The status of Supersymmetric Dark Matter after LHC Run I and alternatives from Grand Unification

The status of Supersymmetric Dark Matter after LHC Run I and alternatives from Grand Unification

1) After the results of Run I, can we still 'guarantee' Supersymmetry's discovery at the LHC? Viable dark matter models in CMSSM-like tend to lie in strips (co-annihilation, funnel, focus point). How far up in energy do these strips extend?

The status of Supersymmetric Dark Matter after LHC Run I and alternatives from Grand Unification

- 1) After the results of Run I, can we still 'guarantee' Supersymmetry's discovery at the LHC? Viable dark matter models in CMSSM-like tend to lie in strips (co-annihilation, funnel, focus point). How far up in energy do these strips extend?
- 2) Can Non-Supersymmetric GUTs such as SO(10) provide an alternative?

Why Supersymmetry?

- Gauge Hierarchy Problem
- Gauge Coupling Unification
- Stabilization of the Electroweak Vacuum
- Radiative Electroweak Symmetry Breaking
- Dark Matter
- Improvement to low energy phenomenology?

but, m_h ~ 125 GeV, and no SUSY?

Gauge Hierarchy Problem

$$\delta m_H^2 \simeq O(\frac{\alpha}{4\pi})(\Lambda^2 + m_B^2) - O(\frac{\alpha}{4\pi})(\Lambda^2 + m_F^2) = O(\frac{\alpha}{4\pi})(m_B^2 - m_F^2)$$

Scalar masses corrected by loops

$$|m_B^2 - m_F^2| \lesssim 1 \text{ TeV}^2$$

SU(5) Grand Unified Theory

$$b_i = \begin{pmatrix} 41/10 \\ -19/6 \\ -7 \end{pmatrix}$$

GUTS

Supersymmetric SU(5) Grand Unified Theory

is now

$$b_i = \begin{pmatrix} 35/3 \\ 1 \\ -3 \end{pmatrix}$$

GUTS

Standard Model Higgs potential

$$V = \frac{\lambda}{4}\phi^4 + \frac{m^2}{2}\phi^2$$

Standard Model Higgs potential

$$V = \frac{\lambda}{4}\phi^4 + \frac{m^2}{2}\phi^2$$

Running of the Higgs quartic coupling

SusyGUTS

Standard Model Higgs potential

$$V = \frac{\lambda}{4}\phi^4 + \frac{m^2}{2}\phi^2$$

$$\lambda = \frac{g_1^2 + g_2^2}{2}$$

Positive definite

Stability of the vacuum ensured

SusyGUTS

Standard Model Higgs potential

$$V = \frac{\lambda}{4}\phi^4 + \frac{m^2}{2}\phi^2$$

$$\lambda = \frac{g_1^2 + g_2^2}{2}$$

Positive definite

Stability of the vacuum ensured

Also for free: radiatively induced symmetry breaking

What is the MSSM

- 1) Add minimal number of new particles: Partners for all SM particles + 1 extra Higgs EW doublet.
- 2) Add minimal number of new interactions: Impose R-parity to eliminate many UNWANTED interactions.

$$R = (-1)^{3B+L+2S}$$

Gaugino mass Unification

$$W = h_u H_2 Q u^c + h_d H_1 Q d^c + h_e H_1 L e^c + \mu H_2 H_1$$

$$\mathcal{L}_{soft} = -\frac{1}{2} M_\alpha \lambda^\alpha \lambda^\alpha - m_{ij}^2 \phi^{i*} \phi^j$$

$$-A_u h_u H_2 Q u^c - A_d h_d H_1 Q d^c - A_e h_e H_1 L e^c - B \mu H_2 H_1 + h.c.$$

- Gaugino mass Unification
- A-term Unification

$$W = h_u H_2 Q u^c + h_d H_1 Q d^c + h_e H_1 L e^c + \mu H_2 H_1$$

$$\mathcal{L}_{soft} = -\frac{1}{2} M_\alpha \lambda^\alpha \lambda^\alpha - m_{ij}^2 \phi^{i*} \phi^j$$

$$-A_u h_u H_2 Q u^c - A_d h_d H_1 Q d^c - A_e h_e H_1 L e^c - B \mu H_2 H_1 + h.c.$$

