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The ‘First’ Theory LePlore Quarks

e Standard Model of particle physics
e Describes three of the four known
forces (electromagnetic, strong

and weak interactions)

e It's predictions have been Photon
tested and found accurate to an
impressive degree

e Three families of fermions (quarks +

leptons)
e Gluons, photons and W/Z bosons
mediate forces (spin-1 bosons) \
e Higgs boson is product of field which gives This Seminar!

particles their fundamental mass (spin-0 boson)



Higgs boson discovered

by ATLAS and CMS in 2012

Many parameters already

well measured

o Mass

o Spin/CP

o Couplings to other SM
particles

We are moving from an
era focused on Higgs
discovery to an era of

Higgs exploration
o Using the Higgs to test

new areas of the Standard

Model
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Higgs Pair Production
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e Both processes lead to non-resonant production of
Higgs boson pairs in the Standard Model
e Quark loop interactions are proportional to Yukawa
Higgs-quark coupling
e Triple Higgs interaction is proportional to the
unmeasured(!) trilinear Higgs self-coupling
o Strength of coupling well-predicted by the
Standard Model
AND
o Measurements of the self-coupling are
possible at the LHC

Hiqgs Self-Coupling
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So What Else? (I did say two theories...)

e SM doesn’t explain a lot
o  Hierarchy problem
o  Origin of neutrino mass
o  Dark matter?
o  Gravity??
e New theories are needed (and available!) to understand
these phenomena

NoT YET, BUT
T MAY NoT BE
FAR AwAY /

HAVE You SEEN
THE GRAVIToN 7

e Precision measurements give us a way to rigorously test Standard Model predictions AND let us
compare them against the predictions/existence of new theories



ATLAS Detector
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General-purpose detector at the LHC e x j i e it

e Tracking, calorimeters, muon systems clecizon Bl

e Designed to reconstruct electrons, muons, photons _— ¢ o
jets, and missing energy across large range of ] * -'-  ATI AC
energies TR R diiiity

http://atlas.ch
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Di-Higgs Studies with ATLAS g "o
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e ATLAS published four searches for Higgs

pair production using Run 1 dataset
o bbbb, bbrT, bbyy, and yyWW*

e Combination yielded results

o  Non-resonant upper limit of ~0.69 pb (70x SM)
o Resonant upper limit of 0.011 pb for m , = 1000 102 F’hIVS- Rel"- D 92|- 0920?4 (201'5) l | ;
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o(gg—H)xBR(H—hh) [pb]

Di-Higgs Branching Ratios |

e Effortin Run 2 focusing on improving Run
1 analyses and adding new decay

channels
o Improvements: Multivariate analyses, boosted
objects in high p. regime, and more
o New channels: bbBWW* and WW*WW*



http://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.092004

hh — bBWW* @ 13 TeV

Search for non-resonant (SM) and resonant
(exotic) di-Higgs production

Second highest branching fraction after bbbb
Analysis in semileptonic decay channel,

i.e. bBBWW* —Dbbivqq’

Three selection strategies: non-resonant, low
resonance mass, and high resonance mass
Require one charged lepton (e, ), = 4 jets,

= 2 b-tags

Collaboration between six institutions
including Ohio State and lllinois

First search using this final state




Dataset + Object Selection

e Use 36.1 fb™" of data from 13 TeV proton-proton collisions
Monte Carlo simulations used for di-Higgs signal, tt, W+jets, Z+jets, diboson, and single top
backgrounds
o tt normalization calculated using data in control region
Data-driven method used to estimate multi-jet QCD background
Largest background contributions come from tt and multi-jet processes

Lepton: p. > 27 GeV, |n| < 2.5, track-based isolation

Jets: Anti-k. AR=0.4, p. > 20 GeV, |n| < 2.5, 85% b-tagging eff

MET: MET > 25 GeV

e Create m , control region ( m_. <100 GeV, m, . > 140 GeV) to validate techniques and optimize
search strategies



Event Reconstruction

2. Require a hadronic W
Of the 3 highest pT non-b-tagged jets, keep the pair with smallest deltaR

h h
H

Small AR Step 1: Require exactly 2 b-jets
&7 Form a Higgs candidate with 2 b-jets

Step 3: Reconstruct a leptonic W

Solve 2"d order equation using MET, lepton, & hadronic W using Higgs
mass constraint

