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Dipole Matrix Elements

Excited state energies known very
well from spectroscopy (Ef − Ei)
Need dipole matrix elements also

|dif | = 〈n′PJ′‖d‖nSJ〉
Lifetime
Oscillator Strength
Einstein A coefficient

Difficult to measure directly in
general

0.2% error for lowest lying

Lifetime measurements
Better than typical

Good enough for many
applications
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Dipole Matrix Elements

Even more precision needed in some areas

Atomic parity violation

Atomic clocks

Precision limited by blackbody shift from environment

Theoretical benchmark

Computational techniques
Phenomenological input

Feshbach resonances



Atomic Parity Violation

Tabletop atomic experiment to
test fundamental particle physics
theory

Weak charge QW

Competitive precision in low
energy test of standard model

Bentz et al. Phys. Lett. B693, 462 (2010)  

High Energies 

Low Energies 

Cern, CU Boulder  



Atomic Parity Violation

From usual selection rules, S → P allowed, S → S
forbidden

APV - Nonzero S → S transition probability

Very small effect

4.5 a.u. vs. 10−11 a.u.!

Cs APV experiment (1997)

Achieved 0.35% experimental uncertainty
To convert to measurement of weak charge, need dipole
matrix elements
QSMW = −73.23(2)
QAtomicW = −72.58(29)Exp(32)Theory

0.4% theoretical uncertainty from conversion

No reason for new experiments until theory catches up



Atomic Parity Violation

Precise knowledge of alkali atom matrix elements |dif |
needed in analysis

Infinite number of such matrix elements - all contribute

Direct measurements not possible in general to high
enough precision

Lowest known through lifetime measurements

Beginning to develop framework to reduce uncertainties
through measurements of tune-out wavelengths



Bose-Einstein Condensate

Create BEC in standard fashion

MOT
Magnetic quadrupole trap
rf evaporation

Load atoms into “wave-guide”

2π x (5.1, 1.1, 3.2) Hz
Interferometer along weakest
direction

www.bec.nist.gov 



Bose-Einstein Condensate

2π x (5.1, 1.1, 3.2) Hz



Interferometry

Split source and propagate along two paths

Difference in phase at output - constructive vs. destructive
interference

~E = ~E0e
iφ = ~E0e

i(ωt−kz)



Interferometry

Split source and propagate along two paths

Difference in phase at output - constructive vs. destructive
interference

~E = ~E0e
iφ = ~E0e

i(ωt−kz)

Light interferometers measure time (optical path length)
differences



Atom Interferometry

φ =
S

~
=

∫
Edt

~
Analogous to light interferometer

Atoms sensitive to many more
phenomena - electromagnetic
fields, gravity, accelerations,
inter-atomic interactions, etc.

Colder (slower) atoms = longer
interrogation times

BEC before split 
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Atom Interferometry

φ =
S

~
=

∫
Edt

~
Analogous to light interferometer

Atoms sensitive to many more
phenomena - electromagnetic
fields, gravity, accelerations,
inter-atomic interactions, etc.

Colder (slower) atoms = longer
interrogation times

After recombination 

Phase determined by ratio of atoms at rest to total, N0/N



Stark Effect

U = −1

2
α〈E2〉 = − αI

2ε0c

Energy shift due to applied
electric field

Static or AC
Dynamic polarizability

Difficult to calibrate intensity

Atoms inside vacuum chamber

Want polarizability α

Dependence on dipole matrix
elements



Polarizability

αi(ω) =
1

~
∑
f

2ωif
ω2
if − ω2

|dif |2 + αc + αcv

αc = core contribution

αcv = core-valence correction

5P states dominate

α(ω) =
2

~
ω5P1/2

ω2
1/2 − ω2

|d1/2|2 +
2

~
ω5P3/2

ω2
3/2 − ω2

|d3/2|2 +αtail +αc +αcv

αtail = valence contributions > 5P

Difficult to calculate

Infinite number of matrix elements
Calculated up to n = 12
Uncertainty in tail same scale as value



Previous Meaurement (2008)

U = −1

2
α〈E2〉 = − αI

2ε0c

Measured by former student Ben
Deissler (PhD 2008)

α(780.23 nm) =
4πε0
1025 x (8.37 ± 0.24) m3

α(808.37 nm) =
4πε0
1028 x (9.48 ± 0.25) m3

Deviations from predicted values about
3%

Attributed primarily to intensity
calibration

Need way to reduce dependence on
intensity calibration



Tune-out wavelength

αi(ω) =
1

~
∑
f

2ωif
ω2
if − ω2

|dif |2 +αc+αcv

Zero in polarizability between
resonances

Extract info on |dif |, αc, αcv
Mainly depends on

R =
|d3/2|2

|d1/2|2

Sensitive to polarization of
light

Switch to spherical tensor
form
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Spherical tensors

Scalar Vector Tensor

U = −〈E
2〉

2

{
α(0) − 1

2
V cosχα(1) +

[
3 cos2(ξ)− 1

2

]
α(2)

