"PATTERNS, STABILITY AND COLLAPSE FOR TWO-DIMENSIONAL BIOLOGICAL SWARMS"Maria D'Orsogna , UCLA [Host: Paul Fendley]
ABSTRACT:
One of the most fascinating biological phenomena is the self-organization
of individual members of a species moving in unison with one another,
forming elegant and coherent aggregation patterns.
Schools of fish, flocks of birds and swarms of insects
arise in response to external stimuli or by direct interaction, and are
able to fulfill tasks much more efficiently than single agents.
How do these patterns arise? What are their properties?
How are individual characteristics linked to collective behaviors?
In this talk we discuss various aspects of biological swarming
by investigating a non-linear system of
self propelled agents that interact via pairwise attractive and repulsive
potentials. We are able to predict distinct
aggregation morphologies, such as flocks and vortices, and by
utilizing statistical mechanics tools,
to relate the interaction potential to the collapsing or
dispersing behavior of aggregates as the number of constituents increases.
We also discuss passage to the continuum and possible applications
of this work to the development of artificial swarming teams.
|
Condensed Matter Seminar Monday, February 5, 2007 3:30 PM Physics Building, Room 204 Note special date. Note special room. |
To add a speaker, send an email to phys-speakers@Virginia.EDU. Please include the seminar type (e.g. Condensed Matter Seminars), date, name of the speaker, title of talk, and an abstract (if available).