- Gaugino mass Unification
- A-term Unification
- Scalar mass unification

$$W = h_u H_2 Q u^c + h_d H_1 Q d^c + h_e H_1 L e^c + \mu H_2 H_1$$

$$\mathcal{L}_{\text{soft}} = -\frac{1}{2} M_\alpha \lambda^\alpha \lambda^\alpha - m_{ij}^2 \phi^{i*} \phi^j - A_u h_u H_2 Q u^c - A_d h_d H_1 Q d^c - A_e h_e H_1 L e^c - B \mu H_2 H_1 + h.c.$$

- Gaugino mass Unification
- A-term Unification
- Scalar mass unification

$$W = h_u H_2 Q u^c + h_d H_1 Q d^c + h_e H_1 L e^c + \mu H_2 H_1$$

$$\mathcal{L}_{\text{soft}} = -\frac{1}{2} M_\alpha \lambda^\alpha \lambda^\alpha - m_{ij}^2 \phi^{i*} \phi^j$$

$$-A_u h_u H_2 Q u^c - A_d h_d H_1 Q d^c - A_e h_e H_1 L e^c - B \mu H_2 H_1 + h.c.$$

+ $\tan \beta$

$\widetilde{q}_{_L}$ 600 $\sqrt{m_0^2 + \mu^2}$ Running Mass (GeV) H_d 400 $m_{1/2}$ $\widetilde{\mathbf{w}}$ 200 ã m_0 0 H_u^{\prime} -200 15

10

Falk

 $Log_{10}(Q/GeV)$

5

CMSSM Spectra

Unification to rich spectrum **EWSB**

SUSY Dark Matter

MSSM and R-Parity

Stable DM candidate

1) Neutralinos

$$oldsymbol{\chi}_i = lpha_i \widetilde{oldsymbol{B}} + eta_i \widetilde{oldsymbol{W}} + oldsymbol{\gamma}_i \widetilde{oldsymbol{H}}_1 + oldsymbol{\delta}_i \widetilde{oldsymbol{H}}_2$$

2) Sneutrino

Excluded (unless add L-violating terms)

3) Other:

Axinos, Gravitinos, etc

The Higgs mass in the CMSSM

The Pre-LHC CMSSM

Mastercode - MCMC

Long list of observables to constrain CMSSM parameter space

Multinest

- MOMC technique to sample efficiently the SUSY parameter space, and thereby construct the χ^2 probability function
- Combines SoftSusy, FeynHiggs, SuperFla,
 SuperIso, MicrOmegas, and SSARD
- Purely frequentist approach (no priors) and relies only on the value of χ^2 at the point sampled and not on the distribution of sampled points.
- 400 million points sampled

$$\chi^{2} = \sum_{i}^{N} \frac{(C_{i} - P_{i})^{2}}{\sigma(C_{i})^{2} + \sigma(P_{i})^{2}}$$

$$+ \chi^{2}(M_{h}) + \chi^{2}(BR(B_{s} \to \mu\mu))$$

$$+ \chi^{2}(SUSY \text{ search limits})$$

$$+ \sum_{i}^{M} \frac{(f_{SM_{i}}^{obs} - f_{SM_{i}}^{fit})^{2}}{\sigma(f_{SM_{i}})^{2}}$$

Bagnaschi, Buchmueller, Cavanaugh, Citron, Colling, De Roeck, Dolan, Ellis, Flacher, Heinemeyer, Isidori, Malik, Marrouche, Nakach, Olive, Paradisi, Rogerson, Ronga, Sakurai, Martinez Santos, de Vries, Weiglein

$\Delta \chi^2$ map of m_0 - $m_{1/2}$ plane Mastercode

2009

Neutralino mass and Relic Density from MCMC analysis

Mastercode

Pre-Higgs Predictions

Elastic cross section from MCMC analysis

Elastic cross section from MCMC analysis

Effect of Results from LHC

~5fb⁻¹ @ 7 TeV

- jets + missing E_T with/ without leptons
- Heavy Higgs to ττ
- B to μμ

~20fb⁻¹ @ 8 TeV

$\Delta \chi^2$ map of m₀ - m_{1/2} plane

Bagnaschi, Buchmueller, Cavanaugh, Citron, De Roeck, Dolan Ellis, Flacher, Heinemeyer, Isidori, Malik, Martinez Santos, Olive, Sakurai, de Vries, Weiglein

