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Evidence for Dark Matter
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e Observed distribution of galaxies:

e strong lensing measurements
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e collisions of galaxy clusters
(e.g. bullet cluster)

Baryon density Qph?
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e success of BBN (DM is non-baryonic)

e growth of structure (cold DM)
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Searches for Particle Dark Matter

Direct Detection scattering off
normal matter, Xe, Ar, Ge, Si:
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What we expect to observe when two Black Holes

coalesce (merge)
Energy is damped into GWs —> The system gets closer and masses rotate

faster. Frequency Increases with time (“chirp”). So does the amplitude (this is
not a system that will return to equilibrium)
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Basic Estimates

GWs travel at the speed of light: A =c¢/f

Take a binary of two compact objects (Kepler’'s third law):

f:\/GMtot
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take Moy = 20M o and a = 500km thus 2f ~ 80H z
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Basic Scalings

Chirp mass:
(m1m2)3/5
(1 + my) /5
Amplitude of signal *during* Inspiral:
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LIGO Detectors
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The first ever Gravitational Waves signal detection

On Sept. 14th at 9:50:45 UTC (Coordinated Universal Time), the two
detectors of aLIGO observed a gravitational wave signal from the
coalescence of two Black Holes. It was observed between 35 and 250 Hz.

The observed Properties are (90 % credible intervals):

+95
mq — 36 M
© » Mioss = . OjL M@ - F =36 X 10°%erg/s
M2 = 29 (instantaneous)
4
40.05 . . C ‘ S |
a = 0.67"54 final spin: ¢ = Ve

dL = 4107130 M pc
= 0. 09+8 82 (Planck Cosm. Param.)

The event was observed with a time delay of
tq = 6.9703ms between Livingston LA and
Hanford WA.

Detection Significance: H.1o



The luminosity distance is correlated to the inclination of the orbital plane
to the line of sight 0N . Total angular momentum J.

J is almost constant during the inspiral.

45° < 05y < 135° with a probability of 0.35

50% probability within 140 deg”2
90% probability within 590 deg”2

Searches by EM and neutrino de-
tectors. No evident counterpart as
would be likely in any case.




All (~3) events

Event GW150914 GWI151226 LVTI151012
Signal-to-noise ratio 3.7 13.0 97
o)
False alarm rate _7 _7
FAR /yr~! <6.0x10 <6.0x10 0.37
p-value 75%x1078  75x10°8 0.045
Significance >5.30 .70
Primary mass 14,24:?-3 23+ é
miOUI'C6/M® ’
Secondary mass 77 +2.3
m;ource/MQ '1—4.4 7‘5—2.3 13—5
Chirp mass +1.8 3 +1.4
%source/MQ 28'1—1.5 8'9t8.3 15'1—1.1
Total mass 4.1 5.9 13
Msource/MG 65'31_3.4 21'81—1.7 371—4
Effective inspiral spin +0.14 +0.20 +0.3
e —0.062g14 021557 0.0Z0>
Final mass +3.7 +6.1 +14
]wfource/l\/l® (33.1 20'8—1.7 35—4
Final spin ar 068005 0745506 066751,
Radiated energy +0.5 +0.1 +0.3
Erad/ (Mo c?) 3.0%04 1.0%5, 1.5704
Peak luminosity 3.6707 % 3.3%0 6 % 3.170% x
Cpeak/ (ergs™") 10 10 10
Luminosity distance +150 +180 +500
Dy /Mpe 4207 130 4407 9 100055,

. +0.03
Source redshift z 0.09" 04

Sky localization
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*Very”* simple one:
1 event in 16 live days. —> 25 per yr.

sensitivity redshift,
z0of 0.3, 1.6 Gpc
—> Vol~7 Gpc/3

3.5Gpc Syr~!
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Time [weeks| from September 12

The GW was observed at high S/N, there are going to be other events
(as the LVT151012). Also if BHs are from Pop Ill stars or are at globular
clusters or at regions of low metallicity and high grav. potential they will
have some mass distribution and also will have some redshift distribution.

