×
 Physics at Virginia

image caption:
   
 

The nuclear physics group carries out research in the low to medium-energy range at national and international facilities, including JLab, ORNL, FNAL, PSI, and the future EIC. Two main thrusts of the group are testing of the fundamental symmetries of the Standard Model and studying the nucleon and the nuclear structure and quantum chromodynamics. The group is also leading major instrumentation efforts such as detector upgrades at JLab, maintaining and upgrading polarized targets for JLab and FNAL, and detector R&D for the EIC.

Read More about Experimental Nuclear and Particle Physics at UVa >

< Return to Short Description

 


Nuclear and Particle Physics Talks:

  Stefan Baeßler   Baeßler: Professor Baeßler does research in fundamental symmetries, that is, precision tests of the Standard Model of Elementary Particles. His main activities are devoted to physics with cold neutrons at the SNS in Oak Ridge/Tennessee. He conducts experiments that study neutron beta decay (Nab and pNab) and in hadronic weak interactions (npdgamma, nHe3). In addition, he is testing gravity with ultracold neutrons at the ILL in Grenoble/France (GRANIT), and he is determining the magnetic moment of the muon (More>
  Gordon D Cates, Jr.   Cates: Professor Cates conducts research in three diverse areas spanning atomic, nuclear, and medical physics. Unifying these activities is the use of optical pumping and spin exchange, techniques that make it possible to polarize the spins of electrons, atoms and nuclei using light sources such as lasers. Critical to such research is the study of spin interactions during atomic collisions, spin-relaxation at surfaces, and numerous aspects of laser physics. More>
  Dustin M. Keller   Keller: Professor Keller conducts research in spin physics at the intersection of high-energy, nuclear, and condensed matter physics, with interests in hadron spin structure, physics beyond the standard model, spin-sensitive phenomena, and mapping the inner structure of composite spin systems. This research involves the study of quark and gluon dynamics as well as the study of spin degrees of freedom to probe polarized observables. This research could also be ... More>
  Nilanga Liyanage   Liyanage: In the so called confinement region quarks interact strongly to form protons and neutrons. Understanding the structure of the nucleon in the confinement region in terms of Quantum Chromo Dynamics (QCD), the fundamental theory governing the strong interaction between quarks, presents a great challenge to physicists. Professor Liyanage´s research is focused on understanding the neutron structure. He is the principal spokesperson of a recently completed Jefferson Lab experiment, E01-012, that performed a precision measurement of the neutron spin structure in the nucleon resonance ... More>
  Blaine E. Norum   Norum: Quantum Chromo-Dynamics (QCD) provides an excellent description of subnuclear phenomena at high energies. However, at lower energies observables cannot be calculated exactly from QCD; one has to resort to models or parametrizations which are consistent with the basic symmetries of QCD. Near-threshold electromagnetic production of pions from nucleons are ideal processes in which to test these theoretical approaches. We are engaged in measuring these processes at the Jefferson Laboratory (JLab) and at the new High Intensity Gamma Source (HIGS) located at the Duke Free Electron Laser ... More>
  Kent D. Paschke   Paschke: Professor Paschke’s research activity focuses on precision measurements of parity-violation in electron scattering at Jefferson Lab, in Newport News Virginia. These measurements have proven to be a useful tool for the study of the building blocks of the atomic nucleus and for testing the completeness of the Standard Model of electroweak interactions. A recently completed series of experiments address a range of topics, including strange quarks in nuclei, nuclear structure in a 208Pb nucleus, and the electroweak coupling of the nucleons. Prof. Paschke is also actively ... More>
  Dinko Počanić   Počanić: Professor Počanić is studying basic symmetries and conservation laws manifest at low and intermediate energies, with the aim of obtaining new stringent constraints on the dynamics of the two fundamental short-range interactions: the electroweak and the strong. This work requires precise measurements of the elementary decay and scattering processes typically involving the simplest particles in nature: mesons, leptons, and nucleons. More>
  Xiaochao Zheng   Zheng: Professor Zheng conducts research at the Thomas Jefferson National Accelerator Facility (JLab). Her research interest includes study of the nucleon structure, especially the spin structure of the neutron using the polarized 3He target. The nucleon structure is determined by how quarks and gluons interact with each other, thus such information could reveal some fundamental properties of the strong interaction and QCD. Another major aspect of Prof. Zheng's research is parity violation (PV) in electron deep inelastic scattering (DIS). By measuring the PVDIS asymmetry off a hydrogen and a ... More>