Elastic scaterring cross-section

Bagnaschi, Buchmueller, Cavanaugh, Citron, De Roeck, Dolar Ellis, Flacher, Heinemeyer, Isidori, Malik, Martinez Santos, Olive, Sakurai, de Vries, Weiglein

Elastic scaterring cross-section

Bagnaschi, Buchmueller, Cavanaugh, Citron, De Roeck, Dolar Ellis, Flacher, Heinemeyer, Isidori, Malik, Martinez Santos, Olive, Sakurai, de Vries, Weiglein

Elastic scaterring cross-section

Bagnaschi, Buchmueller, Cavanaugh, Citron, De Roeck, Dolai Ellis, Flacher, Heinemeyer, Isidori, Malik, Martinez Santos, Olive, Sakurai, de Vries, Weiglein

The Strips:

- Stau-coannhilation Strip
 - extends only out to ~1 TeV
- Stop-coannihilation Strip
- Funnel
 - **=** associated with high tan β , problems with B $\rightarrow \mu\mu$
- Focus Point

Stop strip

100 TeV 3000 fb⁻¹ 33 TeV 3000 fb⁻¹ 14 TeV 3000 fb⁻¹ 14 TeV 300 fb⁻¹ 8 TeV 20 fb⁻¹

Improved in an SU(5) superGUT extension

Focus Point

100 TeV 3000 fb⁻¹ 33 TeV 3000 fb⁻¹ 14 TeV 3000 fb⁻¹ 14 TeV 300 fb⁻¹ 8 TeV 20 fb⁻¹

Direct detectability

Other Possibilities

More Constrained (fewer parameters)

- Pure Gravity Mediation
 - 2 parameter model with very large scalar masses
 - $= m_0 = m_{3/2}, tan β$
- mAMSB
 - **■** similar to PGM, but allow $m_0 \neq m_{3/2}$
- mSUGRA
 - $B_0 = A_0 m_0 \Rightarrow \tan \beta$ no longer free

mAMSB

Other Possibilities

Less Constrained (more parameters)

- NUHM1,2: $m_1^2 = m_2^2 \neq m_0^2$, $m_1^2 \neq m_2^2 \neq m_0^2$
 - µ and/or m_A free
- NUGM
 - gluino coannihilation
- subGUT models: Min < Mgut</p>
 - new parameter M_{in}
- SuperGUT models: M_{in} > M_{GUT}
 - requires SU(5) input couplings

NUHM1 models with μ free (m₁ = m₂)

Ellis, Luo, Olive, Sandick; Ellis, Evans, Luo, Nagata, Olive, Sandick

Direct detectability

Ellis, Evans, Nagata, Olive, Sandick, Zheng

Why Supersymmetry (still)?

- Gauge Coupling Unification
- Gauge Hierarchy Problem
- Stabilization of the Electroweak Vacuum
- Radiative Electroweak Symmetry Breaking
- Dark Matter
- Improvement to low energy phenomenology?

but, m_h ~ 125 GeV, and no SUSY?

SO(10) GUT?

Gauge Coupling Unification

- Stabilization of the Electroweak Vacuum
- Radiative Electroweak Symmetry Breaking
- Dark Matter
- Improvement to low energy phenomenology?

Neutrino masses...

What is SO(10)

Georgi Fritzsch, Minkowski

$$SO(10) \supset SU(5) \times U(1)$$

 $\supset SU(4) \times SU(2) \times SU(2)$
 $\supset \text{ others}$

Gauge degrees of freedom: 45

decomposition of the 45

$$SU(5) \times U(1)$$
: $45 = (24,0) + (10,4) + (10,-4) + (1,0)$

$$SU(4) \times SU(2) \times SU(2)$$
: $45 = (15,1,1) + (6,2,2) + (1,1,0) + (1,3,1) + (1,1,3)$

