Experimental Condensed Matter Physics


From the left, first column: (upper figure) Cut plane view of electron bonding charge densities of an iron-phosphorus compound obtained from ab initio calculations, and (lower figure) scanning electron micrograph of fracture surface of ductile amorphous steel showing network of plastic deformation zones. Second column: Pole figures of a (002) MnAl thin film deposited on a MgO substrate. Third column: (upper) The magnetic strip domain structure of MnAl thin film revealed by Magnetic Force Microscopy image. (Lower) The detailed magnetic parallel strip domains showing the width is ~10 nm. Fourth column: Color contour map of the strongly anisotropic spin resonance neutron scattering intensity in the momentum space obtained from superconducting FeTe0.5Se0.5 whose crystal structure is shown in the inset.

Condensed matter physics seeks to understand the striking new physical properties that may emerge when very large numbers of atoms or molecules organize into solids or liquids. Research in this area has led to fundamental breakthroughs in our understanding of metals, semiconductors and superconductors, as well as to the inventions of the transistor, diode laser, and integrated circuit. Condensed matter physics thus comprises the technological underpinning for the entire modern computer and communications industry. For these reasons, worldwide, this branch of physics commands the largest number of researchers, who work in academic institutions, major industrial and government laboratories, and small entrepreneurial enterprises. The problems addressed by condensed matter physicists are often interdiscplinary in nature, affecting a number of other scientific fields including chemistry, biology, electrical engineering, and materials science. The University of Virginia maintains a diverse and vigorous research program in both experimental and theoretical condensed matter physics.

The experimental condensed matter research groups at UVa explore the structural, optical, electronic, and magnetic properties of different types of solids ranging from amorphous to crystalline systems with unusual properties. Activities include the synthesis and characterization of metallic glasses, quasicrystals, colossal magnetoresistive manganites and high temperature superconductors, measurements of electronic and magnetic properties of new intermetallic compounds, characterization of static and dynamic lattice effects in oxides, intermetallic alloys and martensites using the pair density function analysis, study of the microscopic processes at the interface of two relatively sliding materials as well as inside metals and crystals during plastic deformation, study of phase transitions, measurement of magnetic and quantum correlation effects in heavy fermion and high-temperature superconductors, scanning-probe and optical studies of new semiconductor alloys, studies of wetting and adsorption on crystal surfaces, and development of far-infrared applications of semiconductors and superconductors. The condensed matter community at UVa has access to a variety of cryogenic facilities capable of scanning temperatures from as low as 15 mK to room temperature, several high-field magnets, a quantum-interference magnetometer, different scanning-probe instruments such as scanning tunneling, force, and optical microscopes, various vacuum thin-film deposition and etching systems, and a range of microwave and millimeter-wave analytic instruments. In addition, many research projects work closely with Electrical Engineering and Materials Science Departments, using facilities such as a photolithography lab and X-ray diffraction and elec-tron-beam microscopes, as well as national labs where high magnetic fields sources are available. The group also performs research at national and international neutron and x-ray facilities and carries out high precession measurements on the atomistic properties of materials particularly under high pressure.

Theoretical condensed matter physicists at UVa try to arrive at a quantitative description of many unusual properties observed in novel materials and fluids. Such research includes an investigation into what makes the new generation of high-temperature superconductors work as they do, solving model problems like quantum spin chains which are believed to contain the features of newly synthesized low-dimensional metals and magnets. Studies of the structure of magnetic vortices in superconductors and the interactions that bind atoms and molecules to solid surfaces are also underway. For example, the point-contact tunneling amplitude for the fractional quantum Hall effect was recently exactly computed.


Louis A. Bloomfield Louis A. Bloomfield
Ph.D., 1983, Stanford

Professor Bloomfield is studying borosilicones, remarkable materials that have been misunderstood for over 70 years. Dismissed as scientifically uninteresting and used as children's toys (e.g., Silly Putty), borosilicones are actually network liquids---dynamic macromolecules that appear elastic on short timescales but exhibit flow on longer timescales. Each borosilicone is a vast covalent network of silicone polymer chains joined by 3-attachment boron crosslinks. At any instant, a borosilicone is a highly-crosslinked elastic material. Because the boron crosslinks are temporary, ... More>

Utpal Chatterjee Utpal Chatterjee
Ph.D., 2007, University of Illinois - Chicago

My research is focused on a branch of physics, commonly known as condensed matter physics, which is essentially the study of physical properties of matter in their liquid or solid state employing the principles of quantum as well as statistical mechanics. My research interest lies in the experimental investigations of various solid state systems which exhibit novel electronic and magnetic properties, such as cuprate high temperature superconductors, colossal magneto resistive manganites, different transition metal dichalcogenides hosting charge density wave (CDW) as well as metal ... More>