Keep the solution with smallest deltaR(lep, v) in case of two solutions




Event Selection

Variable Non-resonant | Low-mass High-mass
MET [GeV] > 25
pTWW [GeV] > 250
m,; [GeV] 105 — 135
m yw [GeV] < 130 < 130 no cut
p2® [GeV] > 300 > 210 > 350
ARww no cut no cut < 1.8
mpy, [GeV] no cut (625, 775]T | [1910, 2170]
e Selection variables differ between analysis strategies q q

o Variables and cuts optimized using Poisson significance
at end of selection
e T-m_ cutsare dependent on resonance mass under consideration
o  Windows shown above are for 700 GeV (Low-mass) and 2000 GeV (High-mass)



QCD Estimation

e Multi-jet backgrounds enter event selection due to jets mis-identified as leptons and non-prompt lepton production
e Use a 2D sideband method where the signal region, A, has two (independent) cuts inverted to create three
independent control regions (B, C, and D)
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Events
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Control Region Kinematics

Non-resonant + Low Resonance Mass
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e After requiring bb p; > 210 GeV

e Transverse mass (left) shows
agreement including data-driven QCD

e bb mass (right) shows backgrounds
are well modeled in sideband

e Scaled 700 GeV resonance signal
shown to give idea of shape

High Resonance Mass
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e After requiring bb p; > 350 GeV

e Transverse mass (left) shows
agreement including data-driven QCD

e bb mass (right) shows backgrounds
are well modeled in sideband

e Scaled 2000 GeV resonance signal
shown to give idea of shape




Signal Region Plots

Low Resonance Mass
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Show m, . across selection for m,

=700 GeV

e Scaled signals shown to give idea of shape
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bbWW™ Upper Limits

A simultaneous maximume-likelihood fit is performed using the number of events in the final signal and control regions
Largest systematics vary by selection strategy

O

Non-resonant: tt normalization + ISR/FSR

modeling, QCD normalization, jet energy scale,
MET resolution
Low Resonance Mass: tt norm. + parton shower

modeling, jet energy scale and resolution, QCD
norm., MET resolution
High Resonance Mass: W+jets norm. + scale/PDF

uncertainties, QCD normalization, jet energy
scale and resolution

Resonant: Most stringent observed limit for
di-Higgs production from the decay of a spin-0

6(pp— X— hh) [pb]

95% CL Limit on

—_

—_
o

IIIIIII|

resonance H is found at ~0.23 pb for a
resonance mass of 1300 GeV

Non-resonant: Observed upper limit for

non-resonant di-Higgs production is found to

be 12.1 pb (~360 times SM prediction)
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hh 7 bbbb @ 13 TeV ATLAS-CONF-2016-049
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e Boosted analysis selects 2 high p_. fat jets
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o Leading jet required to have p,>450 GeV =~ ==
o Require b-tagged track jets in Higgs candidates

e Both analysis use orthogonal and
regions to model backgrounds before
fitting in signal region
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Uses 13.3 fb-1 of data collected in 2015+2016
e Sets limits on spin-2 production of Higgs pairs over
resonance mass range 300-3000 GeV

e Resolved analysis selects = 4 b-jets
o Keep 4 highest b-tagged jets

o Pair b-tagged jets
based on m . and

ATLAS Preliminary lGOOO

Vs=13 TeV, 13.3 b

Boosted
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https://cds.cern.ch/record/2206131

hh - bbbb ReSUItS ATLAS-CONF-2016-049

e Boosted more sensitive than resolved above resonance masses of 1000 GeV
e Largest background contributions come from tt and QCD multi-jet production
o Multijet makes up 95% of background in resolved channel

o Multijet ~85% of bkg in boosted g10*
channel —

Non-resonant: Observed upper limit for %
non-resonant di-Higgs production is K
330 fb (29 times the SM prediction) H
Resonant: Most stringent upper limit for ftm
resonant spin-2 di-Higgs production found
at ~1.9 fb for a resonance mass of 3 TeV
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https://cds.cern.ch/record/2206131

hh 7 bbvv @ 13 TeV ATLAS-CONF-2016-004

e Sets limits on spin-0 production of Higgs pairs over resonance mass range
275-400 GeV

e Uses 3.2 fb-1 of data
collected in 2015

e Require = 2 isolated
photons and = 2 isolated —
b-jets

e Counting experiment
in MMy plane using
mass windows specific
for each resonance
mass



https://cds.cern.ch/record/2138949

hh - bbvv ReSUItS ATLAS-CONF-2016-004

e Dominant SM continuum background determined using sidebands and mass window
efficiencies in 0 b-tag region
o mW efficiency calculated using exponential fit in O-tag region