Going over astrophysical uncertainties in the above assumptions:
Using only GW150914 (fixing the masses, spins): 2 — 53 Gpc™ Syr~*
Using both GW150914 and LVT151012: 6 — 400 Gpc >yr "

LIGO’s combined range: 2 — 400 Gpc Syr—*




LIGO’s upgraded O1 (2015-16) run:

Mass distribution R/ (Gpc_3yr_1)
PyCBC GstLAL Combined
Event based
8.3 9.1 8.6
GW150914 3.0183 36t G4ttt > PBH?
LVT151012 9.21303 9.21314 9.41304
+92 +94 +92
GW151226 35755 3775 37757
+100 +105 +99
All 53_40 56_42 55—41
Astrophysical
. +43 +43 43
Flat in log mass 31757 30757 30757
Power Law (—2.35) 100135 951138 991158

TABLE II. Rates of BBH mergers based on populations with masses
matching the observed events, and astrophysically motivated mass
distributions. Rates inferred from the PyCBC and GstLAL analyses
independently as well as combined rates are shown. The table shows

median values with 90% credible intervals.

Different estimates on the coalescence rates come from different
astrophysical assumptions



Making a connection with DM
Work with Simeon Bird, Julian B Munoz,Yacine

Ali-Haimoud, Marc Kamionkowski, Ely D. Kovetz,
Alvise Raccanelli and Adam Riess (JHU)
PRL 116.201031 (arXiv:1603.00464)

Assuming Dark Matter is composed by Primordial BHSs.

There is some allowed parameter space around ~20-70 M

For the remainder | will assume
that all DM is composed of PBHs
and set their mass to 30 M4

Limits on spectral distortions of the

CMB are efficient above 100 M
Ali-Haimoud & Kamionkowski (1612.05644)

(0ld) Wide Binary 2 Limits from GC in dwSphs (e.g. Eridanus Il)

(Tim Brandt arXiv:1605.03662) are robust
otal below 15M~ .
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How fast do two BHs form a binary?

2/7
0.:23/77.‘.(857T> / R2 (g)—18/7
6v/2 "\
In easy units:

= L3 e 107 Wik, 211_9198/7 pc”

Assuming an NFW profile for the PBHs:
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After including information regarding the difference DM halos properties
(concentration, and velocity dispersions) and effects on the smallest DM

~ 2Gpc Pyr~1
(within the LIGO obs. rate)

~ 4 x 1073Gpe Pyr~t ]
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By 2019 the sensitivity will have increased to z<0.75

We expect O(10?) events from PBHs (if they compose 100% of DM)
by 2025,

All may be in a narrow mass range around 30 solar masses.

No other EM or neutrino signals. (typical though given that BH-BH give
GW only)

Following the DM distribution (need better angular resolution though).

Basic Uncertainties in the rate calculation:
- DM profile (factor of ~3) e
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Future directions for DM by PBHs

When these binaries form they have high initial eccentricities and small
peri-center distances:

05007 ‘ \ ‘ \ ‘ \ ] 1’ ‘ A A ‘ R A ‘ T
I PDF of initial eccenticity eg for PBH binaries , : PDF of pericenter distance at formation for PBH binaries
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PDFs of the PBH formed binaries

(1 — eg)Pe ~ 2.66n% T (w/c)!%7T €~1,np=1/4 forequal BH masses
oo ~ 2 % 10%km(vpar/20km/s) =47 w =~ 2/20/200 km/s

|.C., E. Kovetz, Ali-Haimoud, S. Bird, M. Kamionkowski, J. Munoz and
A. Raccanelli (JHU) PRD 94 084013 (arXiv:1606.07437)



Which in turn result in dramatically different timescales until merger:
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By the time of LIGO observation fully
circularized.



