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r\ “ 1 don't know how to do this on a small scale

= e Ina practical way, but | do know that computing
& machines are very large... Why can't we make
them very small... For instance, the wires
should be 10 or 100 atoms in diameter, and the circuits
should be a few thousand angstroms across. ”

- Feynman, There’s Plenty of Room at the Bottom, 19509.

“The size scale of molecules is between 1 and 100

nm, a scale that permits functional nanostructures
with accompanying advantages in cost, efficiency,

and power dissipation.” - Heath & Ratner, 2003.
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Absence of Strong Gate Effects in
Electrical Measurements on
Phenylene-Based Conjugated Molecules

(a)

AlLO,/Al gate

-Lee, 2003.



Absence of Strong Gate Effects in
Electrical Measurements on
Phenylene-Based Conjugated Molecules
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Summary: no reproducible gate dependence

-Lee, 2003.



Absence of Strong Gate Effects in

Electrical Measurements on electrodes edges Iare
Phenylene-Based Conjugated Molecules not atomically flat
Poorly coordinated bonds l
(a)

AlLO,/Al gate

Electrodes screen molecule...

very low gate efficiency



Absence of Strong Gate Effects in

Electrical Measurements on electrodes edges are
Phenylene-Based Conjugated Molecules not atomically flat
Poorly coordinated bonds l
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Al.O./Al gate Electrodes screen molecule...
very low gate efficiency

Other approaches have shows more promise...



Break Junctions — Reed (Yale)

Conductance (2e’/h)
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(b}

time (s)

-M. Reed, APL1995.



Break Junctions — molecular bridges

hottom electrode

top electrode

bottom electrode

-M. Reed, Proc. IEEE 1999.



Molecular Crossbars — molecules as nodes in multiple xed circuits

Memory

Routing and interconnects

Memory P
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- Heath, UCLA
- Williams, HP



Bistable rotaxane crossbars (R.S. Williams, HP)

* resistance at the wire junctions can be reversibly switched
» each cross-point acts as an active memory cell.

-Heath and Ratner, 2003.



Direct Observation of Nanoscale

Switching Centers in Metal/Molecule/

Metal Structures

Chun Ning Lau," Duncan R. Stewart," R. Stanley Williams,"" and Marc Bockrath™*

* bias-driven filament formation & dissolution
 switching behavior due to filaments and not the (insulating) molecular interface

* still some applications...
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Other molecular / macromolecular systems:

° 2.46A * .:
Nanotubes: / ; graphene

e Electronic structure related to that
of graphene.

» Tight-binding: consider only nearest-
neighbor wavefunction overlap.

e Let y, be the overlap integral between the
neighboring atoms

- 2D dispersion of graphene’:

k,a k,a
) st 2o "2

References

*P.R. Wallace, Phys. Rev. Lett. 71(9) 622-634, 1947



Highly reproducible results with single-walled carb

SWNT as molecular interconnects:

 Cylindrical boundary conditions define

a tube:
C=na, +ma,

 Chiral indices (n,m) determine the
band structure’:

In-m| =0,3,6,..., metallic;
otherwise semiconducting.

(valid for all but the smallest diameter
nanotubes)

on nanotubes:

\ (5,5)
D=6.78 A

\ (9,0)
D=7.05A

\ (6,4)
D=6.83A

A\
Reference

¥ J.W. Mintmire et al., J. Phys. Chem. Sol. 54(12)
1835-1840, 1993.
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Highly reproducible results with single-walled carb

SWNT as molecular interconnects:

 Cylindrical boundary conditions define
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band structure’:

In-m| =0,3,6,..., metallic;

otherwise semiconducting.