Seung-Hun Lee Seung-Hun Lee
Ph.D., 1996, Johns Hopkins

Lee’s research focuses on strongly correlated materials such as non-conventional high temperature superconductors, quantum magnets, frustrated spin systems, magnetic molecules, and multiferroics. The main experimental techniques that the group uses are elastic and inelastic neutron scattering with which one can directly probe the many body response function. Neutron scattering experiments are performed at several domestic and international facilities. The group also has the in-house capability of growing high quality single crystals of transition metal oxides using a state-of-the-art ... More>

Despina Louca Despina Louca
Ph.D., 1997, Pennsylvania

The interactions of the spin, charge and lattice degrees of freedom often lead to emerging  properties such as spin and charge density waves, superconductivity and quantum spin liquid states. The class of materials that are of interest to the Louca group includes topological insulators and semimetals, spintronic antiferromagnets of the I-Mn-V class, transition metal dichalcogenides, disorder superconductors, layered semiconductors etc.  Understanding the macroscopic functionality of these systems can potentially be very useful for industrial applications. ... More>

Joseph Poon Joseph Poon
Ph.D., 1978, Caltech

My research group currently focuses on two projects. In project 1, we perform experimental and computational study of new semiconductors for heat to electrical energy conversion and cooling. The narrow-bandgap semiconductors studied by us are often in the proximity of Dirac metals and semimetals that tend to show unusual thermo-magnetic and electrical transport properties. In project 2, we perform experimental and computational study of ferrimagnetic and antiferromagnetic thin film heterostructures that show intriguing magnetic and transport properties, e.g., skyrmionic state and anomalous ... More>

Bellave S. Shivaram Bellave S. Shivaram
Ph.D., 1984, Northwestern

Professor Shivaram is a condensed matter experimentalist whose research spans a wide variety of key areas. His scientific career started with  work on the quantum fluid, liquid 3He, a strongly correlated Fermi system, focusing on its acoustic properties in the superfluid state. He has stayed with the theme of strongly correlated Fermi systems investigating their superconducting and magnetic properties at very low temperatures and high magnetic fields.  His recent work has focused on the thermodynamic, electromagnetic and acoustic properties of a class of such ... More>

Jongsoo Yoon Jongsoo Yoon
Ph.D., 1997, Penn State

My research is focused on understanding of phases and phase transitions in two dimensional (2D) electronic systems such as thin superconductor or metal films and semiconductor heterostructure or quantum well. At sufficiently low temperatures and high magnetic fields, these 2D systems exhibit many interesting quantum phenomena including integer and fractional quantum Hall effect, quantum phase transitions, and electron crystallization. However, many aspects of these phenomena are poorly understood. More>