(SU(4) decomposition in terms of SU(3): $15 = 8 + 3 + \overline{3} + 1$; $6 = 3 + \overline{3}$)

What is SO(10)

$$SO(10) \supset SU(5) \times U(1)$$

 $\supset SU(4) \times SU(2) \times SU(2)$
 $\supset \text{ others}$

Matter degrees of freedom: fundamental 16

new: right-handed neutrino

decomposition of the 16

$$SU(5) \times U(1)$$
:

$$16 = (10,-1) + (\overline{5},3) + (1,-5)$$

$$SU(4) \times SU(2) \times SU(2)$$
: $16 = (4,1,2) + (\overline{4},2,1)$

(SU(4) decomposition in terms of SU(3): 4 = 3 + 1

What is SO(10)

$$SO(10) \supset SU(5) \times U(1)$$

 $\supset SU(4) \times SU(2) \times SU(2)$
 $\supset others$

Higgs: see below

1. Pick an Intermediate Scale Gauge Group

 $G_{\rm int}$

$$R_1$$
 $SO(10) \longrightarrow G_{int}$

	$\mathrm{SU}(4)_C\otimes\mathrm{SU}(2)_L\otimes\mathrm{SU}(2)_R$	210
	$\mathrm{SU}(4)_C\otimes\mathrm{SU}(2)_L\otimes\mathrm{SU}(2)_R\otimes D$	54
	$\mathrm{SU}(4)_C\otimes\mathrm{SU}(2)_L\otimes\mathrm{U}(1)_R$	45
Georgi, Nanopoulos; Vayonakis;	$\mathrm{SU}(3)_C \otimes \mathrm{SU}(2)_L \otimes \mathrm{SU}(2)_R \otimes \mathrm{U}(1)_{B-L}$	45
Masiero; Shafi, Sondermann, Wetterick del Aguila, Ibanez;	$\mathrm{SU}(3)_C \otimes \mathrm{SU}(2)_L \otimes \mathrm{SU}(2)_R \otimes \mathrm{U}(1)_{B-L} \otimes D$	210
Mohapatra, Senjanovic;	$\mathrm{SU}(3)_C \otimes \mathrm{SU}(2)_L \otimes \mathrm{U}(1)_R \otimes \mathrm{U}(1)_{B-L}$	45 , 210
Mambrini, Nagata,	$\mathrm{SU}(5)\otimes\mathrm{U}(1)$	45, 210
Olive, Quevillon, Zheng; Nagata, Olive, Zheng	Flipped $SU(5) \otimes U(1)$	45 , 210

 R_1

- 1. Pick an Intermediate Scale Gauge Group
- 2. Use 126 to break Gint to SM

$$SO(10) \xrightarrow{R_1} G_{int} \xrightarrow{R_2} G_{SM} \otimes \mathbb{Z}_2$$
 $R_2 = 126 + \dots$

Neutrino see-saw: Majorana mass for v_R from 16 16 126 \rightarrow $m_{vR} \sim M_{int}$ and $m_v \sim v^2/M_{int}$

Z₂ related to matter parity and B-L

Unlike SUSY R-parity, this Z₂ is not put in by hand!

- 1. Pick an Intermediate Scale Gauge Group
- 2. Use 126 to break Gint to SM
- 3. Pick DM representation and insure proper splitting within the multiplet, and pick low energy field content

Remnant Z₂ symmetry

Fermions from 10,45, 54, 120, 126, or 210 representations;

Scalars from 16, 144

Kadastik, Kannike, Raidal; Frigerio, Hambye; Mambrini, Nagata, Olive, Quevillon, Zheng; Nagata, Olive, Zheng

Model	B-L	$\mathrm{SU}(2)_L$	Y	SO(10) representations
F_1^0		1	0	$45,\ 54,\ 210$
$\mathtt{F}_{2}^{1/2}$		2	1/2	$10,120,126,\mathbf{210'}$
$F_{f 3}^0$	0	3	0	45 , 54 , 210
F_3^1	U	3	1	54
$F_4^{1/2}$		4	1/2	210^{\prime}
$F_4^{3/2}$		4	3/2	210^{\prime}
S_1^0		1	0	16, 144
$\mathtt{S}_{2}^{1/2}$	1	2	1/2	16 , 144
\mathtt{S}^{0}_{3}	1	3	0	144
S^1_3		3	1	144
\widehat{F}_1^0		1	0	126
$\widehat{\mathrm{F}}_{2}^{1/2}$	2	2	1/2	210
\widehat{F}_{3}^{1}		3	1	126

