ABSTRACT:
Spin-specific trapping and mechanical control of ultracold atoms is difficult with current techniques, but offers the possibility of exploring new physics systems, notably spin-dependent trapped atom interferometers, as well as quantum gates, 1D many-body spin gases, and novel cooling schemes. Microwave near-field potentials based on the AC Zeeman effect provide a mechanism for such spin-specific control of atoms: in principle, independent potentials can be targeted to different spin states simultaneously. We present recent experimental progress in implementing such control by using AC near-fields on an atom chip to drive hyperfine transitions and manipulate ultracold rubidium atoms. |
Atomic Physics Seminar Monday, October 29, 2018 3:30 PM Physics Building, Room 313 Note special room. |
To add a speaker, send an email to phys-speakers@Virginia.EDU. Please include the seminar type (e.g. Atomic Physics Seminars), date, name of the speaker, title of talk, and an abstract (if available).