Recent News

Recent Talks

Recent Publications

  1. "Universal magnetic structure of the half-magnetization phase in Cr- based spinels", M. Matsuda, K. Ohoyama, S. Yoshii, H. Nojiri, P. Frings, F. Duc, B. Vignolle, G. L. J. A. Rikken, L. P. Regnault, S.-H. Lee, H. Ueda, Y. Ueda, Phys. Rev. Lett. 104, 047201 (2010).
  2. "Superconductivity in transition metal doped MoB4", J. W. Simonson, D. Wu, S. J. Poon, and S. A. Wolf, J. Superconductivity and Novel Magnetism 23, 1557 (2010).
  3. "Compressive plasticity and toughness of a Ti-based bulk metallic glass", X. J. Gu, S. J. Poon, G. J. Shiflet, and J. J. Lewandowski, Acta Materialia 58, 1708 (2010).
  4. "Relaxation dynamics of the metal-semiconductor transition in VO2 thin films", J. H. Claassen, J. W. Lu, K. G. West, S. A. Wolf, Appl. Phys. Lett. 96, 132102 (2010).
  5. "Transport phase diagram for superconducting thin films of tantalum with homogeneous disorder", Y. Z. Li, C. L. Vicente, J. Yoon, Phys. Rev. B 81, 020505 (2010).
  6. "Study of SF6 adsorption on graphite using infrared spectroscopy", P. Thomas, Y. Xia, D. A. Boyd, T. A. Hopkins, G. B. Hess, J. Chem. Phys. 131 (12), 124709 (2009).
  7. "Spin-lattice order in frustrated ZnCr2O4", S. Ji, S.-H. Lee, C. Broholm, T. Y. Koo, W. Ratcliff, S-W. Cheong, P. Zschack, Phys. Rev. Lett. 103, 037201 (2009).
  8. "Magnetic field-induced phase transitions in a weakly coupled s = 1/2 quantum spin dimer system Ba3Cr2O8", M. Kofu, H. Ueda, H. Nojiri, Y. Oshima, T. Zenmoto, K. C. Rule, S. Gerischer, B. Lake, C. D. Bastista, Y. Ueda, S.-H. Lee, Phys. Rev. Lett. 102, 177204 (2009).
  9. "Hidden quantum gap state in the static stripe phase of La2-xSrxCuO4", M. Kofu, S.-H. Lee, M. Fujita, H.-J. Kang, H. Eisaki, K. Yamada, Phys. Rev. Lett. 102, 047001 (2009).
  10. "Weakly coupled s = 1/2 quantum spin singlets in Ba3Cr2O8", M. Kofu, J.-H. Kim, S. Ji, S.-H. Lee, H. Ueda, Y. Qiu, H. J. Kang, M. Green, Y. Ueda, Phys. Rev. Lett. 102, 037206 (2009).
  11. "Formation of local electric dipoles with no unique polar axis in Tb3Fe5O12", Despina Louca, K. Kamazawa, T. Proffen, Phys. Rev. B 80, 214406 (2009).
  12. "High Capacity Hydrogen Absorption in Transition Metal Ethylene Complexes: consequences of nanoclustering", A. B. Phillips and B. S.Shivaram, Nanotechnology 20, 204020 (2009).
  13. "Colloquium: Electron-lattice interaction and its impact on high Tc superconductivity, V. Z. Kresin and S. A. Wolf, Rev. Mod. Phys. 81, 481 (2009).
  14. "Properties of vanadium and tantalum granular oxide-metal tunnel junction fabricated by electrochemical anodization", W. Fan, D. Kirkwood, J. Lu, S. A. Wolf, Appl. Phys. Lett. 95, 232110 (2009).
  15. "Multiple-Trap Correlations in the Room-Temperature Random Telegraph Signal of a Carbon Nanotube Field-Effect Transistor". Tsz Wah (Jack) Chan , Brian Burke , Kenneth Evans , Keith Williams, Smitha Vasudevan, Mingguo Liu , Joe Campbell , Avik Ghosh, Phys. Rev. B 80, 033402 (2009).
  16. "Infrared spectroscopic study of C2F6 monolayers and bilayers on graphite", T. A. Hopkins, D.A. Boyd, Y. Xia, G. M. Shifflett, F. M. Hess, and G. B. Hess, J. Chem. Phys. 128 (15), 154714 (2008).
  17. "External magnetic field effects on a distorted kagome antiferromagnet", J.-H. Kim, S. Ji, S.-H. Lee, B. Lake, T. Yildirim, H. Nojiri, K. Habicht, Y. Qiu, K. Kiefer, Phys. Rev. Lett. 101, 107201 (2008).
  18. "Field-induced antiferromagnetism and competition in the metamagnetic state of terbium gallium garnet", K. Kamazawa, Despina Louca, R. Morinaga, T. J. Sato, Q. Huang, J. R. D. Copley, Y. Qiu, Phys. Rev. B 78, 064412 (2008).
  19. "(Zr,Hf)Co(Sb,Sn) half-Heusler phases as high-temperature (>700 oC) p-type thermoelectric materials", S. R. Culp, S, J, Poon, V. Ponnambalam, J. Edwards, and T. M. Tritt, Appl. Phys. Lett. 93, 022105 (2008).
  20. "Poisson's ratio and intrinsic plasticity in metallic glasses", S. J. Poon, A. W. Zhu, and G. J. Shiflet, Appl. Phys. Lett. 92, 261902 (2008).
  21. "High Capacity Hydrogen Absorption in Transition Metal Ethylene Complexes Observed via Nanogravimetry", A. B. Phillips and B. S.Shivaram, Phys. Rev. Lett. 100, 105505 (2008).
  22. "Very large anisotropy in the dc conductivity of epitaxial VO2 thin films grown on (011) rutile TiO2", J. W. Lu, K. G. West, S. A. Wolf, Appl. Phys. Lett. 93, 262107 (2008).
  23. "Deep-UV Pattern generation in PMMA", Brian G Burke, Timothy J Herlihy Jr, Andrew B Spisak and Keith A Williams, Nanotechnology 19, 215301 (2008).
  24. "Quantum spin liquid states in the two dimensional kagome antiferromagnets, ZnxCu4-x(OD)6Cl2", S.-H. Lee, H. Kikuchi, Y. Qiu, B. Lake, Q. Huang, K. Habicht, K. Kiefer, Nature Materials 6, 853 (2007).
  25. "Spin-lattice instability to a fractional magnetization state in the spinel HgCr2O4", M. Matsuda, H. Ueda, A. Kikkawa, Y. Tanaka, K. Katsumata, Y. Narumi, T. Inami, Y. Ueda, S.-H. Lee, Nature Physics 3, 397 (2007).
  26. "Characterization of Nanostructures During Growth Using a Quartz Monitor", A.B. Phillips and B.S. Shivaram, Appl. Phys. Lett. 91, 153109 (2007).
  27. "Spin Incommensurability and Two Phase Competition in Cobaltites", D. Phelan, Despina Louca et al., Phys. Rev. Lett. 97, 235501 (2006).
  28. "Nano-magnetic droplets and implications to orbital ordering in La1-xSrxCoO3", D. Phelan, Despina Louca et al., Phys. Rev. Lett. 96, 027201 (2006).
  29. "Origin of nonlinear transport across the magnetically induced superconductor-metal-insulator transition in two dimensions", Y. Seo, Y. Qin, C. L. Vicente, K. S. Choi, J. Yoon, Phys. Rev. Lett. 97, 057005 (2006).