- 1. Pick an Intermediate Scale Gauge Group
- 2. Use 126 to break Gint to SM
- 3. Pick DM representation and insure proper splitting within the multiplet, and pick low energy field content
 - 4. Use RGEs to obtain Gauge Coupling Unification

4. Use RGEs to obtain Gauge Coupling Unification

Fixes Mgut, Mint, agut

Examples: Scalars

Model	R_{DM}	$S_{\mathbf{n}}^{Y}$	SO(10) representation
$G_{ m in}$	$_{\mathrm{nt}}=\mathrm{SU}(4)_{C}\otimes$	SU(2)	$_L \otimes \mathrm{SU}(2)_R(\otimes D)$
SA _{422(D)}	4, 1, 2	S_{1}^{0}	16, 144
SB _{422(D)}	${f 4, 2, 1}$	$\mathtt{S}_{2}^{1/2}$	16, 144
SC _{422(D)}	4 , 2 , 3	$\mathtt{S}_{2}^{1/2}$	144
SD _{422(D)}	4 , 3 , 2	S_3^1	144
SE _{422(D)}	4 , 3 , 2	$S_{f 3}^0$	144
	$G_{\rm int} = {\rm SU}(4)$	$_{C}\otimes \mathrm{SU}$	$\mathrm{U}(2)_L\otimes\mathrm{U}(1)_R$
SA ₄₂₁	4, 1, -1/2	S_{1}^{0}	16 , 144
SB ₄₂₁	4, 2, 0	$\mathtt{S}_{2}^{1/2}$	16, 144
SC ₄₂₁	4, 2, 1	$\mathtt{S}_{2}^{1/2}$	144
SD ₄₂₁	4, 3, 1/2	\mathbb{S}^1_3	144
SE ₄₂₁	4, 3, -1/2	$\mathtt{S}^{\mathtt{0}}_{3}$	144
$G_{\rm int} = S$	$\mathrm{U}(3)_C \otimes \mathrm{SU}(2)$	$(2)_L \otimes S$	$\mathrm{U}(2)_R\otimes\mathrm{U}(1)_{B-L}(\otimes D)$
SA _{3221(D)}	${f 1},{f 1},{f 2},1$	S_{1}^{0}	16, 144
SB _{3221(D)}	1, 2, 1, -1	$\mathtt{S}_{2}^{1/2}$	16 , 144
SC _{3221(D)}	1, 2, 3, -1	$\mathtt{S}_{2}^{1/2}$	144
SD _{3221(D)}	${f 1},{f 3},{f 2},1$	\mathbb{S}^1_3	144
SE _{3221(D)}	1, 3, 2, 1	$S_{f 3}^0$	144

Scalars

Higgs portal models
Inert Higgs doublet models

Model	$\log_{10} M_{\mathrm{GUT}}$	$\log_{10} M_{\mathrm{int}}$	$\alpha_{ ext{GUT}}$	$\log_{10} \tau_p(p \to e^+ \pi^0)$			
	$G_{\mathrm{int}} = \mathrm{SU}(4)_C \otimes \mathrm{SU}(2)_L \otimes \mathrm{SU}(2)_R$						
SA ₄₂₂	16.33	11.08	0.0218	36.8 ± 1.2			
SB ₄₂₂	15.62	12.38	0.0228	34.0 ± 1.2			
	$G_{\mathrm{int}} = \mathrm{SU}(3)_C \otimes \mathrm{SU}(2)_L \otimes \mathrm{SU}(2)_R \otimes \mathrm{U}(1)_{B-L}$						
SA ₃₂₂₁	16.66	8.54	0.0217	38.1 ± 1.2			
SB ₃₂₂₁	16.17	9.80	0.0223	36.2 ± 1.2			
SC ₃₂₂₁	15.62	9.14	0.0230	34.0 ± 1.2			
$G_{\mathrm{int}} = \mathrm{SU}(3)_C \otimes \mathrm{SU}(2)_L \otimes \mathrm{SU}(2)_R \otimes \mathrm{U}(1)_{B-L} \otimes D$							
SA _{3221D}	15.58	10.08	0.0231	33.8 ± 1.2			
SB _{3221D}	15.40	10.44	0.0233	33.1 ± 1.2			