o My, efficiency extrapolated from
. . oY -4 = B L B BB B =
- - - - \s=13TeV,32f" - Exp. limit =
0-tag region L 20F [ Exp. limit +1c e
S 18f N
&0 - [ ] Exp. limit 26, S
. . > - ]
Non-resonant: Observed upper limit & 6 :
ey g . . o 14 =
for non-resonant di-Higgs production is 12E =
3.9 pb (~350 times the SM prediction) =2 1o =
Resonant: Most stringent upper limit & 2: E
for resonant spin-0 di-Higgs production 4_ _
2E= =+

~ 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 | 1 | 1 1 1 | 1
found at ~4.0 pb for a resonance mass 280300 320 340 360 380300
of 400 GeV My [GeV]


https://cds.cern.ch/record/2138949

hh - YVWW* @ 13 Tev ATLAS-CONF-2016-071

Uses 13.3 fb-1 of data collected
in 2015+2016

Sets limits on spin-0 production
of Higgs pairs over resonance
mass range 260-500 GeV
Uses semileptonic decay mode
for WW*, i.e. WW* ~{vqq’

o Require = 2 photons, =2 non
b-tagged jets, = 0 b-tagged jets,
= 1 isolated lepton

= 0 lepton selection used as
control region for data-driven
estimation of SM diphoton
background
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https://cds.cern.ch/record/2206222

hh - YVWW* ReSUItS ATLAS-CONF-2016-071

e Limits set using counting experiment in final signal region

e SM diphoton continuum background is dominant background

o Estimated using exponential fit to m., sideband in 0-tag region

Non-resonant: Observed upper limit

for non-resonant di-Higgs production is
25.0 pb (~2200 times the SM prediction)

Resonant: Most
stringent upper
limit for resonant
spin-0 di-Higgs
production found
at 24.7 pb for a
resonance mass
of 500 GeV
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https://cds.cern.ch/record/2206222

Where Are We Now?
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Current upper limits for spin-0 resonance analyses shown above

O Run 2 bbbb resonance limits presented for spin-2 only
Best non-resonant upper limit ~29 times SM expectation (from bbbb)
More channels in progress: bbrt, WW*WW*
Use of full dataset will improve limits
Combination of Run 2 analyses will further improve sensitivity



Future Improvements: hh — bBWW*

e Add new channels:
o Fully hadronic WW* — qq’qq’: larger branching fraction
o Fully leptonic WW* — tviv: cleaner final state
o Combining all channels will yield more sensitive measurement
e Boosted regime
o Look at fat jet + b-tagged track jets to pick up high pT h —bb decays
o Use jet substructure variables to recover merged hadronic W decays in h —WW?* decays
o  Will drive sensitivity for high resonance masses
e Kinematic fitting
o Early studies show significant potential for improving S/B
o Develop background and signal hypotheses, can use individually or in combination
o Gain dependent on modeling uncertainty, but lots of promise

e Use MVA (e.g. boosted decision trees) to optimize event selection

e Develop/implement new triggers
o Lepton+jets trigger for low resonance mass/non-resonant analyses
o Large R-jet trigger for boosted analyses



Future Improvements: General hh

Use of full Run 2 data set (~120 fb™")

Add new decay channels of WW* decays
o Fully leptonic yyWW*
Improve b-jet and boosted jet triggers
o Significant improvement expected for bbbb analysis

Non-resonant production:
o Train boosted decision trees for event selection using
multiple values of Higgs self-coupling
Resonant production:
o Nearly all channels can extend sensitivity by use of boosted hadronic objects
o Resolve leptons inside fat jets from h —711 and semileptonic h —WW* decays
Full combination

o bbbb, bbtt, and bbyy will drive sensitivity at low resonance mass
o bbbb will drive high mass sensitivity (bbBWW* becomes competitive)

&

WORK IN PROGRESS



It's The Best of Times
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Bad news? We haven’t seen any new o
physics yet. g
Good news? We haven't seen new =
physics yet! »

Measurements of the Higgs
self-coupling open a new region of the
Standard Model O\ ':F’ | —

Upper limits on non-resonant Higgs pair production approachlng 10 times the
SM prediction

o Limits also set for wide range of resonant Higgs pair production
Non-resonant (and self-coupling!) measurement possible

with ~1000 b
This is exciting time: we know there must be new physics,
and Higgs is unique new tool for testing SM