(valid for all but the smallest diameter
nanotubes)

AR
)/ \7:&
[
)

’ﬁ i

 Chirality distribution Fou¥
» Rational synthesis of C g, — will
we have monodisperse SWNT?

on nanotubes:
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Nanotube-based FETs

drain
electrode

source
electrode

e Channel = semiconducting nanotube

e FETs can also be gated by a local wire or by
a liquid

e Smallest tubeFET ~100 nm (gap between
source and drain)

FET Structure:
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Tube-FET Logic (Bachtold, Delft)
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e Top-down FET logic gates have been made —J —
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Nanowires
Lieber (Harvard)
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First Optically Active Molecular

Electronic Wires

Yuliang Zhu,’ Nadine Gergel,* Nabanita Majumdar,* Lloyd R. Harriott,*
John C. Bean,! and Lin Pu*f

Nanowell
Geometry

/

—

Organic molecules

200 nm Au (contact)

Snm Ti
adhesion layer
s
100 nm Si0Oz
100 nm Au__
(contact)
51 Wafer FIB milled well
~10-50 nm wide

- Organic Letters, 2005



“Surfet” Strategy ( with Bean, Ghosh, Harriott, Pu)

CHANNEL SURFACE CHEMISTRY

SOURCE DRAIN

4
H -
/S:ui, (RaF)sHlT (RaPIahill

Si
71 cle

CHANNEL —

DEPLETION LAYER —
OXIDE—
BACKGATE —

CARRIER / SURFACE INTERACTIONS

» Covalent molecular adsorbates as resonant scattering centers on the channel
 Carriers squeezed into 2DEG-like state at the surface by the backgate

« Several ultraflat/clean surfaces readily available (strong contrast to Au!)
 Device architecture compatible with semiconductor roadmap

« Many directions for physics: Fano, Kondo, RTS, ...
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Tunable Fano device (prototype adsorbate modulated transistor)

* Inspired by early Raman work of Cardona on doped semiconductors

» Fano interference between a continuum and a discrete transition, e.g.
electronic continuum interferes with Raman-active phonon

» Characteristic asymmetric lineshape seen in Raman spectrum:
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Tunable Fano device (prototype adsorbate modulated transistor)
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* Resonance / antiresonance behavior depends on strength of the
interaction between electronic continuum and discrete phonon states

» Fano lineshape: | ;) = (q+e)°
1+ &7
E=(w—-w)lT

in which I = width parameter
g = asymmetry parameter (gq—< produces Lorentzian)



Tunable Fano device

Buried oxide / Silicon on insulator (SOI) Si(100) wafer

¢ ° e o o o ¢ o o \ Doped Si(100)
o o o ° .
° ° . ° e , o ° . e ® ° o ° ) device layer
oxide

>~ Doped “handle”




Tunable Fano device

Si(100)

o o o o o ® o o Annealing -

.Y . .‘. c o o ‘.s o ‘- . dopants diffuse
Y ° . ° e . o o o * ° o ® to surface




Tunable Fano device

Open gquestions: range of tunability; transport signature
Next: molecular adsorbates as surface dopants

Source _ Drain
Si(100) [B] ‘
. . °« ,° ° . . ® o 0 o g
° .. .. [ ) ° [ ) ° [ ) .. ° [ )
®
Ve

Device building in progress (Jack Chan)



Electron Phonon Interaction in Nanotube-channel FET S

Raman Stokes and anti-Stokes processes:

photon




Raman studies on individual nanotube-channel FETs

The DOS contains van Hove singularities and gaps dependent on the tube diameter:

Metallic Semiconducting
| C,
C1
1 - d
d _
Density of States
a. -k
Jjpos:  g(E)=R — .
iz dy,/(E-E; —il,)(E+E, +il )
References

[1] Richter, Subbaswamy et al.
[2] Raman resonance: Rao, Richter, Bandow, Chase, Eklund, Williams,
Fang, Subbaswamy, Menon, Thess, Smalley, Dresselhaus, Dresselhaus



Electron Phonon Interaction in Nanotube-channel FET

Intensity
Coherent
Excitation S AS
it P A L
Wo W0 @y Wg+Om

A

j/_ Channel \\‘ L

Source Drain

* single-channel measurements possible because of resonance conditions

o current-driven phonons

» work in progress: tube devices by CVD, lithography, Stokes/anti-Stokes

measurements




Raman mapping of the nanotube channel
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Related studies:
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Current work: electron-beam and photolithography

0.0
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Device fab. collab. @ Delft with Iddo Heller and Jing Kong (MIT)



New lithographic Tools: Near field ultraviolet phot olithography
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5" harmonic from Nd:YAG — 213 nm
* ~0.5 mW average power possible at 20 Hz



Standard Photolithography processes with a mask
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(very) Brief Summary of Near-field techniques

» Hans Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66 , 163-182 (1944):

Very small transmission expected: d 4

TU| —
A

* E. A. Ash and G. Nicholls, University College, London (1972): near field imaging with
microwaves through apertures 1/60 of the wavelength.

