Entanglement,
chaos and order

Xiao-Liang Qi
Stanford University
Institute for Advanced Study

Univ. of Virginia, Nov 30t", 2017




Chaos: the butterfly effect
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Chaos and thermalization

* Chaos =» ignorance
* A lot of chaos = new knowledge!
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* xli(. z?[xlj (0),pdj (0)]very
complicated. Looks random

* Many-body chaos = thermalization

-
* Thermodynamics emerges from :
ignorance. <
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Chaos and thermalization

It (classical thermodynamics)
is the only physical theory of
universal content which I am
convinced will never be
overthrown, within the
framework of applicability of
its basic concepts.

-- Albert Einstein

* How about quantum mechanics?



Quantum chaos
* [0/0¢ [Y)=H[Y)

* No actual chaos if Hilbert space
dimension 2 s finite

* Initial condition Ax(0) is blurred by
the uncertainty principle

e Chaos can be defined in limit /- N
X
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Chaos in high

energy limit




Many-body quantum chaos

* Many-body system O—COO—0—0
* Hilbert space dimension @
increases exponentially

o D=2TN for spin chain

e State with a finite

energy density £=/N e has diverging density of state at
large V. p(£)xeTNs(E)

* Quantum chaos is generic in the thermodynamic limit
N—>00,
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* Chaos =2 ignorance
* A lot of chaos = new knowledge!




Many-body quantum chaos

* Will thermalization be different
for an isolated quantum system? = Q

* Quantum system is described by .
a density matrix o

* Von Neumann entropy

S=—tr(plogllp )==)nT

el—itH w
pinloglipin 3
* A glass of “pure state water” has =3

no entanglement entropy @
e Will it taste different?

* No, unless you are <
“exponentionally sensitive” =




Thermalization Trom
entanglement
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* There is no way to locally distinguish pure state water
from either pure state water with different initial
states, or mixed state water.

* Orthogonal states [/41 ), |1/42 ) evolves to
orthogonal states [¢d1 (2)), |42 (£)), but the local

reduced density matrices pd1 (Z)=pd2 (t) are
almost the same.

 Thermal entropy emerges from entanglement entropy.

Deutsch '91, Srednicky
‘04



Entanglement entropy

* Region A is in a mixed state.
State [72)JA has probability pd7n

* Ais entangled with its

complement 7.

e Mutual information:
¢ [(A:C)=5(A)+S(C)—S(AC)

* Measure of correlation between A

and C.



Entanglement in thermal state

* Thermalization =2 Volume law
entropy for small subsystems

* Entanglement is not in simple
EPR pair form.

* Thermalization from onlocal,
multipartite entanglement.
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Entanglement from EPR pairs
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Thermalization after a quench

 Example: 1+1D Ising model

* Alx =0 integrable (equilvalent to free fermions).
* Time evolution starts from a product state, such as

N Y
N
A 3¢

* Thermalization S(¢)x ¢ till
saturation |

e Absence of thermalization:

exact solvable model, or 0 5o 15
. . Ime
many-body localization.



Thermalization vs localization
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thermalization localization

* Entanglement growth = losing local information

* Localization = local information stays local
(therefore slower entanglement growth)

Calabrese & Cardy ‘05
Amico et al RMP ‘08,
Bardarson, Pollmann, Moore
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Entanglement measure of chaos

* Chaos = nonlocal spreading ofquantum T T T T T T

information
 Wanted: an entanglement measure
of information spreading
o 11111

* Trick: Convert the unitary
operator eT—it/H into a state in a bigger system

* Measure correlation by mutual information
o« el—itH=Ulal |a)(B|- ¥ )=1,/v/OD Ulap |z)|f)

. %xample: olr=(M0 1010 ) 1 /v (I1)[L)+/L)]
J)gzz(ll 000 —1 ) =1 /vVER (IT)1)—[L)IL))



Entanglement measure of chaos

* Unitary evolution = Maximal entanglement
* Correlation =2 mutual information

* Operator scrambling =» suppression of mutual
information

* Chaos = /(A:B)+ /(A B )KLKI/(A:FF)
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Entanglement measure of chaos

* Ising model numerics

* Chaos =I(A:B) small as long as A+ /A<L (system

size)
s
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How to get more analytic results?

e “Solvable” chaotic models:

e Random matrix theory
Level statistics of a chaotic
Hamiltonian agrees well with that of
a random matrix.

