v},$$

$$q = \frac{1}{8\pi} \int d^2 r \, \epsilon^{ij} \, \hat{\mathbf{m}} \cdot (\partial_i \hat{\mathbf{m}} \times \partial_j \hat{\mathbf{m}}) = np/2,$$
vorticity z polarization

A.A. Belavin and A. M. Polyakov (1975). E. Feldtkeller (1965); A.A. Thiele (1973).

$$\mathbf{F}^{\mathrm{gyro}} = \mathbf{G} \times \mathbf{v} = 4\pi J q \,\hat{\mathbf{z}} \times \mathbf{v},$$

$$q = \frac{1}{8\pi} \int d^2 r \, \epsilon^{ij} \, \hat{\mathbf{m}} \cdot (\partial_i \hat{\mathbf{m}} \times \partial_j \hat{\mathbf{m}}) = np/2,$$
vorticity z polarization

q is the skyrmion number, a conserved charge.

A. A. Belavin and A. M. Polyakov (1975).

E. Feldtkeller (1965); A.A. Thiele (1973).

$$\mathbf{F}^{\mathrm{gyro}} = \mathbf{G} \times \mathbf{v} = 4\pi J q \,\hat{\mathbf{z}} \times \mathbf{v},$$

$$q = \frac{1}{8\pi} \int d^2 r \, \epsilon^{ij} \, \hat{\mathbf{m}} \cdot (\partial_i \hat{\mathbf{m}} \times \partial_j \hat{\mathbf{m}}) = np/2,$$
vorticity z polarization

- q is the skyrmion number, a conserved charge.
- Counts how many times M wraps on the sphere.

A.A. Belavin and A. M. Polyakov (1975). E. Feldtkeller (1965); A.A. Thiele (1973).

$$\mathbf{F}^{\mathrm{gyro}} = \mathbf{G} \times \mathbf{v} = 4\pi J q \,\hat{\mathbf{z}} \times \mathbf{v},$$

$$q = \frac{1}{8\pi} \int d^2 r \, \epsilon^{ij} \, \hat{\mathbf{m}} \cdot (\partial_i \hat{\mathbf{m}} \times \partial_j \hat{\mathbf{m}}) = np/2,$$
vorticity z polarization

- q is the skyrmion number, a conserved charge.
- Counts how many times M wraps on the sphere.
- Vortex with core 1 covers Northern hemisphere (+1/2).

A.A. Belavin and A. M. Polyakov (1975). E. Feldtkeller (1965); A.A. Thiele (1973).

$$\mathbf{F}^{\mathrm{gyro}} = \mathbf{G} \times \mathbf{v} = 4\pi J q \,\hat{\mathbf{z}} \times \mathbf{v},$$

$$q = \frac{1}{8\pi} \int d^2 r \, \epsilon^{ij} \, \hat{\mathbf{m}} \cdot (\partial_i \hat{\mathbf{m}} \times \partial_j \hat{\mathbf{m}}) = np/2,$$
vorticity z polarization

- q is the skyrmion number, a conserved charge.
- Counts how many times **M** wraps on the sphere.
- Vortex with core 1 covers Northern hemisphere (+1/2).
- Vortex with core \downarrow covers Southern hemisphere (-1/2).
 - A.A. Belavin and A. M. Polyakov (1975). E. Feldtkeller (1965); A.A. Thiele (1973).

Skyrmion charge of a vortex

Skyrmion charge = vorticity × polarization / 2

Observing gyrotropic effects

X-ray dichroism provides real-time info about M.

B. Van Waeyenberge et al., Nature (2006).

Gyrating vortex

Gyrating vortex

Gyrating vortex

The skyrmion number has changed!

Flipping the core

Numerical simulation

Direct core flipping

Direct core flipping

Mediated by a monopole (hedgehog). A. Thiaville et al., PRB (2003).

Two-stage core flipping

- Vortex-antivortex pair is created ($\Delta q = 0$).
 - requires a modest field.
- Antivortex + old vertex annihilate ($\Delta q = 1$);
 - spin-wave explosion is the death of a skyrmion.

Two-stage core flipping

B. Van Waeyenberge et al., Nature (2006).

Two-stage core flipping

B. Van Waeyenberge et al., Nature (2006).

Vortex-antivortex annihilation

Vortex + antivortex \rightarrow skyrmion \rightarrow spin waves Energy of spin waves = $8\pi A$ (skyrmion energy).

K. S. Lee et al., APL (2005); R. Hertel and C. M. Schneider, PRL (2006). O. Tretiakov and O. T., PRB (2007).

Summary

- Submicron magnets have just the right scale:
 - dipolar and exchange energies are comparable.
- Thin films with isotropic exchange have
 - bulk vortices with skyrmion charge ±1/2,
 - edge defects with fractional vorticity ±1/2.
- Domain walls in nanostrips and nanorings are made from integer and fractional vortices.
- Dynamics of DWs reduces to the creation, propagation, and annihilation of these defects.
- Skyrmion charge of vortices affects dynamics.
- Skyrmion number violation directly observed.