Physics at Virginia

"Local structure and the Jahn-Teller effect in TiSe2-xTex charge density waves"

Aaron Wegner , UVA- Department of Physics
[Host: Despina Louca]

Transition metal dichalcogenide (TMDC) materials exhibit a wide variety of interesting physical phenomena. This diverse family of materials forms a quasi-two dimensional layered hexagonal structure of X-M-X sandwiches (M= Ti, Mo, Hf, W, etc.., X= S, Se, Te) that, depending on composition, may be semiconducting, metallic, or superconducting and many undergo charge density wave transitions. As the materials are layered and can be exfoliated, interest in the TMDCs has increased due to the search for graphene-like materials and the importance of thin film applications. One particularly interesting material is TiSe2, which forms a prototypical commensurate CDW that occurs in the vicinity of superconductivity. The origin of this CDW phase is controversial and has alternatively been attributed to exciton condensation or several possible Jahn-Teller type mechanisms. I will discuss how neutron scattering and local structure refinements give insight into the effect of the lattice on CDW formation in TiSe2 and the doping series in which Te is substituted for Se.

Condensed Matter Seminar
Thursday, March 1, 2018
11:00 AM
Physics Building, Room 313
Note special time.
Note special room.

 Add to your calendar

To add a speaker, send an email to phys-speakers@Virginia.EDU. Please include the seminar type (e.g. Condensed Matter Seminars), date, name of the speaker, title of talk, and an abstract (if available).