}
Dependence on polarization more obvious

V - fourth Stoke’s parameter

±1 for σ±

cosχ = k̂ · b̂
cos ξ = ε̂ · b̂

Angle of linear polarization w.r.t. magnetic field

Near tune-out wavelength

α(1) = 25000 au
dα(0)/dλ = −2500 au/nm
Want sub-picometer uncertainty



Spherical tensors

U = −〈E
2〉

2

{
α(0) − 1

2
V cosχα(1) +

[
3 cos2(ξ)− 1

2

]
α(2)

}
Need to control |V cosχ| to better
than 10−5

Better than typically
maintained through vacuum
window
Stress-induced birefringence

Remove tensor polarizability later
to report zero in α(0)

λ(0)

Use atoms to linearize light



Stark Interferometer

Allow one packet of interferometer to pass through Stark
beam (twice)

Vary intensity to measure rate of phase buildup

Make measurements at different wavelengths around
tune-out



Polarization Control

U = −〈E
2〉

2

{
α(0) − 1

2
V cosχα(1) +

[
3 cos2(ξ)− 1

2

]
α(2)

}
Atoms held in Time Orbiting
Potential (TOP) magnetic trap

Magnetic bias rotates at 12 kHz
Stark light aligned in plane of
rotation

Constant reversal of σ+ and σ−

〈cosχ〉 = 0

Time averaging alone not enough



Polarization Control

Also want 〈V〉 = 0

Interferometer run with Stark
light pulsing

On for half of rotating bias
period

Phase buildup asymmetric when
imbalance of σ+ and σ−

Adjust external waveplate to
correct imbalance

QWP at 780 nm
Need 0.1◦ precision -
V ≈ 2 x 10−3

Properly set when phase
symmetric and small
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Polarization interferometer before correction 4-24-15
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Initial Polarization Interferometer 4-24-15



Tune-out Wavelength

A total of 21 tune-out
measurements made over 2
months

Upper figure 1 hour

One point on lower figure

Lower figure 1 day

Check polarization before and
after α measurement to assess
drift

Typical drift over day 60 fm
Likely due to thermal
fluctuations
Taken as polarization
uncertainty for measurement
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Tensor Polarizability

U = −〈E
2〉

2

{
α(0) +

[
3 cos2(ξ)− 1

2

]
α(2)

}
〈V cosχ〉 = 0

Depends on angle of linear polarization w.r.t. plane of
rotating magnetic field

Introduces shift in tune-out wavelength

Couldn’t accurately set ξ prior to taking data

Difficult to determine plane of bias rotation
Several measurements at different angles of linear
polarization

Remove α(2) term to get λ(0)



Tune-out Wavelength

λ0(θ) = λ(0)− α(2)

dα(0)/dλ

(
3

4
cos2 θ− 1

2

)
Measurements at different
polarization angles

Tensor polarizability well resolved

λ(0) zero in scalar polarizability

α(2)

dα(0)/dλ
= 538.5(4) fm

Straightforward to calculate
from theory due to strong
dependence on D1 and D2

Zero in scalar polarizability at
λ0 = 790.032388(32) nm
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Tune-out Wavelength

Several other
measurements in 87Rb

Referenced to F = 2
groundstate

Tune-outs also measured in
K, Na, He

Larger uncertainties for
now
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Tune-out Wavelength
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Ratios of Matrix Elements and Benchmarks

α(0) = A+ |d1/2|2
(α(0)

5P1/2

|d1/2|2
+
α
(0)
5P3/2

|d3/2|2
R

)
R = |d3/2/d1/2|2

A includes contributions from αc,
αcv, and valence terms above 5P

A = 10.70(12) au from theory
d1/2 = 4.233(4) au from direct
measurements

From direct measurements,
R = 1.995(7)

From tune-out wavelength,
R = 1.99221(3)
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Contributions from Theory

-15	

-10	

-5	

0	

5	

10	

Value	 Error	

𝛼 (
au

) 
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Implications for Theory

From tune-out wavelength, R = 1.99221(3)

Benchmark for theory

From M. Safronova, R = 1.9919(5)
Need to include additional effects

Breit Interaction

Relativistic correction to Coulomb interaction

QED effects

Radiative corrections

Both effects 5x smaller than theoretical uncertainty

Come in at 5 x 10−5 level
Compare to 3 x 10−5 from tune-out measurement
Need more precise calculations



Other Tune-out Wavelengths

Tune-out between any two
resonances

More ratios to determine
higher lying matrix
elements

Begin to separate out
various contributions

Will also measure vector
polarizability
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Vector Polarizability

U = −〈E
2〉

2

{
α(0) − 1

2
V cosχα(1)

}
Intentionally introduce circular
polarization in controlled manner

Measure ratio α(1)/α(0) at several
points around tune-out
wavelength

What does vector polarizability
get us?
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Vector Polarizability