* Holographic duality
Some strongly coupled quantum
field theories are dual to weakly

coupled gravity.

e Sachdev-Ye-Kitaev model and
generalizations




Sachdev-Ye-Kitaev (SYK) model

* Random nonlocal interaction for Majorana fermions

with independent coupling /4ijkl/T2 =NT-3 /2

JT2.
c {vil ylj }=204i

* V' Majorana fermions = //2 complex fermio[}_s

 y2n—1=cin+cinT+, y2n=—i(cin— C\li_i%?l-i )

(Bogoliubov quasiparticles)
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Sachdey, Ye, 1993; Kitaev 2015; Maldacena, Stanford 2016




Generalized SYK model

* Couple SYK sites by random coupling.
* For example in 1d,

M
H — E E J. . 1 E ! :
g,uklm,x XJ,xXk,xXI,me,i ikim,x XJj,x Xk, xXI,x+1Xm,x+1
x=1 [ j<k<I<m g J<kil<m™ ~ g
_ SYK term Nearest neighbour coupling
312 B J12

* Independent random couplings Jim«= 7z Jim« = 735
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Gu, XLQ, Stanford ‘16



Large-/A solution
o Glx (71,742 )=1/N (YitiEylix (i1 Yydix (72 ) )

as order parameter {742

* A “dynamical mean-field”
controlled by large-/V
* Local criticality:

a1

Glx (741,042 ) [sin0d(/fF (741 —7l2 )) [T-2A .
+ A=1/2. i

* No fermion correlatign Retwegn et ceorges)
different sites.

* At low temperature ¢(w)X[w[T—1 /2

J1



Properties of generalized SYK model

 Zero temperature entropy S(7—0)=SJ0 finite in
large NV limit.

* A lot of low energy degrees of freedom

Entropy per fermion
A

> temperature

* Energy diffusion Dx /4172 //

o000




Chaotic dynamics

* Interacting dynamics evolves a single
fermion to multi-fermion states .

o S D Y O e e e e e

* Measure: size of the anti-commutator |

(rdjy (O pdix (0)}T2 NF <1/ =
eTA(t—|x—y|/viFB ) =

~—1r+r

* /=277 Lyapunov exponent (maximal)
(Maldacena-Shenker-Stanford)

o vlB =v[DA butterfly velocity e



Commutator growth and
Lyapunov

* In more general systems, chaotic dynamics can be
characterized by growth of commutator or anti-
commutator:

‘1 40
* ([V(O),W(O)]T2 )Nf
* This is the many-body
generalization wo)
of Lyapunov exponent O e O e e

s —[xli (O)pl) (0)]={xii (t)pl) (0)NP=0xii(t)/
oxlj (0) xelAt

Larkin, Ovchinnikov 1969

Shenker-Stanford ’13-14, Kitaev ‘14, Roberts-Stanford



Quench and thermalization

r A |

e Usually chaos implies
thermalization

* Operator spreads to the whole

system in time Z/vlF5 OO OO OO0

e Does the SYK chain thermalize
in that time?

e Study the quench problem

A

s WV (t))=el—iHt Vi)




The thermal double state

* A trick to choose a simple initial state: consider two

VOp =eT—fF




Incomplete thermalization

* Renyi entropy S¥n=1/1—nlogltr(pTn ) after
guench

e Ciirnrica: antranu dnac nat sgturate to thermal value

[0.02,0.8]

Sin
— A(D) Thermal value
= 2590

L=, y=J 112 B2

* Weak coupled limit =0, S(c0 )x2(SYth —540)
Gu, Lucas, XLQ, 17



Fast and slow modes

>

* Non-thermalization indicates ¢
that there are localized
degrees of freedom on each site

 Numer of such degrees
of freedom

~S540 NlogR 3333

* Coexistence of fast chaotic mode that gives energy
diffusion and chaos propagation and slow modes that
gives zero temperature entropy

* Decoupling in the large /A low temperature limit
* Finite /: thermalization in a long time?



Summary

* Generic many-body systems are chaotic
* Chaos are essential for thermalization

* Quantum entanglement provides new description to
chaos and thermalization

e Solvable models can be chaotic

 Generalized SYK models consist of a coexistence of
thermalizing modes and localized modes

the David

) & ..y
Lucile Dg cleard
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Outline

 Chaos and thermalization.

e Quantum chaos. Quantum thermalization of isolated
systems.

* Entropy growth. ETH.
* Non-thermalization: MBL

* How to study this?
- “Chaotic solvable models”. SYK model. Generalized
SYK model. Energy diffusion. Coexistence of
thermalization and localization. Operator growth and
Lyapunov.
- More general: Measure of chaos. Relation to
thermalization. (Operator scrambling. Entanglement
measure. Relation to thermalization.)




Chaos and operator scrambling

* Non-interacting system:

A particle has / possible
positions.

* Generic interacting system:

A particle can decay into
multi-particle states.
Exponentially many final

states in the Hilbert space.

* flx (OD=@dx (v)/Ly (0)+
DIx (Vi1 yd2 i3 ) Aiyvdl [

Vis F..




