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Interesting functions result from coordinated activity among 
large numbers of neurons

These behaviors are 
“emergent”

Emergent phenomena are all around us, even in equilibrium systems. 

These phenomena are captured in the language of statistical mechanics. 

The first step of equilibrium statistical mechanics is to write the probability 
distribution over “microscopic” states of the system. 

Often we use models which are much simpler than the microscopic reality. 

Thanks to the renormalization group, we understand why this works.



Can we write down the (joint!) 
probability distribution for the activity 

of many neurons in a network?
(for simplicity, let’s focus on one moment in time)

Is there any reason to think that this 
distribution is simpler than it could be?

N neurons ) 2N states

N = 10 2N ⇠ 1000

N = 20 2N ⇠ 106

N = 100 2N ⇠ 1030

In principle, every state has a 
different probability, and there 
doesn’t need to be any pattern.  

If that’s true, we’re sunk.



This problem is different because now we can 
observe the activity of many neurons simultaneously.112 Chapter 2 Photon Counting in Vision
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FIGURE 2.45
Recording action potentials from retinal ganglion cells. (a) Salamander retina on an array of
electrodes. The electrodes, and the leads that carry signals away from the electrodes, are black
features on a transparent slide; the ganglion cells of the retina have been filled with a green dye.
Round green objects are cell bodies, and long lines are bundles of axons that eventually convergeAU: pls check: is

“green” the correct
color in the figure?

to form the optic nerve. Note that the number of electrodes is comparable to the number of cells.
From Segev et al. (2004). (b) The next generation of electrode arrays. (c) Voltage traces from
a selection of these electrodes during an experiment on the salamander retina. Blue traces are
the actual voltages, and orange traces are a reconstruction of the voltages as a superposition of
stereotyped waveforms—action potentials from individual neurons—learned from a different
part of the data. Panels (b) and (c) from Amodei (2011).

single ganglion cells are relatively easy to record, and one can try to do something
like the Hecht, Shlaer, and Pirenne experiment, but instead of “seeing” (as in Fig. 2.2),
you just ask whether you can detect the spikes. There were hints in the data that a
single absorbed photon generated more than one spike, so some care is required. As
shown in Fig. 2.46, there are neurons that seem to count by threes—if you wait for three
spikes, the probability of seeing is what you expect for setting a threshold of K = 1
photon; if you wait for six spikes it is as if K = 2, and so on. This simple linear relation
between photons and spikes also makes it easy to estimate the rate of spontaneous
photonlike events in the dark. Note that photons arrive as a Poisson process, but
if each photon generates multiple spikes, then the spikes are not a Poisson process.
This idea of Poisson events driving a second point process to generate non-Poisson
variability has received renewed attention in the context of gene expression, where the
a single-messenger RNA molecule (perhaps generated from a Poisson process) can be
translated to yield multiple protein molecules; see Section 4.3 for more about noise in
gene expression.

Bialek first pages 2012/6/22 16:08 p. 112 (chap02) Princeton Editorial Associates, PCA ZzTEX 14.4

Using arrays of electrodes to record from 100+ neurons in the retina.
R Segev, J Goodhouse, JL Puchalla, and MJ Berry II, Nat Neurosci 7:1155 (2004).

O Marre, D Amodei, N Deshmukh, K Sadeghu, F Soo, TE Holy, and MJ Berry II J Neurosci 32:14859 (2012).
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(less than <35 Mm separation) showed enhanced correlation, although 
the possibility that this was produced by mixing of optical signals 
from adjacent cells could not be excluded. In addition, we show that 
it is possible to record place-related activity in putative hippocampal 
interneurons and CA1 apical dendrites.

RESULTS
Combining two-photon microscopy and mouse virtual reality
Our apparatus (Fig. 1a,b) was designed around our previously 
described virtual reality system15. The limbs of a head-restrained 
mouse rested on a spherical treadmill12. A toroidal screen that sub-
tended a mouse’s visual field surrounded the treadmill and displayed 
a computer-generated image of a virtual environment15,16. Ball move-
ments recorded with an optical computer mouse provided information 
on running speed and direction and this was used by the computer 
program that implemented the virtual environment to update posi-
tion and view angle. As reported previously15, head-restrained mice 
were trained using operant conditioning to run back and forth along 
a 180 cm–long virtual linear track (Fig. 1c). The mice received water 
rewards at the ends of the track after successfully traversing the full 
track length; consecutive rewards at the same end were not available.

We designed and constructed a two-photon microscope that could fit 
within the geometric constraints of our virtual reality apparatus with-
out obstructing the mouse’s view of the display (Fig. 1a). The physical 
dimensions of the design were most severely constrained by the small 
distance (~13 cm) between the top of the headplate on the mouse’s head 
and the bottom of the reflecting mirror in the virtual reality projec-
tion path. In addition, we designed the microscope to be completely 
shielded from the bright light of the virtual reality projection display so 
that the smaller number of photons from the fluorescent probe could be 
detected by the photomultiplier tubes (PMTs) without contamination. 
We then implemented additional light-blocking measures at the laser 
input port and the hole for the microscope 
objective (see Online Methods; Fig. 1a,d,e) so 
that the amount of detected background light 
was less than ~5% of the baseline fluorescence 
level from labeled cells.

A window for chronic imaging of CA1 neurons in awake mice
The CA1 region of the hippocampus is more than a millimeter below 
the cortical surface and cannot be directly imaged using two-photon 
microscopy17. We carefully removed the overlying cortex by aspira-
tion (down to the external capsule) and replaced it with a metal can-
nula with a coverslip sealing one of the openings (see Online Methods, 
Fig. 1e). This created a chronic hippocampal window that allowed 
direct imaging of the hippocampus.

