Physics at Virginia

"The classical evolution of binary black hole systems in scalar-tensor theories"

Justin Ripley , University of Cambridge
[Host: Alexander Saffer]

In this talk I will discuss recent work on numerically solving for the binary black hole dynamics of black holes in Einstein scalar Gauss-Bonnet (ESGB) gravity. This modified gravity theory can be motivated by effective field theory reasoning, and admits scalarized black hole solutions. These two facts make it a promising theory to constrain using binary black hole, gravitational wave observations. I will discuss how recent advances in mathematical relativity--in particular, the development of the "modified harmonic formulation"--have opened up the possibility of constructing fully nonlinear solutions to the equations of motion of ESGB gravity (in addition to a class of scalar-tensor modified theories known as "Horndeski" theories). I will discuss numerical simulations of single and binary black hole systems in these theories, and the gravitational and scalar radiation they emit.

Gravity Seminar
Monday, February 8, 2021
1:00 PM
Online, Room Zoom
Note special time.
Note special room.

Join Zoom Meeting:
Meeting ID: 992 6957 1512
Password: 474477

 Slideshow (PDF)
 Add to your calendar

To add a speaker, send an email to phys-speakers@Virginia.EDU. Please include the seminar type (e.g. Gravity Seminars), date, name of the speaker, title of talk, and an abstract (if available).