other models have M_{GUT} too low

mass splitting:

$$-\mathcal{L}_{\text{int}} = M^{2} |R_{\text{DM}}|^{2} + \kappa_{1} R_{\text{DM}}^{*} R_{\text{DM}} R_{1} + \{\kappa_{2} R_{\text{DM}} R_{\text{DM}} R_{2}^{*} + \text{h.c.}\}$$

$$+ \lambda_{1}^{1} |R_{\text{DM}}|^{2} |R_{1}|^{2} + \lambda_{2}^{1} |R_{\text{DM}}|^{2} |R_{2}|^{2} + \{\lambda_{12}^{126} (R_{\text{DM}} R_{\text{DM}})_{126} (R_{1} R_{2}^{*})_{\overline{126}} + \text{h.c.}\}$$

$$+ \lambda_{1}^{45} (R_{\text{DM}}^{*} R_{\text{DM}})_{45} (R_{1}^{*} R_{1})_{45} + \lambda_{1}^{210} (R_{\text{DM}}^{*} R_{\text{DM}})_{210} (R_{1}^{*} R_{1})_{210}$$

$$+ \lambda_{2}^{45} (R_{\text{DM}}^{*} R_{\text{DM}})_{45} (R_{2}^{*} R_{2})_{45} + \lambda_{2}^{210} (R_{\text{DM}}^{*} R_{\text{DM}})_{210} (R_{2}^{*} R_{2})_{210} ,$$

Vacuum stability and radiative EWSB

Example based on scalar singlet DM (SA₃₂₂₁) with

$$G_{\text{int}} = \text{SU}(3)_C \otimes \text{SU}(2)_L \otimes \text{SU}(2)_R \otimes \text{U}(1)_{B-L}.$$

with scalar potential

$$V_{\text{blw}} = \mu^2 |H|^2 + \frac{1}{2}\mu_s^2 s^2 + \frac{\lambda}{2}|H|^4 + \frac{\lambda_{sH}}{2}|H|^2 s^2 + \frac{\lambda_s}{4!}s^4$$

Additional fields appear at the intermediate scale.

Vacuum stability and radiative EWSB

Higgs mass term runs negative and depends on λ_{sH}

 μ^2 < 0 @ Q < 1 TeV requires λ_{sH} > .4 or m_{DM} > 1.35 TeV

Vacuum stability and radiative EWSB

Direct Detection of this candidate can be probed at XENON1T

SM Fermion Singlets: Produced thermally out of equilibrium ⇒ Fermionic candidates (NETDM)

	Model I	Model II	
$G_{ m int}$	$\mathrm{SU}(4)_C \otimes \mathrm{SU}(2)_L \otimes \mathrm{SU}(2)_R$	$\mathrm{SU}(4)_C \otimes \mathrm{SU}(2)_L \otimes \mathrm{SU}(2)_R \otimes D$	
$R_{ m DM}$	$({f 1},{f 1},{f 3})_D ext{ in } {f 45}_D$	$({f 15},{f 1},{f 1})_W ext{ in } {f 45}_W$	
R_1	210_{R}	54_{R}	
R_2	$({f 10},{f 1},{f 3})_C \oplus ({f 1},{f 1},{f 3})_R$	$({f 10},{f 1},{f 3})_C \oplus ({f 10},{f 3},{f 1})_C \oplus ({f 15},{f 1},{f 1})_R$	
$\log_{10}(M_{ m int})$	8.08(1)	13.664(5)	
$\log_{10}(M_{\mathrm{GUT}})$	15.645(7)	15.87(2)	
$g_{ m GUT}$	0.53055(3)	0.5675(2)	