Scalar: α(0) =
1

3~
∑
f

|Dif |2
ωif

ω2
if − ω2

+ αc + α
(0)
cv

Vector: α(1) =
1

3~
∑
f

CJ ′ |Dif |2
ω

ω2
if − ω2

+ α
(1)
cv

Look at one pair of n′ states

α
(0)
n′ =

ωn′
3/2

ω2
n′
3/2
− ω2

|dn′
3/2
|2 +

ωn′
1/2

ω2
n′
1/2
− ω2

|dn′
1/2
|2

α
(1)
n′ =

ω

ω2
n′
3/2
− ω2

|dn′
3/2
|2 − 2

ω

ω2
n′
1/2
− ω2

|dn′
1/2
|2

Contributions from n′P1/2 and n′P3/2 can be isolated



Vector Polarizability Polarization Control

Pulse for t << τTOP and adjust
relative phase

Fine control over 〈cosχ〉
Need new method to determine
polarization

Want V = +1

Use σ+ light tuned to D1
resonance

No resonant transition
Minimize scattering rate using
external waveplate

Energy Level Diagram
5S1/2 → 5P1/2

σ+ 

F,mF = 2,2 
5S1/2 

5P1/2 



Vector Polarizability

α ≈ 1

6

(
|D1|2(1− 2ν)

ω1/2 − ω
+
|D2|2(1 + ν)

ω3/2 − ω

)

Circular polarization shifts
tune-out location

ν can vary from -1/2 to +1/2

Possible to prevent tune-out
wavelength altogether

Tune over 2/3 range between D1

and D2

785 nm to 795 nm

Make measurements of shifted
tune-out wavelength
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Vector Polarizability

Adjust 〈V cosχ〉 in controlled manner

dλ0/dν almost linear over full range
Deviation from linear is of interest

Deviations on picometer scale

Compare to 32 fm uncertainty in tune-out measurement



Vector Polarizability

Current theoretical values and their uncertainties

αc = 9.08(5) au

α
(0)
cv = −0.37(4) au

α
(1)
cv ∼ −0.04(4) au
T1/2 = 0.022(22) au
T3/2 = 0.075(75) au

α
(1)
cv approximated from α

(0)
cv

Tail terms have n′ > 12



Vector Polarizability

Polarization and frequency dependence ultimately allow
separation of the contributions

Simulated 3 tune-out and multiple vector polarizability
measurements

Ratios 

Core 

Tails 

Model error based on 790 nm tune-out measurement



Vector Polarizability

In the process of setting
polarization

σ+ light tuned to D1 resonance
Correcting for chamber
birefringence, stray fields, etc.

Acquired Babinet-Soleil
Compensator

Calibrate waveplates at
different wavelengths
Accurately change σ+ → σ−

along with field reversal to test
polarization and field
corrections

Babinet-Soleil Compensator



Conclusions

Measured longest tune-out
wavelength in 87Rb

λ0 = 790.032388(32) nm
R = 1.99221(3)

Used R as a benchmark for theory

RTheory = 1.9919(5)

Measurements of other tune-out
wavelengths

Near 420 nm and 360 nm

Measurements of vector
polarizability

Separate out contributions beyond
what tune-out wavelengths alone
can do
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Wavemeter Calibration

Wavemeter specced to 10−6 - Not
good enough

Calibrated it using well known
lines in several atomic species

39K D1
87Rb D2
85Rb D1
133Cs D2

Add what we used as
correction with error bars
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Including Hyperfine Structure

α
(0)
5P =

10

~
√

15

∑
J ′,F ′

|dJ ′ |2ω′

ω′2 − ω2
(−1)1+F

′
(2F ′ + 1)

x

{
2 1 F ′

1 2 0

}{
F ′ 3/2 J ′

1/2 1 2

}2

α
(1)
5P =

10

~
√

15

∑
J ′,F ′

|dJ ′ |2ω
ω′2 − ω2

(−1)1+F
′
(2F ′ + 1)

x

{
2 1 F ′

1 2 1

}{
F ′ 3/2 J ′

1/2 1 2

}2

α
(2)
5P =

20

~
√

15

∑
J ′,F ′

|dJ ′ |2ω′

ω′2 − ω2
(−1)F

′
(2F ′ + 1)

x

{
2 1 F ′

1 2 2

}{
F ′ 3/2 J ′

1/2 1 2

}2



Parity Non Conservation

ETheoryPNC =

∞∑
n′=6

(
〈7S|d|n′P1/2〉〈n′P1/2|HPNC |6S〉

E6S − En′P1/2

+
〈7S|HPNC |n′P1/2〉〈n′P1/2|d|6S〉

E7S − En′P1/2

)
QSM

W = −73.23(2)

QAtomic
W = −72.58(29)Exp(32)Theory

Differ by 1.5σ



Parity Non Conservation

Im(EPNC)

β
= i

QW
βN

kPNC

kPNC contains all relevant
parity conserving and PNC
matrix elements

Mixing of S1/2 and P1/2

states

Weak interaction not
parity conserving