We used genetically encoded calcium indicators to optically record the 
activity of CA1 neurons. Hippocampal injections of adeno-associated 
virus AAV2/1-synapsin-1-GCaMP3 (a moderate, neuron-specific pro-
moter18 in a serotype with efficient gene delivery to neurons19) resulted 
in expression of GCaMP3 in a large population of CA1 neurons. Two-
photon imaging of the GCaMP3-expressing area at a shallow depth 
through the hippocampal window showed axons in the external capsule 
and alveus that appeared as a dense plexus of fibers running parallel to 
the hippocampal surface (Fig. 1f). Inspection of images from the stra-
tum pyramidale (~130−160 Mm below the external capsule) revealed the 
densely packed neurons of this cell body layer. We did not see voids of 
fluorescence indicative of unlabeled cells, suggesting that local labeling 
was nearly ubiquitous (Fig. 1f; note that GCaMP3 is excluded from the 
nucleus, which causes a ‘donut-like’ appearance of the cell bodies13). All 
pyramidal neuron cell bodies in the stratum pyramidale have a promi-
nent apical dendrite that projects ventrally into the stratum radiatum 
(deeper into the hippocampus). Imaging perpendicular to the long axis 
of these dendrites in the stratum radiatum showed their cross-sections 
as small dots (Fig. 1f; see Supplementary Movie 1 for a z-series through 
the labeled CA1 region).

Optical identification of CA1 place cells
We developed a timeline for the sequence of steps necessary to image 
hippocampal activity in mice trained to perform the spatial behavior  
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Figure 1 Experimental setup. (a) The 
experimental apparatus, consisting of a spherical 
treadmill, a virtual reality apparatus (projector, 
reflecting mirror (RM), angular amplification 
mirror (AAM), toroidal screen and optical 
computer mouse to record ball rotation) and 
a custom two-photon microscope (titanium:
sapphire laser (Ti:S), long-pass filter (LP), 
galvanometers (X-Y), scan lens (SL), mirror (M), 
tube lens (TL), dichroic mirror (DM), collection 
lens (CL), biconcave lens (L), bandpass filter 
(BP), focusing lens (FL), photomultiplier tube 
(PMT), sliding stage (used to move microscope 
for treadmill access), X-Y translation (moves 
treadmill and mouse), Z-translation (objective 
focus control) and rubber tube (shown in cross-
section, for light shielding)). (b) Photograph 
of experimental setup. (c) Top, view from one 
end of the virtual linear track. Bottom, top view 
of the linear track. (d) View of materials used 
to block background light from entering the 
microscope objective hole. Hippocampal imaging 
window can also be seen. (e) Detailed view of 
hippocampal imaging window (from boxed region 
in d). (f) In vivo two-photon images at different 
depths through the hippocampal window.

Combining genetic engineering, two-photon microscopy, and virtual reality to 
record from 1000+ neurons in the hippocampus.

DA Dombeck, CD Harvey, L Tian, LL Looger, and DW Tank, Nat Neurosci 13:1433 (2010).
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Optical recording from hippocampal neurons as a 
mouse moves in a virtual environment
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Denoising + discretization 
leads to a binary activity 
variable for each neuron

{�i}State of the network

�i(t) =
1 (active) 

0 (silent)
{

What is P ({�i})?



What features of the data do we want to capture?
Mean activity of individual neurons
Correlations between pairs of neurons

h�jimodel ⌘
X

{�i}

P ({�i})�j = h�jidata

h�j�kimodel ⌘
X

{�i}

P ({�i})�j�k = h�j�kidata

Infinitely many models are consistent with these constraints
Choose the one with the least structure - maximum entropy
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Since we used the pair correlations to build the 
model, can we predict correlations among triplets?

Are correlations inherited 
from place fields?
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If activity really is collective, we can predict the 
probability of one cell being active from the state 

of all the other cells in the network.

P (�i = 1|{�j 6=i}) =
1

1 + exp(�he↵
i )

he↵
i = hi +

X

j 6=i

Jij�j

he↵
i

Let’s “unfold” this 
relationship over time … 
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Yes.  In fact, with ~100 neurons, we can 
construct models that are surprisingly precise.

Is there any reason to think that this 
distribution is simpler than it could be?

S Bradde & WB, J Stat Phys 167:462 (2017). 
L Mehsulam, JL Gauhtier, CD Brody, DW Tank, and WB (almost done).

(a brief reminder about the RG)

Can we write down the (joint!) 
probability distribution for the activity 

of many neurons in a network?
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“coarse-graining”

flow in the space 
of models



Instead of spatial 
neighbors, add together 

activity of maximally 
correlated pairs.

�̃i = �i + �j⇤(i)

Iterate.

Produces clusters of 
2, 4, 8, … analogous to 

spatially contiguous 
regions.
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Correlations inside the clusters

Cij = h�i�ji � h�iih�ji Find the eigenvalues in clusters of 
different sizes 

(be careful about sampling problems!)
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Probability that the entire cluster is silent
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“free energy” as a function 

of cluster size
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fixed form at large scales.

This is also visible in raw 
fluorescence data.
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Larger clusters have slower dynamics …
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but these dynamics scale
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What have we learned?

Coarse-graining the patterns of neural activity 
leads to simpler, but not trivial, descriptions.

Many characteristics “scale” as a power-law in the 
number of neurons that we group together.

These results suggest that patterns of neural 
activity have a surprising self-similarity.

This is not what we expect from “typical” networks.



Path to a fuller theory? Can we find a model that does
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