Mambrini, Olive, Quevillon, Zaldivar

Non-Singlets: Fermions

Model	B-L	$SU(2)_L$	Y	SO(10) representations
F_{1}^{0}		1	0	45, 54, 210
$F_{2}^{1/2}$		2	1/2	$10,120,126,\mathbf{210'}$
F_3^0	0	3	0	45 , 54 , 210
F_3^1	U	3	1	54
$F_3^1 F_4^{1/2}$		4	1/2	210'
$F_4^{3/2}$		4	3/2	210′

SO(10) representation	$\mathrm{SU}(4)_C \otimes \mathrm{SU}(2)_L \otimes \mathrm{SU}(2)_R$		
45	(1, 3, 1)		
54 SM Ti	riplets (Wino) $(1,3,3)$		
210	$({f 15},{f 3},{f 1})$		

SO(10) representation		$\mathrm{SU}(4)_C \otimes \mathrm{SU}(2)_L \otimes \mathrm{SU}(2)_R$	B-L
$\overline{10,120,210'}$		$({f 1},{f 2},{f 2})$	0
120 , 126	OM Declarate	$({f 15},{f 2},{f 2})$	0
210	SM Doublets (Higgsino)	$({f 10},{f 2},{f 2})\oplus ({f \overline{10}},{f 2},{f 2})$	± 2
210'		$({f 1},{f 4},{f 4})$	0
54, 210		(1, 1, 1)	0
45	SM Singlets	$({f 1},{f 1},{f 3})$	0
45, 210	for mixing (Bino)	$({f 15},{f 1},{f 1})$	0
210		$({f 15},{f 1},{f 3})$	0
126		$({f 10},{f 1},{f 3})$	2

Non-Singlets: Fermions

$R_{\rm DM}$	Additio	onal Higgs	$\log_{10} M_{ m int}$	$\log_{10} M_{\mathrm{GUT}}$	$lpha_{ m GUT}$	$\log_{10} au_p(y)$	$p \to e^+ \pi^0$
	iı	$n R_1$					
		$G_{\mathrm{int}} =$	$=\mathrm{SU}(4)_C\otimes$	$\mathrm{SU}(2)_L \otimes \mathrm{SU}(2)_L$	$U(2)_R$		
(1,3,1)	(15)	(5, 1, 1)	6.54	17.17	0.0252	39.8	3 ± 1.2
	(15	(5, 1, 3)					
Model	$R_{ m DM}$	$R'_{ m DM}$	Higgs	$\log_{10} M_{\mathrm{int}}$	$\log_{10} M_{\mathrm{GUT}}$	$lpha_{ m GUT}$	$\log_{10} au_p$
		$G_{ m int}$	$=\mathrm{SU}(4)_C\otimes$	$\mathrm{SU}(2)_L \otimes \mathrm{U}(1)_L$	$(1)_R$		
FA ₄₂₁	$(1,2,1/2)_D$	$({\bf 15},{\bf 1},0)_W$	$({\bf 15},{\bf 1},0)_R$	3.48	17.54	0.0320	40.9 ± 1.2
			(15, 2, 1/2)	C			
		$G_{ m int}$	$=\mathrm{SU}(4)_C\otimes 3$	$\mathrm{SU}(2)_L \otimes \mathrm{SU}($	$(2)_R$		
FA ₄₂₂	$(1,2,2)_W$	$({f 1},{f 3},{f 1})_W$	$({f 15},{f 1},{f 1})_R$	9.00	15.68	0.0258	34.0 ± 1.2
			$({f 15},{f 1},{f 3})_R$				
FB ₄₂₂	$({f 1},{f 2},{f 2})_W$	$({f 1},{f 3},{f 1})_W$	$({f 15},{f 1},{f 1})_R$	5.84	17.01	0.0587	38.0 ± 1.2
			$({f 15},{f 2},{f 2})_C$				
			$({f 15},{f 1},{f 3})_R$				

Summary

- LHC susy and Higgs searches have pushed CMSSM-like models to "corners" or strips
- SO(10) models contain almost all of the benifits of SUSY models:
 - gauge coupling unification, radiative EWSB, stable Higgs vacuum, stable DM candidate....
- Several possibilities in non-SUSY SO(10) models which are phenomenologically consistent with p-decay limits
- Challenge lies in detection strategies