 1998: Thomas Ebbesen et al., “Extraordinary optical transmission | 30:2280:;0-9 Hm
through sub-wavelength hole arrays” Nature 391.: Bulk Ag 200nm Ag film
_ plasmon
£
“unusual optical properties are due to the % A / “
coupling of light with plasmons—electronic ‘E
excitations—on the surface of the periodically 2 | .
patterned metal film...” & j:
s o2f ]
— T many orders of magnitude higher 1
than expected 0 . . .

ROD 1,000 1500 2,000
Wavelength {nm)



Interaction of photon with surface plasmon
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New lithographic Tools: Near field ultraviolet phot olithography

ultraviolet
excitation quartz
aperture cantilever
metal (underneath)
Iay?r /

R

resist layer

~50 nm

substrate

« akin to contact print photolithography but with direct write, scanning aperture
» transmission enhancement through near-field aperture
* resolution: PMMA can be spun to ~few nm (thinner than photoresist)



New lithographic Tools: Near field ultraviolet phot olithography
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New lithographic Tools: Near field ultraviolet phot olithography

Focused-lon beam (FIB) fabrication of nanopore arrays on Ag-coated quartz

2 microns

= ? Mmicrons

Fab work: Andrew Spisak
Lithography: Brian Burke



Anticipated benefits:

« direct write capability (maskless photolithography)

« patterning under ambient conditions e quartz
aperture cantilever
metal  (underneath)
. layer % /
e patterning on soft surfaces »

 low equipment cost

resist layer

substrate

Questions we are currently working on: resolution limit, write speed

~50 nm



A dreams of the future: conductive wires with Watson-Crick hybridization?

Several DNA analogues such as PNA can be readily sequenced:

OH
PNA properties ’Qx DNA properties
A= T
T (o}
 Uncharged backbone /@/{ sk @ « Charged backbone
(4]
» Free terminal NH, -> easier /L » Near-perfect molecular
attachment to SWNT Y6 o recognition
H e {.J .
. :f,pacipg of bases is almost (w’( °=g‘° » Unstable in many
identical to that of dsDNA o /d\ common solvents
0"
» 20-mers are available % o » Buffered environment
&* /( 0=p—0 necessary
e Soluble* in water/DMF and stable 0

in many solvents /[‘\ .
0={ AN Attachment of DNA to
H

N T~ OH SWNT is more difficult
» T, is higher by ~1°C per base /( 5
pair, on average o
S Development of
conjugated backbone?
*Solubility can be sequence PNA-DNA Duplex Ju9

dependent (Nielsen and Haaima, 1997)



DNA junction scaffolds designed by sequence and ass embled by ligase:

DNA ligase “welds”
the pieces together

12 bp sticky ends

e
— —
QXAVACANVAVA D, QXAVAV/NTAVA D,

12 bp sticky ends

Ligase model: Tom Ellenberger,
Washington University School of Medicine



~nm position control in DNA, and limitless structur al coding...

Manuscript in prep.
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Nanoscience Undergraduate Experience (NUE)
* NSF funded ($200k), +$50k (College) +$150k (SEAS)
 First course currently in progress

« Current class equipment: 3 STMs, 3 AFMs, 1 UV-vis spectrophotometer, 6 PCs

TasS,, 5.4 nm scan

Nanoscience EasyScan®© table top STM

* Hands-on experience for beginning undergrads

« Sample topics: imaging techniques; quantum size effect in semiconductor
nanocrystals; nanotube growth by CVD; lithography...

» Expand experimental & theoretical repertoire for physics undergrads/grads



Current group:

Brian Burke
Jack Chan
Andrew Spisak
Kenny Evans
Quang Vu

Collaborations:

Adam Hall (UNC)
Jing Kong (MIT)
John Bean

Avik Ghosh

Lloyd Harriott

Lin Pu