Time from formation to merger

Log1oTm (sec)

_Choalis et al. (2016)
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A rare case? (see many more modes of grav. waves)

Log1o((he+hn)x10%")
250 -

200 -
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10 (t:sec) 10! (t:sec)

simplified noise (LIGO final desi?n) o _ _
With LIGO we expect O(1) events while with the Einstein Telescope

we expect O(10) events with multiple modes detected from PBH
binaries. Other astrophysical mechanisms for Binary BHs have typical
time-scales of evolution that is ~Myrs-Gyrs. With Future eLISA we will
also be able to trace back some PBH systems to earlier stages (days-
years before the merger event) and thus observe the binaries at even
higher eccentricities.



Future Direction:
The stochastic GW background

For every event like the GW150914 there are many more too distant or
not powerful enough to be resolved above the threshold.
These create a “stochastic” grav. wave background.

The energy density of GWs can be described by:
f dpaw <— energy density between f and f+df

pe df
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Measuring the stock. back will probe the GW sources

---05:2020-22
= Fiducial
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LongDelay
LowMass
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—¥- ConstRate
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LIGO early RESULTS

10 10°
Frequency (Hz)

107

Frequency (Hz)

Based on the rate of 2 — 53 Gpc ®yr ' and assuming a conventional

Star Formation Rate (SFR) “Fiducial”
Star Formation Rate doesn’t affect much such a calculation (“AtSFR”)

“Long Delay”: it takes at least 5 Gyrs for a merger to occur (largely separated
objects with slow rel. velocity before binary creation). “Flat delay” : 1 Gyr.

“Low mass”: assuming 15M@ BHs. More power at higher frequencies.
Lower metallicity increases the number density of BHs

“Constant (in z) rate”: R,,(z) = 16 Gpc >yr !



Rm(Gpc2 yr)

Updated Rates on the BH-BH mergers
(some room a PBH component to be seen in the Stoch. Background)

V. Mandic, S. Bird, [.C. (PRL accept.) arXiv:1608.06699 &
|.C. arXiv:1609.03565
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An other future direction:

Cross-Correlations with Galaxies

A. Raccanelli, E. Kovetz, S. Bird, [.C. J. Munoz
PRD 94 023516 (arXiv:1605:01405)

If the GW signal comes from BHs originating by standard astrophysical sou-
rces e.g. BH in globular clusters, then the binary systems should preferential-
ly reside in galaxies where most of the stars are. So GW and star forming

galaxy (SFG) maps would be highly correlated.

If the BH binaries are mostly populating halos with different mass range, bias,
redshift and angular distributions, then the correlation with SFGs galaxies in
halos of masses ~ 10 — 10" M, would be lower.

If the GW signal comes from PBHs that constitute the DM then their distribution
will be more uniform on the sky.

We can calculate angular projections:

) dk
CXY = (af,al?) = 4n / WA (WX (R)WY (k)

k
Window functions



Window function: . .
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An other future possible indication:
Mass-Spectrum of BH-BH binaries

E. Kovetz, |.C., P. Breysse, M. Kamionkowski arXiv:1611:01157

Binned Mass distribution of BBHs: Astrophysical
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The next decades

Experiment 2015 24020 2025 2030 beyond ———

aLIGO (O1+) I

aLIGO (design) - Voyager & Cosmic Explorer
ET B

DECIGO B

(e)LISA B

BBO B



Understanding the Black Holes Mass Function
E. Kovetz, |.C., P. Breysse, M. Kamionkowski arXiv:1611:01157

Pen (M)

10
0.3 e e Y Ao 8
Current Status Conv. theor. P(M;)
- Measured BHs u
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eI
0.0: — 70
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My (Mo) 300 | [+ AL1GO BBI: ~ 3500) | | |
Understanding the BH -uture’
mass-function can lead to ‘
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systems
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|.C. Ely Kovetz, Julian Munoz, Marc Kamionkowski (work in progress + with many
extensions)

ZLIGO (design)}

:: LIGO (current)

GW 151226

0.001 0.010 0.100 1
f [Hz]

100

We will be able to observe the evolution of individual systems over periods
of years, thus measure evolving eccentricities, masses ->



Taking the first detection of GWs we made a connection to a long standing problem,
the nature of dark matter (assuming it is BHs produced at the Early Univesre).

The rate that these BHs merge currently is of the same order of magnitude as the one
observed (it could have been many orders of magnitude off) PEL 116 201031,

These can be very short-lived objects (shorter than this presentation or the time it will
take me to go through that slide). Thus with properties very unigue and Testable! in
the next ~decade PRD 94 084013.

One can also search for a signal in the mass-spectrum of observed BHs in the next
ten years arXiv:1611:01157 and even derive limits on PBHs from GWs (in progress).

e ,_,_,,,,,We Can also search for a S|gnal |n the overaII background GW em|SS|on PRL 117
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Additional slides



extracted parameters based on two waveform models (relying on Num.

Rel. simulations)

EOBNR IMRPhenom Overall
Detector-frame total mass M /Mg, 70.3733 70.713 7055?2?}:8
Detector-frame chirp mass M /Mg, 30.2777 30.517°¢ 3031?:%@8:3
Detector-frame primary mass m1 /Mg 394:@:8 38.341322 3881&:%8:3
Detector-frame secondary mass mso /Mg 30.977% 32.213:0 31'61_3:?):::;8:(13
Detector-frame final mass M /Mg 67.11%5 67.4734 6731%:%&8:3
Source-frame total mass M°°" ¢ /Mq 65.075’1:2 64.61%:% 64.8J_r§:8ié:g
Source-frame chirp mass M®°" ¢ /Mg 27.9713 27.9715 2791?:%?8:3
Source-frame primary mass m3j°" ¢ /Mg 36.3175-3 35.173:2 35713411
Source-frame secondary mass m5°""° /Mg 28.6175 295133 29113802
Source-fame final mass Mg °® /Mg, 62.07%7 61.6757 61.815-250-
Mass ratio g 070°41; 054741 052 R
Effective inspiral spin parameter g —0.09J_r8:%2 —O.OSJ_FBZ%EL —0.0Gfgz%gigzgé
Dimensionless primary spin magnitude aq O.32Jj8:§g O.31J_r8:g% 0.31f8:§§i8:8‘11
Dimensionless secondary spin magnitude as 0.57752) 0.3975:29 0.4610-4820.07
Fina pin o 06788 067753 067G
Luminosity distance Dy,/Mpc 390J_r£8 44041%;18 41041%2((%?18
Source redshift 2 0.08370 0a0 0.09370 058 0.088 10631 20-004
Upper bound on primary spin magnitude a 0.65 0.71 0.69 4+ 0.05
Upper bound on secondary spin magnitude as 0.93 0.81 0.88 +0.10
Lower bound on mass ratio g 0.64 0.67 0.65 + 0.03
Log Bayes factor In 5/, 288.7 £ 0.2 290.1 £ 0.2 —




Sensitivity evolution
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The ~second Event: LVT151012
LVT: Ligo Virgo Trigger 2015, October, 12th

my = 2375 M,

Combined S/N is 9.6 but H1
o — ].Si_éM@

and L1 individually <8.

. +0.1
z=0.2"47
False rate 1 every 2.3 yrs (GW150914 was < 1 every 203000 yrs)
H1 L1

10 - 10
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Using waveforms (or “templates”) of merging compact objects (250000

templates), 1 — 99 M, and « € (0,0.99)

searching for transient signals (using linear combinations of Sine-Gaussian
wavelets). GW150914 was detected by both methods.

LIGO measures, frequency-range during the inspiral phase
fmerge from the end of the inspiral phase
f == df/dt during the inspiral phase

h.. during the inspiral and merger phases

' f’ring down from the end of the merger phase

5, / N main contribution from the merger phase but also some from the insp.



- |udlow concentration
== Prada concentration

Lower mass halos —>lower velocity
dispersion (i.e. higher cross-section
for the binary formation) and higher
concentration:

-
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N
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Concentration

103 10° 10° 10%?
Mvir (M(D /h)

But there are many more
(in terms on number) low

107 mass DM halos:
1013 dn ks
dM

o
—
N

Merger rate per halo (yr—1)

Bird et al. 1603.00464
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Impose a cut-off at ~400 M



